JPH02284479A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPH02284479A
JPH02284479A JP1106343A JP10634389A JPH02284479A JP H02284479 A JPH02284479 A JP H02284479A JP 1106343 A JP1106343 A JP 1106343A JP 10634389 A JP10634389 A JP 10634389A JP H02284479 A JPH02284479 A JP H02284479A
Authority
JP
Japan
Prior art keywords
ultraviolet rays
layer
junction surface
light shielding
shielding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1106343A
Other languages
Japanese (ja)
Inventor
Akimasa Tanaka
章雅 田中
Akinaga Yamamoto
晃永 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP1106343A priority Critical patent/JPH02284479A/en
Publication of JPH02284479A publication Critical patent/JPH02284479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To increase detection sensitivity of a photoelectric transducer by a method wherein donar is formed in an N-type impurity region, insulating layers are positively charged, electron in the impurity region is attracted, electric field is not concentrated at end-portions of a PN junction surface, and the increase of leak current is prevented. CONSTITUTION:Donar is formed in an N<+> type diffusion region 14, and oxide layers 12, 16 are positively charged, so that electron in the diffusion region 14 is attracted. Hence a depletion layer formed at end-portions 15a of a PN junction surface 15 is stretched in the entering direction under a light shielding layer 13, and electric field is not concentrated. Since the oxide layer 12 is thinnly formed, oblique incidence ultraviolet rays scarcely exist, and the amount of ultraviolet rays projected under a light shielding layer 13 is remarkably reduced. Hence the increase of leak current generated mainly at end-portions of a P-N junction surface by the irradiation of ultraviolet rays is almost blocked, and detection sensitivity of a photo diode array can be stably improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光電変換装置に関し、特に紫外線に照射された
時に生じる漏れ電流の増大を阻止する構造を有する光電
変換装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photoelectric conversion device, and particularly to a photoelectric conversion device having a structure that prevents an increase in leakage current that occurs when irradiated with ultraviolet rays.

〔従来の技術〕[Conventional technology]

従来、この種の光電変換装置としては例えば光ダイオー
ドアレイかある。この光ダイオードアレイは、分光光度
計を始めとする分析装置におけるスペクトル検出器等に
使用され、この構造は第4図(a)の断面図に示される
Conventionally, this type of photoelectric conversion device includes, for example, a photodiode array. This photodiode array is used as a spectrum detector in an analytical device such as a spectrophotometer, and its structure is shown in the cross-sectional view of FIG. 4(a).

n型の半導体基板1の表層部にはp+型の拡散領域2か
形成されている。そして、拡散領域2により形成される
pn接合面が半導体基板]の表面に接する端部3は、酸
化物層4および多結晶シリコン層5により覆われている
。さらに、多結晶シリコン層5および拡散領域2は酸化
物層6により覆われている。このため、pn接合面の端
部3は光照射面側から見て紫外線に不透明な多結晶シリ
コン層5によって光シールドされており、紫外線の照射
時に主にこの端部3に生じる漏れ電流の増大はかなり低
減されている。
A p + -type diffusion region 2 is formed in the surface layer of an n-type semiconductor substrate 1 . The end portion 3 where the pn junction surface formed by the diffusion region 2 contacts the surface of the semiconductor substrate is covered with an oxide layer 4 and a polycrystalline silicon layer 5. Furthermore, the polycrystalline silicon layer 5 and the diffusion region 2 are covered with an oxide layer 6. For this reason, the end 3 of the pn junction surface is optically shielded by the polycrystalline silicon layer 5 that is opaque to ultraviolet rays when viewed from the light irradiation surface side, and an increase in leakage current mainly occurs at this end 3 when irradiated with ultraviolet rays. has been significantly reduced.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかしながら、一般に、酸化物層4,6には正極性の電
荷が帯電し、特に、紫外線の照射時においては電荷量か
増大する。なお、イ争かてはあるか多結晶シリコン層5
から紫外線か漏れ、酸化物層4に帯電する電荷量も増大
する。一方、拡散領域2はp+型に形成されており、正
極性に荷電された不純物原子であるアクセプタが存在し
ている。
However, in general, the oxide layers 4 and 6 are charged with positive polarity, and the amount of charge increases particularly when irradiated with ultraviolet rays. It should be noted that there is no dispute that the polycrystalline silicon layer 5
Ultraviolet rays leak from the oxide layer 4, and the amount of charge charged on the oxide layer 4 also increases. On the other hand, the diffusion region 2 is formed to be p+ type, and has acceptors which are positively charged impurity atoms.

