JPH02284347A - Manufacture of battery case used for explosion-proof enclosed battery - Google Patents
Manufacture of battery case used for explosion-proof enclosed batteryInfo
- Publication number
- JPH02284347A JPH02284347A JP1104907A JP10490789A JPH02284347A JP H02284347 A JPH02284347 A JP H02284347A JP 1104907 A JP1104907 A JP 1104907A JP 10490789 A JP10490789 A JP 10490789A JP H02284347 A JPH02284347 A JP H02284347A
- Authority
- JP
- Japan
- Prior art keywords
- punch
- thin
- battery
- mold
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000001125 extrusion Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 10
- 238000000465 moulding Methods 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000003754 machining Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- SOZVEOGRIFZGRO-UHFFFAOYSA-N [Li].ClS(Cl)=O Chemical compound [Li].ClS(Cl)=O SOZVEOGRIFZGRO-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Sealing Battery Cases Or Jackets (AREA)
- Gas Exhaust Devices For Batteries (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、防爆型密閉電池に使用する電池ケースの製造
方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a battery case for use in an explosion-proof sealed battery.
従来の技術
塩化チオニル−リチウム電油で代表されるような正極活
物質としてオキシハロゲン化物を用い、負極活物質とし
てアルカリ金属を用いる電池では、活物質が水分と非常
に反応しやすいため、電池ケースをハーメチックシール
により封口する完全密閉構造が採用されている。Conventional technology In batteries that use an oxyhalide as the positive electrode active material and an alkali metal as the negative electrode active material, such as thionyl chloride-lithium electrolyte, the active material reacts very easily with moisture, so the battery case A completely hermetic structure is used to seal the area with a hermetic seal.
このようなハーメチックシールを採用した電池では、密
閉性が高い反面、高温加熱下に置かれたり、高電圧で充
電されるなどの事態に遭遇すると。Batteries that use such a hermetic seal have a high degree of airtightness, but if they encounter situations such as being placed under high temperature heating or being charged at high voltage.
電池の内部圧力が異常に上昇して破裂に至v1電池使用
機器を破損するおそれがある。そこで1種々の防爆安全
装置が提案されてきたが、特に電池ケースの底部に溝加
工を施し薄肉部を形成したものが多かった。There is a risk that the internal pressure of the battery will rise abnormally, causing it to explode and damaging equipment using V1 batteries. Therefore, various explosion-proof safety devices have been proposed, but in particular, many of them have grooves formed on the bottom of the battery case to form a thin wall portion.
従来、この種の密閉形電油は、第6図に示すような構成
であった。第6図に於いて、塩化チオニル−リチウム電
池の発電要素、例えばリチウム負極11.セパレータ1
2.炭素多孔質成形体正極13などを収納した電池容器
1の開口部にカラス層16を介して正極端子17を設け
た電池蓋16を溶接してあり、正極端子17はパイプ状
をしていて、その上端部は電解液18を注入した後、正
極集電体14の上部と溶接して封止してあった。Conventionally, this type of sealed electro-hydraulic has a structure as shown in FIG. In FIG. 6, a power generating element of a thionyl chloride-lithium battery, such as a lithium negative electrode 11. Separator 1
2. A battery lid 16 having a positive electrode terminal 17 is welded to the opening of the battery container 1 containing the carbon porous molded positive electrode 13 through a glass layer 16, and the positive electrode terminal 17 has a pipe shape. After the electrolytic solution 18 was injected into the upper end thereof, the upper end of the positive electrode current collector 14 was welded and sealed.
一方電池容器1の底部2には平面形状が十字状の溝3が
形成されていた。第6図はこの電池容器の底部の、プレ
ス成形による薄肉加工の状態を示す要部拡大断面図であ
る。第6図において、金型D:溝加工用ポンチと金型T
L:受台とによるプレス成形によって、電池容器1の底
部2の外面に、底部に平坦部3tLf有する断面倒立台
形状の溝3を形成していた(特開昭63−86243号
公報)。On the other hand, a groove 3 having a cross-shaped planar shape was formed in the bottom 2 of the battery container 1. FIG. 6 is an enlarged cross-sectional view of the main part of the bottom of the battery container, showing the state of thinning by press molding. In Fig. 6, mold D: groove machining punch and mold T
L: A trapezoidal groove 3 having a flat section 3tLf at the bottom was formed on the outer surface of the bottom 2 of the battery container 1 by press molding with a pedestal (Japanese Unexamined Patent Publication No. 86243/1983).
