JPH02284230A - Deductive computation system based on derivation principle - Google Patents
Deductive computation system based on derivation principleInfo
- Publication number
- JPH02284230A JPH02284230A JP10677289A JP10677289A JPH02284230A JP H02284230 A JPH02284230 A JP H02284230A JP 10677289 A JP10677289 A JP 10677289A JP 10677289 A JP10677289 A JP 10677289A JP H02284230 A JPH02284230 A JP H02284230A
- Authority
- JP
- Japan
- Prior art keywords
- logical
- deductive
- formula
- solution
- standard form
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009795 derivation Methods 0.000 title claims description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 238000004364 calculation method Methods 0.000 claims description 22
- 230000014509 gene expression Effects 0.000 abstract description 31
- 230000001186 cumulative effect Effects 0.000 abstract 2
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Landscapes
- Devices For Executing Special Programs (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は人工知能の一部門であるエキスパートシステム
等における推論方式に間し、特に導出原理に基づく演繹
演算を行うことにより有限回の演算回数で正しい結論を
得ることができる導出原理に基づく演)演算方式に関す
る。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to inference methods in expert systems, etc., which are a branch of artificial intelligence, and in particular, by performing deductive operations based on derivation principles, the number of operations is limited to a finite number of times. This paper concerns an arithmetic method based on derivation principles that allows correct conclusions to be obtained.
(従来の技術)
人工知能の一分野として特定の専門家の知識をコンピュ
ータ上に表現し、その分野の問題をコンピュータに解か
せるエキスパートシステムが各分野で使用されつつある
。(Prior Art) As a field of artificial intelligence, expert systems are being used in various fields that express the knowledge of a specific expert on a computer and allow the computer to solve problems in that field.
第4図はこのようなエキスパートシステムの構成例を示
すブロック図である。なお、以下の説明において、「〜
」は否定、「v」は選言、「→」は含意、rP、Q、a
、b、・・・」は論理変数を示す、知識ベース記憶手段
50は、その分野の専門家の知識をルール(論理式)と
して記憶している。FIG. 4 is a block diagram showing an example of the configuration of such an expert system. In addition, in the following explanation, "~
” is negation, “v” is disjunction, “→” is implication, rP, Q, a
, b, . . .'' indicate logical variables. The knowledge base storage means 50 stores the knowledge of experts in the field as rules (logical formulas).
このルールは、一般に、三段論法における肯定式(Mo
dus ponens)と呼ばれる形式を主体にした
ものが多い0例えば、三段論法では、「Aが真実である
」とわかっており、「もしAならばBであるJという規
則があると、「Bが真である」と結論する推論形式を採
用する。ユーザインタフェース手段52は、利用者から
の質問を入力して推論手段51に渡す、推論手段51は
、知識ベース記憶手段50に記憶されている全ての論環
式に対して推論を行い解答を得る。この推論は、一般に
、任意の二つの論理式に、同一の論理変数で否定記号の
ある変数とない変数を含むときは新しい論理式の導出(
Resolution)を行なう。この導出とは次のよ
うな演算である。二つの論理式、例えば「〜PVQJと
「〜QVRJがら論理式’QJとその否定「〜Q」を取
り除き、新しい論理式「〜PVRJを導き出すことであ
る。This rule is generally used for affirmative expressions in syllogisms (Mo
For example, in a syllogism, we know that ``A is true,'' and if there is a rule J such as ``If A, then B, then ``B is true.'' Adopt a form of reasoning that concludes that "is true." The user interface means 52 inputs a question from the user and passes it to the inference means 51. The inference means 51 performs inference on all the logical rings stored in the knowledge base storage means 50 and obtains an answer. . In general, when any two logical expressions contain the same logical variable, one with a negation symbol and one without, a new logical expression can be derived (
Resolution). This derivation is the following calculation. The purpose is to remove the logical formula 'QJ and its negation "~Q" from two logical formulas, such as "~PVQJ and "~QVRJ," and derive a new logical formula "~PVRJ.
このような処理を知識ベース記憶手段50に記憶されて
いるN個のルール全てに対して行う。Such processing is performed for all N rules stored in the knowledge base storage means 50.