このため、酸化物層4,6に帯電された正極性の電荷に
より、正極性に荷電された拡散領域2の中の正孔は斥け
られ、pn接合面の端部3に形成される空乏領域は、第
4図(b)に示されるように光照力・1面側に曲げられ
る。この結果、空乏領域に形成される電界はこの端部3
に集中し、紫外線照射時における漏れ電流は増大する。
Therefore, the positively charged holes in the diffusion region 2 are repelled by the positive charges on the oxide layers 4 and 6, and a depletion is formed at the end 3 of the pn junction surface. The area is bent toward the illumination power side as shown in FIG. 4(b). As a result, the electric field formed in the depletion region is
The leakage current increases during ultraviolet irradiation.

さらに、酸化物層4の膜厚は厚いため、多結晶シリコン
層5によって本来光シールドされるはずの端部3は紫外
線か照射され易い状態にある。従って、端部3で発生す
るMれ電流の増大の阻止はいまた完全ではなく、紫外線
帯域における光電変換装置としての検出感度は低下し、
スペクトル検出等の機能の精度は劣化するという課題が
生じていた。
Furthermore, since the oxide layer 4 is thick, the end portion 3, which should originally be optically shielded by the polycrystalline silicon layer 5, is easily irradiated with ultraviolet rays. Therefore, the increase in the M leakage current generated at the end portion 3 is not completely prevented, and the detection sensitivity as a photoelectric conversion device in the ultraviolet band decreases.
A problem has arisen in that the accuracy of functions such as spectrum detection deteriorates.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明はこのような課題を解消するためになされたもの
で、p型半導体基板の表層部に形成されたn型の不純物
領域と、この不純物領域により形成されるpn接合面の
端部を覆って所定位置に選択的に形成された紫外線に不
透明な遮光層と、この遮光層の下層部に薄く形成された
絶縁層とを(l″lj1えて構成されたものである。
The present invention has been made to solve these problems, and includes an n-type impurity region formed in the surface layer of a p-type semiconductor substrate and an end portion of the pn junction surface formed by this impurity region. The light-shielding layer is selectively formed at a predetermined position and is opaque to ultraviolet rays, and a thin insulating layer is formed below the light-shielding layer.

〔作用〕[Effect]

n型の不純物領域には負極性にiij電された不純物原
子であるドナーが形成され、絶縁層か正極性に帯1−シ
されることにより不純物領域の中の電子は引き寄せられ
る。また、この絶縁層は薄く形成されているため、遮光
層下に照射される紫外線量は著しく減少される。
Donors, which are impurity atoms charged with negative polarity, are formed in the n-type impurity region, and electrons in the impurity region are attracted by the insulating layer being charged with positive polarity. Furthermore, since this insulating layer is formed thinly, the amount of ultraviolet rays irradiated below the light shielding layer is significantly reduced.