発明が解決しようとする課題
このような従来の構成では、溝底部に平坦部を設けたこ
とによる切欠効果と、平面形状において複数の溝が交点
を持つことにより電池の内部圧力が該交点に集中してか
かるようになり、薄肉部の厚さをある程度維持しても、
比較的低い圧力で、溝底部の端部から切裂破壊が生じる
ようになっている。しかし、プレス成形により溝加工を
して量産対応を行なり場合、どうしても溝形成用のポン
チの損傷が避けられず、溝底部の端部における薄肉部の
厚さがポンチの損傷に伴い厚くなり、前記切欠効果が期
待できなくなるおそれがあった。即ち、第6図において
、溝底部31Lの端部3亀2において、電池の内部圧力
上昇時の曲げによる引張力に対する抵抗が大きくなり、
切裂破壊が生じる箇所が溝底部31Lの端部31L2か
ら中火部3亀1になるものもあり、防爆機能の作動圧力
にバラツキを生じた。特に、電池ケースの材質がステン
レス凧である場合、その加工硬化のためにポンチの破損
が著しかった。そこで薄肉部4の厚さtf:比較的薄い
状態で安定して量産することがやはり基本となる。この
ような観点から、溝底部に幅広い平坦部があったり、平
面形状に見る溝の交点近傍においては、プレス成形によ
る薄肉加工時にケース材料が逃げにくいので、薄くつぶ
そうとすればするほど加工荷重が大きくなり、ポンチに
負担がかが92金型寿命が短くなるという課題があった
。Problems to be Solved by the Invention In such a conventional configuration, the internal pressure of the battery is concentrated at the intersection point due to the notch effect due to the flat portion provided at the bottom of the groove and the intersection point between the plurality of grooves in the planar shape. Even if the thickness of the thin part is maintained to some extent,
At a relatively low pressure, cutting failure occurs from the end of the groove bottom. However, when making grooves by press forming for mass production, damage to the groove forming punch is unavoidable, and the thickness of the thin part at the end of the groove bottom becomes thicker due to the damage to the punch. There was a possibility that the above-mentioned notch effect could not be expected. That is, in FIG. 6, the resistance to the tensile force due to bending when the internal pressure of the battery increases is increased at the end 3 of the groove bottom 31L,
In some cases, the location where the cutting failure occurred was from the end 31L2 of the groove bottom 31L to the middle heat section 3, causing variations in the operating pressure of the explosion-proof function. In particular, when the material of the battery case is stainless steel, the punch is severely damaged due to its work hardening. Therefore, it is fundamental to stably mass-produce the thin portion 4 with the thickness tf: relatively thin. From this point of view, if there is a wide flat part at the bottom of the groove or near the intersection of the grooves when seen in a plan view, it is difficult for the case material to escape during thin wall processing by press forming, so the thinner you try to crush it, the higher the processing load will be. There was a problem that the 92 mold life was shortened due to the increase in size and the burden on the punch.
本発明はこのような課題を解決するもので、電池ケース
の底部のプレス成形による薄肉加工を安定化させること
により、安全性及び量産性の高い防爆機能を備えた密閉
形電池の製造法を提供することを目的とするものである
。The present invention solves these problems and provides a method for manufacturing a sealed battery with an explosion-proof function that is highly safe and mass-producible by stabilizing the thin wall processing by press molding of the bottom of the battery case. The purpose is to
課題を解決するための手段
本発明は、電池に防爆機能を備えさせるための薄肉部を
電池ケースの底部に形成するにあたり、薄肉部形成用金
型として、先端に一定面積の平坦部を有するポンチおよ
び、上記ポンチ平坦部と相似形状で、かつその80〜9
8%の面積の押出し孔を有する平坦な受け型を用いるも
のである。Means for Solving the Problems The present invention provides a punch having a flat part of a certain area at the tip as a mold for forming the thin part when forming a thin part at the bottom of a battery case to provide the battery with an explosion-proof function. and a shape similar to the flat part of the punch, and 80 to 9
A flat receiving mold with extrusion holes of 8% area is used.