そして導出によって得られた論理式についてもまた、そ
れ以外の論理式との間の任意の二つの論理式との間で上
述した導出を行い解を得る。Regarding the logical formula obtained by the derivation, the above-mentioned derivation is also performed between any two logical formulas between it and other logical formulas to obtain a solution.
(発明が解決しようとする課l1J)
上述したように従来の推論方式は、任意の二つの論理式
に、同一の論理変数で否定記号のある変数とない変数と
があるときは導出を行う、N個の論理式に対してこのよ
うな組み合わせの数は29オーダ以下とはならない、従
って、論理式の数Nが大きくなるとこの組み合わせの数
が爆発的に増加(NP−Comp I e t e )
L、現実的な演算時間で解を見い出せない場合がある
。このように従来の推論方式には解決すべき課題があっ
た。(Issues to be solved by the invention 11J) As mentioned above, the conventional inference method performs derivation when two arbitrary logical expressions include the same logical variable, one with a negation symbol and one without. The number of such combinations for N logical formulas will not be less than 29 orders, therefore, as the number N of logical formulas increases, the number of combinations will increase explosively (NP-Comp I et e)
L. There are cases where a solution cannot be found within a realistic calculation time. As described above, conventional inference methods have problems that need to be solved.
本発明は、このような事情に鑑みてなされたものであり
、その目的は、従来方式より少ない演算回数で推論の結
論を得ることができる導出原理に基づく演繹演算方式を
提供することにある。The present invention has been made in view of these circumstances, and its purpose is to provide a deductive calculation method based on a derivation principle that can obtain an inference conclusion with fewer calculations than conventional methods.
(課題を解決するための手段)
本発明の導出原理による演繹演算方式は、上記目的を達
成するために、論理式を入力する入力手段と、
該入力手段により入力された論理式の形式を標準形に形
式変換する変換手段と、
該変換手段から出力される標準形の論理式に対して演繹
演算を行い解を求める演繹演算手段とを有する。(Means for Solving the Problem) In order to achieve the above object, the deductive calculation method based on the derivation principle of the present invention has an input means for inputting a logical formula, and a standard format for the logical formula input by the input means. The present invention has a converting means for converting the standard form into a form, and a deductive calculating means for performing a deductive calculation on a logical formula in a standard form output from the converting means to obtain a solution.
(作用)
本発明の導出原理による演繹演算方式においては、入力
手段が、論理式を入力し、変換手段が、この入力手段に
より入力された論理式を標準形に形式変換する。そして
、演繹演算手段が、この変換手段により標準形に変換さ
れた論理式に対して演繹演算を行い解を求める。(Operation) In the deductive calculation method based on the derivation principle of the present invention, the input means inputs a logical formula, and the conversion means converts the logical formula input by the input means into a standard form. Then, the deductive calculation means performs a deductive calculation on the logical formula converted into the standard form by the conversion means to obtain a solution.
(発明の原理)
本発明の導出原理に基づく演繹演算方式では、論理式を
標準形に変換し、標準形の論理式12に対して演繹演算
を行って結論を得る。標準形の論理式について演繹演算
を行うことにより、いかなる形の複数の論理式でも?i
I鐸処理し、有限回の演算回数で論理的に正しい結論を
得ることができる。(Principle of the Invention) In the deductive calculation method based on the derivation principle of the present invention, a logical formula is converted into a standard form, and a deductive calculation is performed on the logical formula 12 in the standard form to obtain a conclusion. Multiple logical expressions of any form by performing deductive operations on logical expressions of standard form? i
It is possible to obtain a logically correct conclusion with a finite number of calculations.