〔実施例〕〔Example〕

第1図は本発明の一実施例によるホトダイオドアレイの
断面図であり、第2図はこのホトダイオードアレイの各
製造工程における断面図である。
FIG. 1 is a cross-sectional view of a photodiode array according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the photodiode array at each manufacturing step.

p型のシリコン基板]1」二にはシリコン酸化物等から
なる酸化物層12が0.1μm以下の膜厚、例えば、0
 、  Ol −0、08It mの膜厚で薄く形成さ
れる。さらに、この酸化物層12上には多結品のシリコ
ンかCVD技術により堆積され、遮光層]3か形成され
る(第2図(a)参照)。この遮光層13はタングステ
ン(W)やプラチナ(pH等の高融点金属により形成し
ても良い。
p-type silicon substrate] 1"2, an oxide layer 12 made of silicon oxide or the like is formed with a film thickness of 0.1 μm or less, for example, 0.1 μm or less.
, Ol -0,08It is formed thinly with a film thickness of m. Furthermore, polycrystalline silicon is deposited on this oxide layer 12 by CVD technology to form a light shielding layer 3 (see FIG. 2(a)). This light shielding layer 13 may be formed of a high melting point metal such as tungsten (W) or platinum (pH).

次に、光感応領域を確保するため、遮光層13および酸
化物層12の所定領域かエツチング技術を用いて選択的
に除去される(同図(b)参照)。
Next, in order to secure a photosensitive region, predetermined regions of the light shielding layer 13 and the oxide layer 12 are selectively removed using an etching technique (see FIG. 3(b)).

次に、残された遮光層13および酸化物層12をマスク
にし、露出した基板11に不純物として砒素(As)か
注入される。この後、イオン注入された不純物を活性化
するために熱処理か行われ、0.1μm程度の浅い深さ
のn+型の拡散領域14が形成される(同図(c)参照
)。
Next, using the remaining light shielding layer 13 and oxide layer 12 as a mask, arsenic (As) is implanted as an impurity into the exposed substrate 11. Thereafter, a heat treatment is performed to activate the ion-implanted impurities, and an n+ type diffusion region 14 having a shallow depth of about 0.1 μm is formed (see FIG. 3(c)).

遮光層]3はこの熱処理に十分耐えることの出来る物理
的性質を有し、かつ、紫外線に不透明な、つまり、紫外
線を遮蔽する物理的性質を有する。
The light-shielding layer] 3 has physical properties that can sufficiently withstand this heat treatment, and is opaque to ultraviolet rays, that is, has physical properties that block ultraviolet rays.

また、拡散領域14により形成されるpn接合面]5の
端部15aは、この熱処理により、遮光層]3によって
光照射面側から見て覆われる形になり、紫外線から光シ
ールドされる。ここまでの工程により、pバ20半導体
基板11とn+型の拡散領域]4とのpn接合により、
複数個のホトダイオードか形成される。
Further, by this heat treatment, the end portion 15a of the pn junction surface 5 formed by the diffusion region 14 is covered by the light shielding layer 3 when viewed from the light irradiation surface side, and is optically shielded from ultraviolet rays. Through the steps up to this point, a pn junction between the p-bar 20 semiconductor substrate 11 and the n+ type diffusion region]4 is formed.
A plurality of photodiodes are formed.

次に、遮光層]3および基板1]の拡散領域]4上に二
酸化ケイ素(S 102 )やリン・ケイ酸ガラス(P
 S G)等かCVD技術を用いて堆積され、第1図(
a)に示される酸化物層16が形成される。この酸化物
層16は反射防正膜になると共に電気的絶縁に供される
ものになる。
Next, silicon dioxide (S 102 ) and phosphorus silicate glass (P
SG) etc. were deposited using CVD technology, and as shown in Fig. 1(
An oxide layer 16 shown in a) is formed. This oxide layer 16 serves as an anti-reflective film and provides electrical insulation.

引キ続いて、この酸化物層16上にアルミニウム(AΩ
)金属等が蒸着され、フォトエツチング技術を用いて配
線パターンニングが行われて図示しない配線層か形成さ
れる。
Subsequently, aluminum (AΩ) is deposited on this oxide layer 16.
) A metal or the like is deposited, and wiring patterning is performed using photoetching technology to form a wiring layer (not shown).