作用
このような薄肉部の製造方法によると、ポンチにより抑
圧された電池ケースの底部は、受け型の押出し孔に逃げ
るため、電池ケースの圧縮による加工硬化を減少させる
ことができる。そこで例えば電池ケースとして耐食性は
高いが、高硬度であるステンレス鋼を用いた場合でも比
較的低い加工荷重で薄肉部を形成できるため、薄肉加工
が安定し、安全性及び量産性の高い防爆機能を備えた密
閉形電池を得ることができる。Effect: According to such a method of manufacturing a thin wall portion, the bottom portion of the battery case suppressed by the punch escapes into the extrusion hole of the receiving mold, so that work hardening due to compression of the battery case can be reduced. For example, even when stainless steel, which has high corrosion resistance and high hardness, is used as a battery case, thin-walled parts can be formed with a relatively low processing load, making thin-walled processing stable and providing explosion-proof functionality with high safety and mass production. A sealed battery can be obtained.
また、受け型の押出し孔の形状および面積を、ポンチ平
坦部と相似形でかつ平坦部面積の80〜98%にするの
は、押出し孔の面積が80%以下では、ポンチにより抑
圧された電池ケース底部が受け型の押出し孔に逃げきれ
ず、圧縮による加工硬化により加工荷重が大きくなって
、薄肉部形成が困難になるからである。また逆に98%
を超えた場合は、ポンチと受け型との間で剪断力が作用
し、プレス成形による薄肉部が形成し難くなくなるから
である。In addition, the shape and area of the extrusion hole of the receiving mold should be similar to the flat part of the punch and 80 to 98% of the area of the flat part. This is because the bottom of the case cannot fully escape into the extrusion hole of the receiving mold, and the processing load increases due to work hardening due to compression, making it difficult to form a thin wall part. On the other hand, 98%
This is because if it exceeds this, shearing force will act between the punch and the receiving die, making it difficult to form a thin walled part by press molding.
実施例
つぎに本発明の実施例を図面に基づいて説明する。第1
図は薄肉部形成用のポンチを下降させ、電池ケースの底
部に押し込んだときの状態の要部拡大断面図であジ、第
2図は薄肉部形成用金型を真上から見た図である。Embodiments Next, embodiments of the present invention will be described based on the drawings. 1st
The figure is an enlarged cross-sectional view of the main parts when the punch for forming the thin-walled part is lowered and pushed into the bottom of the battery case, and Figure 2 is a view of the mold for forming the thin-walled part seen from directly above. be.
まず、第1図に基づき全体を説明すると、ポンチ21と
押出し孔23を有する受け型22によるプレス成形によ
って、電池ケース24の底部24&の内面に四部25.
外部に凸部26を形成すると。First, the whole will be explained based on FIG. 1. Four parts 25.
When a convex portion 26 is formed on the outside.
ケース材料が矢印Pに示すように逃げて、ポンチ平坦部
211Lと対向する受け型平坦部221Lとの間で薄肉
部2Tが形成される。The case material escapes as shown by arrow P, and a thin portion 2T is formed between the punch flat portion 211L and the opposing mold flat portion 221L.
第2図は、この本発明による薄肉部形成用金型を真上か
ら見た図である。ここで受け型22の押出し孔23の面
積を人、Aと相似形のポンチ平坦!211Lの面積iB
とすると、ム= 0.8〜0.98×Bであることが好
ましい。斜線部8は、ポンチ平坦部21!Lと受け型平
坦部22&とに挾まれた部分であり、第1図における薄
肉部27のための加工面積となる。また第2図において
は、斜線部28は円形状であったが、第3図五〜Dに示
すように、環状で相似形を保ちつれば多様な形状が可能
である。FIG. 2 is a view of the thin-walled part forming mold according to the present invention viewed from directly above. Here, the area of the extrusion hole 23 of the receiving mold 22 is determined by a punch similar to A. Area iB of 211L
Then, it is preferable that Mu=0.8 to 0.98×B. The shaded part 8 is the punch flat part 21! This is the part sandwiched between L and the receiving mold flat part 22&, and becomes the processing area for the thin part 27 in FIG. Further, in FIG. 2, the shaded portion 28 has a circular shape, but as shown in FIG. 3, 5-D, various shapes are possible as long as the shape is annular and similar.