即ち、次のような処理を行う、ここで最初の論理式は例
えば「aJとする。「a」に対する導出は、残りN−1
個の論理方程式の中から「〜a」なる論理変数を全部捜
し出し、それを消去することに相当する。この探索に要
する回数はN−1のオーダである。この操作の結果、例
えば「b」なる解が得られたとする0次に、残りの全て
の論理式の中から「〜b」なる変数を全部捜しだし、消
去する。これに要する探索回数はN−2のオーダである
。その結果r CJなる解が得られたとする9次に、残
されたN−3gの論理式の中から「〜C」を捜しだし消
去する。このような操作を繰り返し、全ての変数を探索
するに要する探索回数は(N1)+(N−2)+・・・
十2+1=N (N−1)/2即ちN2のオーダである
。従って、このような演算方式により推論をする方式で
は、探索回数はNP−Comp l e t eではな
い。That is, the following processing is performed. Here, the first logical expression is, for example, "aJ." The derivation for "a" is the remaining N-1
This corresponds to finding all the logical variables "~a" from among the logical equations and deleting them. The number of times this search is required is on the order of N-1. As a result of this operation, it is assumed that, for example, a solution "b" is obtained in the 0th order, and all variables "~b" are searched out from all remaining logical expressions and deleted. The number of searches required for this is on the order of N-2. Assume that a solution r CJ is obtained as a result.Next, ``~C'' is searched out from the remaining logical formulas N-3g and deleted. The number of searches required to repeat this operation and search for all variables is (N1) + (N-2) +...
12+1=N (N-1)/2, that is, on the order of N2. Therefore, in a method that performs inference using such a calculation method, the number of searches is not NP-Complete.
次の7つの論理式を例として本発明の原理を具体的に説
明する。The principle of the present invention will be specifically explained using the following seven logical expressions as examples.
p 式(1
p″g 式 2〜r→〜g
式 3〜S
式 4S→ (〜rVj) 式 5
S→ (tVu) 式 6t→ (pV
s) 式 7先ず、式(1)〜式(7)
を標準形すなわち「含意(→)」を含まない形式とする
と式(8)〜(14)のようになる。p formula (1 p″g formula 2~r→~g
Formula 3~S
Formula 4S→ (~rVj) Formula 5
S→ (tVu) Formula 6t→ (pV
s) Equation 7 First, Equation (1) to Equation (7)
If we take the standard form, that is, the form that does not include the "implication (→)", we obtain equations (8) to (14).
p 式(8)
〜PVg 式(9)
rV〜g 式 10〜S
式 11〜gV(〜r vj
) 式 12〜5V(tVu)
式 13〜tV(pVs) 式 14次
に、式(8)〜式(14)に対して次のような演繹演算
を行う、先ず、式(8)は単一論理変数’PJなので、
他の六つの式から論理変数「〜ρ」を探し、全て消去す
る。この結果式(9)から解’gJが得られる0次に、
式(10)〜(14)の中に含まれているこの論理変数
「g」の否定即ち「〜g」を全て消去する。この結果、
式(10)から解「rJが得られる0次に、残った論理
式から変数「〜r」を全て消去する。このような操作を
繰り返し、新たな解が得られなくなるまで繰り返す、す
べての演算を終了するのに6×5/2=15回の探索回
数で足りる。従来の探索手法では、上記のような6つの
論理方程式を含む演繹演算には2’ =64通りの探索
を行う必要がある。論理式の数Nが多ければ、2NとN
2との相違はもっと大きくなる。p Formula (8) ~PVg Formula (9) rV~g Formula 10~S
Formula 11~gV(~r vj
) Formula 12~5V (tVu)
Equations 13 - tV (pVs) Equation 14 Next, perform the following deductive operation on equations (8) - (14). First, since equation (8) is a single logical variable 'PJ,
Find the logical variable "~ρ" in the other six equations and delete them all. As a result, the solution 'gJ is obtained from equation (9).
The negation of this logical variable "g", that is, "~g" contained in equations (10) to (14) are all deleted. As a result,
The solution ``rJ'' is obtained from equation (10). Next, all variables ``~r'' are deleted from the remaining logical expressions. This operation is repeated until no new solution can be obtained; 6×5/2=15 searches are sufficient to complete all operations. In the conventional search method, it is necessary to perform 2' = 64 searches for a deductive operation including the six logical equations as described above. If the number N of logical expressions is large, 2N and N
The difference between 2 and 2 is even greater.
(実施例)
次に、本発明の実施例について図面を参照して詳細に説
明する。(Example) Next, an example of the present invention will be described in detail with reference to the drawings.