このように以上の各工程を経て第1図に示されるポトダ
イオードアレイは製造される。
In this manner, the potdiode array shown in FIG. 1 is manufactured through the above steps.

このような構造において、光感応領域に光が照射される
と、pn接合面15に形成される空乏領域にキャリアが
捕らえられ、各ホトダイオードには光出力電流が生じる
。この性質を利用して、ホトダイオードアレイは分析装
置におけるスペクトル検出器等に使用される。
In such a structure, when the photosensitive region is irradiated with light, carriers are captured in the depletion region formed at the pn junction surface 15, and a light output current is generated in each photodiode. Taking advantage of this property, photodiode arrays are used in spectrum detectors and the like in analytical equipment.

このように本実施例によれば、n+型の拡散領域]4に
はドナーか形成され、酸化物層1216か正極性に帯電
されることにより拡散領域コ4の中の電子は引き寄せら
れる。このため、pn接合面15の端部15aに形成さ
れる空乏領域は、第1図(b)に示されるように遮光層
13下に入り込む方向に引き伸ばされ、端部]、 5 
aに電界か集中することは無い。さらに、酸化物層]2
は薄く形成されているため、斜めに入射する紫外線はほ
とんと無くなり、遮光層]3下に照射される紫外線量は
著しく減少される。
As described above, according to this embodiment, a donor is formed in the n+ type diffusion region 4, and the electrons in the diffusion region 4 are attracted by positively charging the oxide layer 1216. Therefore, the depletion region formed at the end 15a of the pn junction surface 15 is stretched in the direction below the light shielding layer 13 as shown in FIG.
There is no electric field concentrated at a. Further, oxide layer]2
Since it is formed thin, almost no ultraviolet rays are incident obliquely, and the amount of ultraviolet rays irradiated below the light shielding layer 3 is significantly reduced.

このため、紫外線か照射されることによって主にpn接
合面の端部において発生する漏れ電流の増大はぼとんと
阻止され、ホトダイオードアレイの検出感度は著しく向
上し、スペクトル検出等は安定に、かつ、精度良く行わ
れる。しかも、拡散領域]4は砒素によって浅く形成さ
れ、pn接合面はよい位置にあるため、紫外線帯域の短
波長感度は向」−シ、優れたホトダイオードアレイか提
供される。
Therefore, the increase in leakage current that occurs mainly at the end of the pn junction surface due to ultraviolet irradiation is completely blocked, the detection sensitivity of the photodiode array is significantly improved, and spectrum detection etc. is stable. Performed with high precision. Moreover, since the diffusion region 4 is shallowly formed of arsenic and the pn junction is located at a good position, short wavelength sensitivity in the ultraviolet band is low, providing an excellent photodiode array.

また、端部15aは遮光層13により紫外線から保護さ
れているため、端部15aに漏れ電流か増大することは
なく、ホトダイオードの寿命は長くなる。
Further, since the end portion 15a is protected from ultraviolet rays by the light-shielding layer 13, leakage current at the end portion 15a does not increase, and the life of the photodiode is extended.

第3図は、ホトダイオードアレイにおいて、遮光層下の
酸化物層の厚さを変化させた場合における紫外線照射量
と検出感度の劣化の割合との関係を表すグラフである。
FIG. 3 is a graph showing the relationship between the amount of ultraviolet irradiation and the rate of deterioration of detection sensitivity when the thickness of the oxide layer under the light shielding layer is changed in a photodiode array.