量産対応における防爆機能の作動の安定性を以下の方法
で評価した。電池ケースの材料にステンレス鋼(517
5304)を用いて、薄肉部形成用金型の材料に超硬を
用いた。金型形状については、本発明の場合、第1図に
示すφ”5WWは、0.16m(ム/B=o、ss)と
o、30m(ム/ B :0.80)と0.40 m
(ム/B=0.74)の3種類とし、図示しないがポン
チ側ストッパーにより、ポンチ平坦部21&と受け型平
坦部221Lとの間隔t120.05■確保するように
設定した。また従来の構成の場合は、第6図に示すθ全
60°とし、Wは0.15m+と0.30mの2種類を
用いて、金型D(溝加工用ポンチ)と金型K(受台)の
間隔t′f:0.06mに設定し、溝の加工形状は十字
状にした。The operational stability of the explosion-proof function for mass production was evaluated using the following method. The material of the battery case is stainless steel (517
5304), and carbide was used as the material of the mold for forming the thin-walled part. Regarding the mold shape, in the case of the present invention, φ"5WW shown in FIG. m
(M/B=0.74), and a stopper on the punch side (not shown) was used to ensure a distance t120.05■ between the punch flat part 21& and the receiving mold flat part 221L. In addition, in the case of the conventional configuration, the θ is set to 60 degrees in total as shown in Fig. 6, and two types of W are used, 0.15 m+ and 0.30 m. The interval t'f of the grooves was set to 0.06 m, and the groove was formed into a cross shape.
尚、加工荷重は全て一定で、薄肉部の加工面積は、Wが
0.15m5+と0.30鰭の各々の比較において、本
発明と従来の構成が同じ面積になるようにした。It should be noted that the machining loads were all constant, and the machining area of the thin-walled part was made to be the same area for the present invention and the conventional configuration in each comparison of W of 0.15 m5+ and 0.30 fins.
以上の金型構成において、まず1万個の薄肉加工を行な
った後、その60個を抜き取り、更に10万個の薄肉加
工を行なった後、その60個を抜き取り、それらを10
10℃で10分間焼鈍し、薄肉部の破壊作動圧を測定し
た結果の度数分布を第4図に示した。また、加工後の金
型の損傷状況も比較した。In the above mold configuration, first 10,000 pieces are processed into thin walls, then 60 of them are extracted, and then 100,000 pieces are processed into thin walls, then those 60 pieces are extracted, and those 10 pieces are extracted.
Figure 4 shows the frequency distribution of the results of annealing at 10° C. for 10 minutes and measuring the breaking pressure of the thin wall portion. We also compared the damage to the molds after processing.
第4図に示すように、Wが同じ場合本発明による薄肉加
工を施した電池ケースの方が、従来の構成による薄肉加
工を施した電池ケースよりも、量産対応において作動圧
のバラツキが小さく、また作動圧のレベルの変化も殆ど
ない。従来の電池ケースの破壊作動圧の高いものについ
て、薄肉部の厚みを測定した結果、金型の設定(t=0
.05m)よりも大きい値であった。これは、薄肉部の
ケース材料の逃げが悪いため、加工荷重が不足していた
ためと思われる。As shown in FIG. 4, when W is the same, the battery case with the thin wall processing according to the present invention has smaller variations in operating pressure in response to mass production than the battery case with the thin wall processing using the conventional structure. Furthermore, there is almost no change in the level of operating pressure. As a result of measuring the thickness of the thin wall part of conventional battery cases with high breaking operating pressure, we found that the mold settings (t = 0
.. 05m). This is thought to be due to insufficient machining load due to poor escape of the case material in the thin wall portion.
しかしながら、本発明による薄肉加工をW=0.40■
(ム/B=0.74) として加工したものは、作動
圧のレベルの変化は殆ど無かったものの、作動圧は高く
、薄肉部の厚みも金型の設定(t=0.06■)よりも
大きい値であった。これは、押出し孔23へのケース材
料が逃げきれなくなったためと思われる。However, the thin wall processing according to the present invention is
(mm/B=0.74) Although there was almost no change in the operating pressure level, the operating pressure was higher and the thickness of the thin part was also lower than the mold setting (t=0.06■). was also a large value. This seems to be because the case material could no longer escape into the extrusion hole 23.