第1図は本発明の一実施例の構成図である。同図におい
て、1はルール(論理式)および質問を入力する入力手
段、2は入力手段1により入力された論理式を記憶する
知識ベース記憶手段、3は知識ベース記憶手段2に記憶
されている論理式を標準形に変換してワークメモリ4に
格納する変換手段、5はワークメモリ4に格納されてい
る標準形の論理式に基づいて推論を行ない、入力手段1
により入力された質問に対する解を求める演繹演算手段
、6は演繹演算手段5により求められた解を出力する出
力手段である。FIG. 1 is a block diagram of an embodiment of the present invention. In the figure, 1 is an input means for inputting rules (logical formulas) and questions, 2 is a knowledge base storage means for storing the logical formulas input by the input means 1, and 3 is stored in the knowledge base storage means 2. Converting means 5 converts a logical formula into a standard form and stores it in the work memory 4; input means 1 performs inference based on the standard form logical formula stored in the work memory 4;
6 is an output means for outputting the solution obtained by the deductive calculation means 5.
第2図は、第1図の実施例に入力される論理式の例を示
したものである。第3図は、第2図の論理式を変換手段
3により標準形に変換して得た論理式を示したものであ
る。FIG. 2 shows an example of a logical formula input to the embodiment of FIG. 1. FIG. 3 shows a logical formula obtained by converting the logical formula of FIG. 2 into a standard form by the conversion means 3.
以下、第1図の実施例において第2図に示す論理式に基
づいて推論を行う際の動作について説明する。外部より
起動されると、先ず、入力手段1か動作を始める。入力
手段1は、第2図に示すような論理式を入力し、知識ベ
ース記憶手段2に格納する。そして、入力処理が終了し
た旨を変換手段3に通知する。Hereinafter, an explanation will be given of the operation when inference is made based on the logical formula shown in FIG. 2 in the embodiment shown in FIG. 1. When activated from the outside, first, the input means 1 starts operating. The input means 1 inputs a logical formula as shown in FIG. 2 and stores it in the knowledge base storage means 2. Then, the converting means 3 is notified that the input processing has been completed.
この通知を受は取った変換手段3は、知識ベース記憶手
段2内に格納されている論理式を標準形に変換し、ワー
クメモリ4に格納する。この結果、第2図に示す論理式
は、第3図に示すような論理式に変換される0例えば、
第2図(1)の論理式「X→b」は第3図(9)の論理
式「〜XVbJに変換される。以下、同様に第2図(2
)〜(8)の論理式も第3図(10)〜(16)の論理
式に変換される。Upon receiving this notification, the conversion means 3 converts the logical formula stored in the knowledge base storage means 2 into a standard form and stores it in the work memory 4. As a result, the logical formula shown in FIG. 2 is converted into the logical formula shown in FIG. 3. For example,
The logical formula "X→b" in Figure 2 (1) is converted to the logical formula "~XVbJ" in Figure 3 (9).
The logical expressions in ) to (8) are also converted to the logical expressions in FIG. 3 (10) to (16).
次に、入力手段1は、利用者からの質問「X?」すなわ
ち論理式「Xノの値を求める質問を入力し、演繹演算手
段5に渡して起動する。起動された演騨演算手段5は、
この論理式「X」に基づいて次の演繹演算を行う。Next, the input means 1 inputs a question "X?" from the user, that is, a question asking for the value of the logical expression "X", and passes it to the deductive calculation means 5 and activates it. teeth,
The following deductive operation is performed based on this logical formula "X".
■ワークメモリ4内の標準形の論理式の中で論理式「X
」の否定[〜X」を含む論理式を全て見い出し、「〜X
」を消去して得た解をワークメモリ4に格納する。第3
図(9)、(14)の論理式「〜Xvb」、「〜Xvj
」が「〜X」を含むので、この「〜X」を消去して解と
して「b」。■ Among the standard form logical expressions in work memory 4, the logical expression
Find all logical expressions that include the negation [~X] of '~X
” is deleted and the obtained solution is stored in the work memory 4. Third
The logical expressions “~Xvb” and “~Xvj” in Figures (9) and (14)
” includes “~X”, so delete this “~X” and get “b” as the solution.
「j」が得られる。そして、この論理式「b」。"j" is obtained. And this logical formula "b".
「j」がワークメモリ4に格納される。“j” is stored in the work memory 4.