この横軸は紫外線の照n・J量を表し、紫外線の照射時
間を単位とする。縦軸は検出感度の劣化の割合を表し、
その目盛は劣化のない状態時における検出感度を各劣化
状態時における検出感度で割った値を示す。例えば、劣
化のない状態時における検出感度が100 [:mA/
W]であれば、目盛「1」においては劣化かなくて検1
]Jl感度が100 [m A/W]であることを表わ
し、[−1盛「]0」においては劣化か進んで検出感度
か10[mA/W]になったことを表わす。
The horizontal axis represents the amount of ultraviolet irradiation n·J, with the unit of ultraviolet irradiation time. The vertical axis represents the rate of deterioration in detection sensitivity,
The scale indicates the value obtained by dividing the detection sensitivity in a state with no deterioration by the detection sensitivity in each deterioration state. For example, the detection sensitivity in a state without deterioration is 100 [:mA/
W], there is no deterioration at scale “1” and test 1
]Jl represents that the sensitivity is 100 [mA/W], and [-1 value "]0" represents that the detection sensitivity has deteriorated or progressed to 10 [mA/W].

直線21は、紫外線の露光に対して未対策な装置におけ
る特性であり、pn接合面の端部かなんら保護されてい
ない構造のものである。この直線21から、紫外線照射
量の増加に(トっで検出感度の劣化の割合が著しく大き
くなり、劣化の度合いか進むことか理解される。
The straight line 21 is a characteristic of an apparatus that is not protected against exposure to ultraviolet rays, and has a structure in which the end of the pn junction surface is not protected in any way. From this straight line 21, it can be seen that as the amount of ultraviolet irradiation increases, the rate of deterioration in detection sensitivity increases significantly, and the degree of deterioration increases.

これに対して直線22は遮光層]3下の酸化物層]2の
厚さが1μmの時の特性であり、直線23.24および
25は酸化物層12の厚さが05μm、O,1μmおよ
び0,01μmの時の特性である。各直線22〜25か
ら理解されるように、酸化物層]2の厚さか薄くなるほ
ど検出感度の劣化の割合は小さくなり、特に直線24に
示される0、1μm以下の厚さになると遮光層13の光
シールド#!能は著しく向上することが分かり、本実施
例の有効さか理解される。
On the other hand, the straight line 22 shows the characteristics when the thickness of the oxide layer 2 under the light-shielding layer 3 is 1 μm, and the straight lines 23, 24 and 25 show the characteristics when the thickness of the oxide layer 12 is 05 μm, O,1 μm. and the characteristics at 0.01 μm. As can be understood from the straight lines 22 to 25, as the thickness of the oxide layer [2] becomes thinner, the rate of deterioration of the detection sensitivity decreases, and especially when the thickness of the oxide layer 2 becomes less than 0.1 μm as shown by the straight line 24, the light shielding layer 13 Light shield #! It can be seen that the performance is significantly improved, and the effectiveness of this example can be understood.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、n型の不純物領域
にはドナーか形成され、絶縁層が正極性に帯電されるこ
とにより不純物領域の中の電子は引き寄せられる。
As explained above, according to the present invention, a donor is formed in the n-type impurity region, and the insulating layer is positively charged, thereby attracting electrons in the impurity region.

このため、pn接合而面端部に電界か集中することはな
く、しかも、絶縁層は薄く形成されて遮光層下に照射さ
れる紫外線量は著しく減少するため、紫外線の照射時に
pn接合面の端部で主に発生ずる漏れ電流の増大はぼと
んと阻止される。この結果、光電変換装置としての検出
感度は向上し、スペクトル検1七等の機能の粘度は高く
なるという効果を何する。
Therefore, the electric field is not concentrated at the edge of the pn junction surface, and the insulating layer is formed thin, so the amount of ultraviolet rays irradiated under the light shielding layer is significantly reduced. The increase in leakage current that occurs mainly at the ends is largely prevented. As a result, the detection sensitivity as a photoelectric conversion device is improved, and the viscosity of functions such as spectrum detection 17 is increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による装置の断面図、第2図
はこの第1図に示された装置を製造する際の各工程にお
ける断面図、第3図はホトダイオードアレイの遮光層下
の酸化物層を変化させた場合における紫外線照射量と検
出感度の劣化の割合との関係を表すグラフ、第4図は従
来の装置の断面図である。 ]]・・半導体基板、12・・・酸化物層、]3・・遮
光層、14・・・拡散領域、コ5・・・pn接合+Tj
j 。 15 a・・・pn接合而面5の端部、16・酸化物層
FIG. 1 is a cross-sectional view of a device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of each step in manufacturing the device shown in FIG. 1, and FIG. FIG. 4 is a graph showing the relationship between the amount of ultraviolet irradiation and the rate of deterioration of detection sensitivity when the oxide layer of the device is changed, and FIG. 4 is a cross-sectional view of a conventional device. ] ]...Semiconductor substrate, 12... Oxide layer, ]3... Light shielding layer, 14... Diffusion region, Co5... pn junction +Tj
j. 15 a... End of pn junction surface 5, 16. Oxide layer.

Claims (1)

【特許請求の範囲】[Claims] p型半導体基板の表層部に形成されたn型の不純物領域
と、この不純物領域により形成されるpn接合面の端部
を覆って所定位置に選択的に形成された紫外線に不透明
な遮光層と、この遮光層の下層部に薄く形成された絶縁
層とを備えて構成される光電変換装置。
An n-type impurity region formed on the surface layer of a p-type semiconductor substrate, and a light shielding layer opaque to ultraviolet rays selectively formed at a predetermined position covering the end of a pn junction surface formed by this impurity region. , and a thin insulating layer formed below the light shielding layer.
JP1106343A 1989-04-26 1989-04-26 Photoelectric conversion device Pending JPH02284479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1106343A JPH02284479A (en) 1989-04-26 1989-04-26 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1106343A JPH02284479A (en) 1989-04-26 1989-04-26 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPH02284479A true JPH02284479A (en) 1990-11-21

Family

ID=14431180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1106343A Pending JPH02284479A (en) 1989-04-26 1989-04-26 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH02284479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329149A (en) * 1990-10-12 1994-07-12 Seiko Instruments Inc. Image sensor with non-light-transmissive layer having photosensing windows

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329149A (en) * 1990-10-12 1994-07-12 Seiko Instruments Inc. Image sensor with non-light-transmissive layer having photosensing windows

Similar Documents

Publication Publication Date Title
US9419159B2 (en) Semiconductor light-detecting element
US8994135B2 (en) Photodiode and photodiode array
EP2403009B1 (en) Semiconductor photodetection element
US9276022B2 (en) Low crosstalk, front-side illuminated, back-side contact photodiode array
US8778721B2 (en) Array of mutually isolated, geiger-mode, avalanche photodiodes and manufacturing method thereof
US9293499B2 (en) Semiconductor light detecting element having silicon substrate and conductor
JP2003535459A (en) Method for suppressing edge current of semiconductor device
JPH022692A (en) Infrared detecting trenched schottky barrier photodiode
JP2013093609A (en) Semiconductor photodetection element
US20020007846A1 (en) Solar cell and method for fabricating the same
US11973093B2 (en) Visible-to-longwave infrared single photon avalanche photodetector on silicon
KR100263474B1 (en) Solid stage image sensor and method of fabricating the same
WO2021131759A1 (en) Semiconductor light detection element
JPH02284479A (en) Photoelectric conversion device
US6153446A (en) Method for forming a metallic reflecting layer in a semiconductor photodiode
US3916429A (en) Gated silicon diode array camera tube
JPS5972164A (en) Solid-state image-pickup device
JPH02284481A (en) Manufacture of photoelectric conversion device
JP2819263B2 (en) CCD image element
JPH02284478A (en) Photoelectric conversion device
JPH02284475A (en) Photoelectric conversion device
JPH02284480A (en) Photoelectric conversion device
USRE29261E (en) Gated silicon diode array camera tube
JPS62152163A (en) Planar type photoelectric conversion device
JPH0286176A (en) Photoelectric converter