加工後の金型の損傷状況については、従来の構成では、
溝加工用ポンチの第6図に示す3&2に相当する部分の
損傷が見られ、特に溝の交点近傍に相当する部分の破損
が顕著であったのに対し、本発明による金型においては
殆ど損傷が見られなかった。Regarding the damage status of the mold after processing, in the conventional configuration,
Damage was seen in the part corresponding to 3 & 2 shown in Figure 6 of the groove processing punch, and the damage was particularly noticeable in the part corresponding to the intersection of the grooves, whereas in the mold according to the present invention, there was almost no damage. was not seen.
発明の効果
以上のように本発明によれば、プレス成形による薄肉加
工時に、薄肉部分のケース材料が逃げ易いため、加工荷
重が小さくて済み、また、ポンチ自体の加工部の肉厚を
確保する設計ができるので、ポンチの負担が軽減できる
。そこで、量産対応においても、金型の損傷が殆どなく
、プレス成形による薄肉加工を安定して行な9ことがで
きる。そして、電池の内圧が異常に上昇した場合には所
定の面積が完全に開放して、電池内部で発生したガスの
逸散を充分に行なうことができ、安全性が高くかつ量産
性のある防爆機能金偏えることができるという効果が得
られる。Effects of the Invention As described above, according to the present invention, when thin-walled by press forming, the case material in the thin-walled part easily escapes, so the processing load is small, and the thickness of the processed part of the punch itself is ensured. Since it can be designed, the burden on the punch can be reduced. Therefore, even in mass production, there is almost no damage to the mold, and thin-wall processing by press molding can be stably performed9. When the internal pressure of the battery rises abnormally, a predetermined area is completely opened to allow sufficient dissipation of the gas generated inside the battery, making it highly safe and suitable for mass production. This has the effect of making it possible to allocate functional funds.
第1図は本発明の実施例における薄肉部形成用のポンチ
を下降させ電池ケースの底部に押し込んだときの状態の
要部拡大断面図、第2図は本発明による薄肉部形成用金
型を真上から見た図、第3図ム〜Dは本発明による薄肉
部形成用金型の形状例を示す図、第4図は量産対応にお
ける防爆機能の作動圧安定性を評価した度数分布図、第
6図は従来の構成による密閉形電池を示す断面図、第6
図は第5図に示す従来の密閉形電池の薄肉加工の状態を
示す要部拡大断面図である。
21・・・・・・ポンチ、21&・・・・・・ポンチ平
坦部、22・・・・・・受け型、22!L・・・・・・
受け型平坦部、23・・・・・・押出し孔、24・・・
・・・電池ケース、241L・・・・・・電池ケース底
部、26・・・・・・凹部、26・・・・・・凸部、2
7・・・・・・薄肉部、28・・・・・・21&と22
1Lとに挾まれた部分。
代理人の氏名 弁理士 粟 野 重 孝 ほか1名2f
−・−ホ゛ン少
2 fa −一一ごシテ平JE 部
22−−−受17隻
22α−擾I7型平硯舒
2鞄−・4jぞ底部
2f−凹部
2cmQ櫛
27−嶌肉舒
第
図
第
図
第
図FIG. 1 is an enlarged cross-sectional view of the main part of the punch for forming a thin wall part according to an embodiment of the present invention when it is lowered and pushed into the bottom of the battery case, and FIG. A diagram viewed from directly above, Figures 3 M to D are diagrams showing examples of the shape of the mold for forming thin-walled parts according to the present invention, and Figure 4 is a frequency distribution diagram evaluating the operating pressure stability of the explosion-proof function for mass production. , FIG. 6 is a cross-sectional view showing a sealed battery with a conventional configuration.
This figure is an enlarged cross-sectional view of a main part showing a thin-walled state of the conventional sealed battery shown in FIG. 5. 21... Punch, 21 &... Punch flat part, 22... Receiving mold, 22! L...
Receiver mold flat part, 23... Extrusion hole, 24...