■ワークメモリ4内のこの論理式rb、をインプットし
、ワークメモリ4内の論理式の中で論理式rbJの否定
「〜b」を含む論理式を見い出し、「〜b」を全て消去
して得た解をワークメモリ4に格納する。第3図(10
)の論理式「〜bVcJが「〜b」を含んでいるので、
「〜b」を消去して解として「C」が得られる。そして
、ワークメモリ4に格納される。■ Input this logical formula rb in the work memory 4, find a logical formula that includes the negation "~b" of the logical formula rbJ among the logical formulas in the work memory 4, and delete all "~b". The obtained solution is stored in the work memory 4. Figure 3 (10
)'s logical expression ``~bVcJ'' includes ``~b'', so
By eliminating "~b", "C" is obtained as a solution. Then, it is stored in the work memory 4.
■ワークメモリ4に■で格納された「j」をインプット
して上述したと同様の処理を行う、第3図(15)の論
理式「〜hv〜j」から「〜hJが得られる。この結果
、論理式Xの値は「h」でないことがわかる。■ Input "j" stored in the work memory 4 in ■ and perform the same processing as described above. "~hJ" is obtained from the logical formula "~hv~j" in FIG. 3 (15). As a result, it can be seen that the value of logical formula X is not "h".
■ワークメモリ4に■で格納された論理式「c」をイン
プットして上述した処理を行う、第3図の(11)、(
16)の論理式r−d V 〜(」。■ Input the logical formula "c" stored in the work memory 4 in ■ and perform the above-mentioned processing.
16) logical formula rd V ~(''.
「〜fV〜C」から「〜d」、「〜f」が解として得ら
れる。この結果、論理式「x」の値はrd。“~d” and “~f” are obtained as solutions from “~fV~C”. As a result, the value of the logical expression "x" is rd.
「f」でもないことがわかる。It turns out that it is not an "f" either.
■この論理式「〜d」をインプットして処理を行う、第
3図(12)の論理式’dVeJより解として「e」が
得られる。(2) This logical formula "~d" is input and processed, and "e" is obtained as a solution from the logical formula 'dVeJ in FIG. 3 (12).
■この論理式「e」をインプットして処理する。■Input and process this logical formula "e".
第3図(13)の論理式「〜evfvgvh」よりrf
VgVhJが得られる。From the logical formula "~evfvgvh" in Figure 3 (13), rf
VgVhJ is obtained.
■この論理式rfVgVhJに■で既に得られている「
〜h」をインプットして処理する。この結果、解として
rfVgJを得る。■In this logical formula rfVgVhJ, we have already obtained “
~h” and process it. As a result, rfVgJ is obtained as a solution.
■この論理式「fVgJに■で既に得られている「〜f
」をインプットして処理する。この結果、「g」が得ら
れる。■This logical formula “~f which has already been obtained by ■ in fVgJ
” is input and processed. As a result, "g" is obtained.
以上の処理の結果、論理式「X」の値として’gJが得
られる。この演算回数は8 X 7/228回でよい。As a result of the above processing, 'gJ is obtained as the value of the logical expression "X". The number of times of this calculation may be 8×7/228 times.
このように、導出によって順次に論理変数の数を減らし
、解を探索する操作が演繹演算である。In this way, the operation of sequentially reducing the number of logical variables through derivation and searching for a solution is a deductive operation.
本実施例においては、演繹を行う場合に、論理式を並べ
る順序は問わず、かつ必要な場合にはいつでも論理式の
追加および削除ができる。これは、ルールをならべる順
番を変えると、異なる結論が得られる可能性のあるエキ
スパート・システムよりも優れた点である。In this embodiment, when performing deduction, the order in which logical expressions are arranged does not matter, and logical expressions can be added or deleted whenever necessary. This is an advantage over expert systems, where changing the order of the rules can lead to different conclusions.
(発明の効果)
以上に説明したように、本発明の導出原理に基づく演繹
演算方式によれば、N個の論理式に対して推論を行なっ
て解を求める演算回数をN2オーダとすることができ、
この演算回数は従来の推論方式よりはるかに少ない。(Effects of the Invention) As explained above, according to the deductive calculation method based on the derivation principle of the present invention, it is possible to perform inference on N logical formulas and reduce the number of calculations to obtain a solution to N2 order. I can,
This number of operations is much smaller than that of conventional inference methods.
第1図は本発明の一実施例の構成図、
第2図は第1図の実施例に入力される論理式の例を示す
図、
第3図は第2図の論理式を標準形式に変換して得られる
論理式を示す図、
第4図は従来のエキスパートシステムの構成例を示す図
である。
1・・・入力手段、2・・・知識ベース記憶手段、3・
・・変換手段、4・・・ワークメモリ、5・・・演繹演
算手段、6・・・出力手段。
代理人 弁理士 本 庄 仲 介
第1図
〜X v b
〜bVc
〜dV〜C
Ve
第3図
=16
第4図Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a diagram showing an example of a logical formula input to the embodiment of Fig. 1, and Fig. 3 is a diagram of the logical formula in Fig. 2 in a standard format. FIG. 4 is a diagram showing an example of the configuration of a conventional expert system. 1... Input means, 2... Knowledge base storage means, 3.
... Conversion means, 4. Work memory, 5. Deductive calculation means, 6. Output means. Agent Patent Attorney Honjo Brokerage Figure 1 ~X v b ~bVc ~dV~C Ve Figure 3 = 16 Figure 4
Claims (1)
換する変換手段と、 該変換手段から出力される標準形の論理式に対して演繹
演算を行い解を求める演繹演算手段とを有する導出原理
に基づく演繹演算方式。[Claims] Input means for inputting a logical formula; conversion means for converting the format of the logical formula input by the input means into a standard form; A deductive calculation method based on a derivation principle, which has a deductive calculation means that performs deductive calculations to obtain a solution.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10677289A JPH02284230A (en) | 1989-04-26 | 1989-04-26 | Deductive computation system based on derivation principle |
US07/854,020 US5390287A (en) | 1989-04-26 | 1992-03-19 | Deduction inference system for solving complex propositional logic problems in response to signals from a plurality of system sensors |
US08/307,067 US5493633A (en) | 1989-04-26 | 1994-09-16 | Deduction inference system for solving complex propositional logic problems in response to signals from a plurality of system sensors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10677289A JPH02284230A (en) | 1989-04-26 | 1989-04-26 | Deductive computation system based on derivation principle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02284230A true JPH02284230A (en) | 1990-11-21 |
Family
ID=14442198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10677289A Pending JPH02284230A (en) | 1989-04-26 | 1989-04-26 | Deductive computation system based on derivation principle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02284230A (en) |
-
1989
- 1989-04-26 JP JP10677289A patent/JPH02284230A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Michalewicz et al. | A modified genetic algorithm for optimal control problems | |
Strusevich et al. | Scheduling with time-changing effects and rate-modifying activities | |
Elsasser | The physical foundation of biology: an analytical study | |
Muggleton et al. | Machine invention of first-order predicates by inverting resolution | |
Akhmet et al. | Dynamics with chaos and fractals | |
Kosolobov | Lempel-Ziv factorization may be harder than computing all runs | |
Browder | Mathematics and the Sciences | |
JPH02284230A (en) | Deductive computation system based on derivation principle | |
Kersting | Uncertainty-Aware Numerical Solutions of ODEs by Bayesian Filtering | |
Iklassov et al. | Self-Guiding Exploration for Combinatorial Problems | |
Privault et al. | Discrete chaotic calculus and covariance identities | |
Vlada et al. | History of Informatics. From recursivity to the Turing universal machine and Horn clauses | |
Rivin et al. | An Algebraic Approach to Constraint Satisfaction Problems. | |
Bauernfeind et al. | Minimally entangled typical thermal state algorithms for finite temperature Matsubara Green functions | |
Halava et al. | Reduction tree of the binary generalized post correspondence problem | |
Champneys et al. | A scalar nonlocal bifurcation of solitary waves for coupled nonlinear Schrödinger systems | |
Belovs | Some algebraic properties of machine poset of infinite words | |
Disney et al. | Covariance properties for the departure process of M/Ek/1/N queues | |
Kendrick | Young Graphs: 1089 et al | |
Hitczenko et al. | Asymptotic normality of the number of corners in tableaux associated with the partially asymmetric simple exclusion process | |
Wilf | The “snake–oil” method for proving combinatorial identities | |
Caviness | Computer algebra: Past and future | |
Basu et al. | Mixed-integer linear representability, disjunctions, and Chvátal functions—Modeling implications | |
Lodder | A simple model for a symmetrical theory of generalized functions: V. Some applications | |
JPS63158640A (en) | Performance analysis diagnosing control system |