... Battery case, 241L ... Battery case bottom, 26 ... Concave portion, 26 ... Convex portion, 2
7...Thin wall part, 28...21 & and 22
The part sandwiched between 1L and 1L. Name of agent: Patent attorney Shigetaka Awano and 1 other person 2nd floor
-・-Hon small 2 fa -11 goshite flat JE part 22---17 utensils 22α-17 type flat inkstone 2 bags-・4j bottom 2f-concave 2cm Q comb 27-ink shank diagram Figure diagram
Claims (1)
ケースの底部に形成する方法であって、薄肉部形成用金
型として、先端に一定面積の平坦部を有するポンチおよ
び、上記ポンチの平坦部と相似形状でその80〜98%
の面積の押出し孔を有する平坦な受け型を用いたことを
特徴とする電池ケースの製造方法。A method for forming an annular thin-walled part at the bottom of a battery case for equipping a battery with an explosion-proof function, the method comprising: a punch having a flat part of a certain area at the tip as a mold for forming the thin-walled part, and a flat part of the punch. 80-98% of the similar shape
1. A method for manufacturing a battery case, comprising using a flat receiving mold having an extrusion hole with an area of .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1104907A JP2792097B2 (en) | 1989-04-25 | 1989-04-25 | Manufacturing method of battery case used for explosion-proof sealed battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1104907A JP2792097B2 (en) | 1989-04-25 | 1989-04-25 | Manufacturing method of battery case used for explosion-proof sealed battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02284347A true JPH02284347A (en) | 1990-11-21 |
JP2792097B2 JP2792097B2 (en) | 1998-08-27 |
Family
ID=14393192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1104907A Expired - Fee Related JP2792097B2 (en) | 1989-04-25 | 1989-04-25 | Manufacturing method of battery case used for explosion-proof sealed battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2792097B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114242462A (en) * | 2021-12-27 | 2022-03-25 | 江苏奥星电子有限公司 | Integrally-formed explosion-proof aluminum shell extrusion die and forming process thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59154743A (en) * | 1983-02-23 | 1984-09-03 | Hitachi Maxell Ltd | Sealed type battery |
JPS59132162U (en) * | 1983-02-23 | 1984-09-04 | 日立マクセル株式会社 | sealed battery |
JPS63285860A (en) * | 1987-05-19 | 1988-11-22 | Hitachi Maxell Ltd | Manufacture of battery container used for explosion-proof sealed battery |
-
1989
- 1989-04-25 JP JP1104907A patent/JP2792097B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59154743A (en) * | 1983-02-23 | 1984-09-03 | Hitachi Maxell Ltd | Sealed type battery |
JPS59132162U (en) * | 1983-02-23 | 1984-09-04 | 日立マクセル株式会社 | sealed battery |
JPS63285860A (en) * | 1987-05-19 | 1988-11-22 | Hitachi Maxell Ltd | Manufacture of battery container used for explosion-proof sealed battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114242462A (en) * | 2021-12-27 | 2022-03-25 | 江苏奥星电子有限公司 | Integrally-formed explosion-proof aluminum shell extrusion die and forming process thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2792097B2 (en) | 1998-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020063584A1 (en) | Top cover assembly, manufacturing method for same, top cover manufacturing method, and battery cell | |
JP4184894B2 (en) | Cap assembly, secondary battery including the cap assembly, and method of manufacturing the cap assembly | |
JP5191473B2 (en) | Cap assembly and secondary battery including the same | |
EP3675205A1 (en) | Sealing plate | |
KR102563662B1 (en) | Component with component reinforcement and feedthrough | |
JP7353382B2 (en) | Lithium ion battery cover plate assembly and lithium ion battery | |
CN110048053A (en) | Shell and energy storage device for energy storage device | |
CN207977385U (en) | A kind of lithium ion battery and its shell | |
JP2010040328A (en) | Sealed battery | |
KR20050051558A (en) | Sealed and square type battery | |
JP4219661B2 (en) | Battery sealing plate | |
JP3771366B2 (en) | Sealed battery | |
JPH11176412A (en) | Cap assembly of secondary battery | |
KR100592227B1 (en) | Can of square type secondary battery | |
JPH02284347A (en) | Manufacture of battery case used for explosion-proof enclosed battery | |
US11742542B2 (en) | Explosion-proof enclosure for energy storage device and energy storage device | |
CN209981285U (en) | Needle type lithium ion battery | |
CN213520236U (en) | Button cell and electronic equipment | |
US20220320566A1 (en) | Electrochemical cell and its method of manufacture | |
JP5824632B1 (en) | Lead acid battery | |
KR100416321B1 (en) | Forming Method of Anode for Li Battery using Li Powder | |
JP2020030887A (en) | Alkaline battery | |
JPH02281552A (en) | Sealed battery | |
KR20200046404A (en) | Manufacturing method of lead accumulator grid | |
KR101093457B1 (en) | lithium battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |