JPH02284086A - Photoelectric type object detector - Google Patents

Photoelectric type object detector

Info

Publication number
JPH02284086A
JPH02284086A JP1104879A JP10487989A JPH02284086A JP H02284086 A JPH02284086 A JP H02284086A JP 1104879 A JP1104879 A JP 1104879A JP 10487989 A JP10487989 A JP 10487989A JP H02284086 A JPH02284086 A JP H02284086A
Authority
JP
Japan
Prior art keywords
light
monitoring distance
object detection
reflected
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1104879A
Other languages
Japanese (ja)
Other versions
JPH0786531B2 (en
Inventor
Takeshi Ishii
石井 彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP1104879A priority Critical patent/JPH0786531B2/en
Priority to US07/509,402 priority patent/US5187361A/en
Priority to EP90107598A priority patent/EP0394888B1/en
Priority to DE69028238T priority patent/DE69028238T2/en
Publication of JPH02284086A publication Critical patent/JPH02284086A/en
Publication of JPH0786531B2 publication Critical patent/JPH0786531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To detect only the object intruding into a set monitoring distance range by providing a finite light receiving body element which is disposed along a light receiving region and receives only the condensed light reflected from the object intruding into the prescribed monitoring distance. CONSTITUTION:A condenser lens 5 is disposed in parallel on the same plane as the plane of a lens 3 disposed in front of a light emitting element 2. The lens 5 condenses the reflected light reflected from the object 4 and images the same onto the specific positions S1 (S2) on the prescribed condensing region. The finite light receiving body element 6 is disposed along the condensing re gion. The element 6 is so disposed that the effective outside end (inside end) thereof coincides with the condensing position S1 (S2) and, therefore, the light reflected from the object 4 existing in the shortest (longest) monitoring distance position L 1 (L 2) is detected by the element 6. Namely, all the reflected light rays from the object 4 existing between the monitoring distance L 1 to L 2 are effectively received by the element 6, by which the intrusion of the object 4 is identified, but the object 4 existing beyond this range is not identified. The generation of the erroneous detection occurring in the reflection by a re mote different object is, therefore, obviated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発光素子と受光素子を有し物体から反射される
光を電気的に検出して物体の有無を検出する光電式反射
型物体検出装置に関し、より詳しくは光軸方向に関し所
定の監視距離範囲内に進入する物体を検出する装置に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a photoelectric reflective object detection device that has a light emitting element and a light receiving element and electrically detects light reflected from an object to detect the presence or absence of an object. The present invention relates to a device, and more particularly to a device for detecting an object entering within a predetermined monitoring distance range in the optical axis direction.

〔従来の技術〕[Conventional technology]

従来から発光素子と受光素子を同一面上に並列配置し、
数面に直交する方向に延びる光軸上を横切る物体から反
射した光を受光して物体検出を行なう光電式反射型物体
検出装置が知られていた。
Conventionally, a light emitting element and a light receiving element are arranged in parallel on the same surface,
2. Description of the Related Art Photoelectric reflective object detection devices have been known that perform object detection by receiving light reflected from an object that traverses an optical axis extending in a direction perpendicular to several planes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来の光電式反射型物体検出装置において
は、原理的に光軸方向に対する物体検出可能距離に関し
て何ら制限はなく背景面により遮えぎられない限りはる
か遠方の無関係な物体をも検出してしまうという問題点
があった。
However, in conventional photoelectric reflective object detection devices, there is no limit in principle to the distance at which objects can be detected in the optical axis direction, and unrelated objects far away can be detected as long as they are not blocked by a background surface. There was a problem.

実際上所定の距離範囲内に進入する物体のみを検出する
要求は多々有り、これに対して従来の汎用反射型物体検
出装置はそのままでは使えず何らかの入射光到達距離制
限手段を付加的に必要としていた。
In practice, there are many requests to detect only objects that enter within a predetermined distance range, and in response to this, conventional general-purpose reflective object detection devices cannot be used as they are, and some type of incident light reach distance limiting means is additionally required. there was.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は従来技術の上述した問題点を解決する事を目的
とする。その為に本発明にがかる光電式反射型物体検出
装置は、光を発生する発光部と、所定の監視距離範囲を
有する監視領域を通過してその距離方向に延びる光軸を
有し該光軸に沿って発光を入射する入射光学系と、該光
軸に進入した物体から反射した反射光を集め物体の光軸
方向距離に応じて受光領域の特定位置に集光する反射光
学系を有している。これらに加えて、受光領域に沿って
配置され該監視距離内に進入した物体からの反射集光の
みを受光する有限受光体素子と、有限受光体素子が反射
光を受光した時に物体検出信号を発生する出力回路部を
有している。
The present invention aims to solve the above-mentioned problems of the prior art. For this reason, the photoelectric reflective object detection device according to the present invention has a light emitting part that generates light, and an optical axis that passes through a monitoring area having a predetermined monitoring distance range and extends in the distance direction. It has an input optical system that inputs light emitted along the optical axis, and a reflection optical system that collects the reflected light from an object that has entered the optical axis and focuses it on a specific position in the light receiving area according to the distance of the object in the optical axis direction. ing. In addition to these, there is a finite photoreceptor element that is placed along the light receiving area and receives only reflected light from an object that has entered within the monitoring distance, and a finite photoreceptor element that sends an object detection signal when the finite photoreceptor element receives reflected light. It has an output circuit section that generates.

好ましくは有限受光体素子は最短監視距離に対応する集
光位置に一致した一端と最短監視距離に対応する集光位
置に一致した他端とを有する。
Preferably, the finite photoreceptor element has one end coincident with a light collection position corresponding to the shortest monitoring distance and the other end coinciding with a light collection position corresponding to the shortest monitoring distance.

さらに好ましくは、該発光部はサンプリング信号に応じ
て間欠的に発光する発光素子を含み、且つ該出力回路部
は受光された反射光の強度に応じて逐次サンプリングデ
ータを作成し時間的に前後するサンプリングデータの相
対変化を検出して物体検出信号を出力する様になってい
る 〔作  用〕 本発明によれば、入射光軸を遮断する様に進入した物体
のうち、所定の監視距離範囲内に存在する物体から反射
した集光のみが有限受光体素子上に受光され物体の進入
が識別される。監視距離範囲外の物体から反射した光は
反射光学系により集光されても、その集光位置が有限受
光体素子の有効受光面外にあるので集光は検出されず、
従って監視距離範囲を越えて存在する物体は識別されな
い。
More preferably, the light emitting section includes a light emitting element that emits light intermittently according to the sampling signal, and the output circuit section sequentially creates sampling data according to the intensity of the received reflected light and changes the sampling data back and forth in time. An object detection signal is output by detecting a relative change in sampling data. [Function] According to the present invention, among objects that have entered so as to block the incident optical axis, objects within a predetermined monitoring distance range are detected. Only the condensed light reflected from the object present in the finite photoreceptor element is received by the finite photoreceptor element, and the entry of the object is identified. Even if the light reflected from an object outside the monitoring distance range is focused by the reflective optical system, the focused position is outside the effective light receiving surface of the finite photoreceptor element, so the focused light is not detected.
Objects existing beyond the monitoring distance range are therefore not identified.

〔実 施 例〕〔Example〕

以ド添付した図面に従って本発明の好適な実施例を詳細
に説明する。第1図Aは本発明にかかる光電式物体検出
装置の全体構成を示す概念図であって、特に最短監視距
離にある物体を検出している状態を示す。ケース1は発
光部、入射光学系、反射光学系、受光体素子及び出力回
路部を内蔵しており、所望の場所に所望の方位で配置で
きる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings. FIG. 1A is a conceptual diagram showing the overall configuration of the photoelectric object detection device according to the present invention, and particularly shows a state in which an object located at the shortest monitoring distance is being detected. The case 1 contains a light emitting section, an incident optical system, a reflective optical system, a photoreceptor element, and an output circuit section, and can be placed at a desired location and in a desired direction.

発光部は光を発光する為の発光ダイオード等からなる発
光素子2を有している。入射光学系は、発光素子2の前
面に配置されたレンズ3から構成され、その光軸は設定
された監視距離方向に平行しており、レンズ3は発光を
平行光線に変換しビームスポット状にして光軸方向に入
射する。
The light emitting section has a light emitting element 2 made of a light emitting diode or the like for emitting light. The input optical system is composed of a lens 3 placed in front of the light emitting element 2, the optical axis of which is parallel to the set monitoring distance direction, and the lens 3 converts the emitted light into parallel light beams into a beam spot. incident in the direction of the optical axis.

第1図Aに示す状態においては最短監視距離位置L1に
存在する被検体あるいは物体4によって光軸は遮断され
入射光ビームスポットは物体4により反射される。
In the state shown in FIG. 1A, the optical axis is blocked by the subject or object 4 present at the shortest monitoring distance position L1, and the incident light beam spot is reflected by the object 4.

反射光学系はレンズ3と同一平面上において並行的に配
置された集光レンズ5から構成される。
The reflective optical system is composed of a condenser lens 5 arranged parallel to the lens 3 on the same plane.

集光レンズ5は物体4から反射された反射光を集光し所
定の集光領域上特定の位置S1に結像する。
The condensing lens 5 condenses the light reflected from the object 4 and forms an image at a specific position S1 on a predetermined condensing area.

集光領域に沿って有限の受光体素子6が配置されている
。受光体素子6の有効外端は集光位置S1に一致して配
置されているので、最短監視距離位置し1に存在する物
体4から反射した光は受光体素子6によって検出される
が、これよりレンズ3側に近接する物体から反射する光
の集光位置はSlより外側にはずれるので受光体素子6
は受光検出しない。
A finite number of photoreceptor elements 6 are arranged along the light collection area. Since the effective outer end of the photoreceptor element 6 is arranged to coincide with the light condensing position S1, the light reflected from the object 4 located at the shortest monitoring distance 1 is detected by the photoreceptor element 6. Since the condensing position of the light reflected from an object closer to the lens 3 side is shifted to the outside of Sl, the light receiving element 6
does not detect light reception.

第1図Bは第1図Aと同一の物体検出装置を用いた場合
において、物体4が最長監視距離位置L2に/j在する
時の状態を示す。図示される様に物体4から反射した光
は集光レンズ5によって集光され所定の集光領域上特定
の位置S2に結像する。この位置S2は光学系の配置か
ら当然のように位置S1より内側である。有限受光体素
子6の有効内端は集光位置S2に一致して配置されてい
るので、最長監視距離位置し2に存在する物体4から反
射した光は受光体素子6によって検出される。第1図A
及びBから明らかなように最短監視距離L1及び最長監
視距離L2との間に存在する物体からの反射光はすべて
両極端集光位fa2s1と82の間に集光されるので受
光体素子6により有効に受光される。
FIG. 1B shows a state when the object 4 is located at the longest monitoring distance position L2 when the same object detection device as in FIG. 1A is used. As shown in the figure, the light reflected from the object 4 is condensed by a condensing lens 5 and formed into an image at a specific position S2 on a predetermined condensing area. This position S2 is naturally located inside the position S1 due to the arrangement of the optical system. Since the effective inner end of the finite photoreceptor element 6 is arranged to coincide with the light collection position S2, the light reflected from the object 4 located at the longest monitoring distance 2 is detected by the photoreceptor element 6. Figure 1A
As is clear from and B, all reflected light from objects existing between the shortest monitoring distance L1 and the longest monitoring distance L2 is focused between the two extreme focusing positions fa2s1 and 82, so it is more effective for the photoreceptor element 6. The light is received by the

以上に対し、第1図Cは同一の検出装置を用いた場合に
おいて、物体4が最長監視圧ML2を越えて存在する状
態を示している。物体4から反射した光は集光レンズ5
により集光され集光領域上に結像されるが、結像位置は
S2よりもさらに内側に移動する為、受光体素子6の有
効受光面外にはずれ検出されない。
On the other hand, FIG. 1C shows a state in which the object 4 exists beyond the maximum monitoring pressure ML2 when the same detection device is used. The light reflected from the object 4 passes through the condensing lens 5
Although the light is focused by and imaged on the light focusing area, since the imaging position moves further inward than S2, it deviates from the effective light receiving surface of the photoreceptor element 6 and is not detected.

第2図は本発明にかかる光電式物体検出装置に用いられ
る反射光学系及び受光体素子の組み合わせの他の実施例
を示す断面図である。反射光学系は物体から反射される
光を集光し所定の集光領域に結像する集光レンズ5より
構成されている。受光体索子6は最長監視距離L2に対
応する集光位f&s2と一致した内端を有するが、その
外端SOは最短監視距MLLに対応する集光位置S1よ
り内側にある。受光体素子6の外端SOから垂直に反射
鏡7が配設してあり、図示する様に最長監硯距ML2よ
り内側に存在する物体から反射する光は直接又は反射鏡
7により反射された後に受光体素子6の両端間に存する
有効受光面に集光される。
FIG. 2 is a sectional view showing another embodiment of the combination of the reflective optical system and the photoreceptor element used in the photoelectric object detection device according to the present invention. The reflective optical system is composed of a condenser lens 5 that condenses light reflected from an object and forms an image on a predetermined condensing area. The photoreceptor strand 6 has an inner end that coincides with the light focusing position f&s2 corresponding to the longest monitoring distance L2, but its outer end SO is inside the light collecting position S1 corresponding to the shortest monitoring distance MLL. A reflecting mirror 7 is disposed perpendicularly from the outer end SO of the photoreceptor element 6, and as shown in the figure, light reflected from an object located inside the longest monitoring distance ML2 is reflected directly or by the reflecting mirror 7. The light is then focused on the effective light-receiving surface existing between both ends of the photoreceptor element 6.

従って本実施例は、第1図AないしCに示す実施例に比
し、高価な受光体素子の面積を半減できる一方、単に最
長監視距離限界を有するのみで最短監視距離については
何ら制限は無い。実際上最長監視距離のみを管理する使
用方法も多く、この場合には本実施例も有効である。
Therefore, this embodiment can reduce the area of the expensive photoreceptor element by half compared to the embodiments shown in FIGS. . In practice, there are many usage methods in which only the longest monitoring distance is managed, and this embodiment is also effective in this case.

第3図は本発明にかかる光電式物体検出装置の全体回路
構成を示すブロック図である。まず発光部は、所定の間
隔で人力されるサンプリング信号CTLに応答して間欠
的に発振し、所望の設定周波数成分を有する高周波重畳
サンプリング信号O8Cを出力する発振部8を自°する
。さらに駆動部9は該信号O8Cに応じて周波数変調さ
れた間欠的周波数変調駆動電流を発光素子2に供給する
FIG. 3 is a block diagram showing the overall circuit configuration of the photoelectric object detection device according to the present invention. First, the light emitting section oscillates intermittently in response to the sampling signal CTL input manually at predetermined intervals, and activates the oscillation section 8 which outputs a high frequency superimposed sampling signal O8C having a desired set frequency component. Further, the drive section 9 supplies an intermittent frequency-modulated drive current to the light emitting element 2, which is frequency-modulated in accordance with the signal O8C.

発光素子2は該変調駆動電流により駆動され周波数変調
された光をサンプリング信号に同期して間欠的に放出す
る。
The light emitting element 2 is driven by the modulated drive current and emits frequency modulated light intermittently in synchronization with the sampling signal.

出力回路部は反射光学系によって集光された光を受光し
その光強度変化に応じた振幅を有する検出電流を出力す
る受光体素子6を含む。受光体素子6には増幅部lOが
接続されており、検出電流を検波増幅して間欠的に交流
検出信号ACを出力する。増幅部10は例えば設定周波
数成分をフィルタリングする狭帯域フィルター回路及び
交流増幅回路で構成される。例えば積分回路等からなる
平滑部11が増幅部lOに接続されており交流検出信号
ACを整流平滑化し対応する波高値を有する直流検出信
号DCを間欠的に出力する。平滑部11にはA/Dコン
バータよりなる変換部12が接続されており、サンプリ
ング信号CTLに同期して直流検出信号DCの波高成分
を逐次対応するサンプリングデータDATAに変換する
。従って各サンプリングデータDATAは受光された集
光の強度変化を逐次時系列的にサンプリング信号CTL
に同期して示すデータとなる。
The output circuit section includes a photoreceptor element 6 that receives the light focused by the reflective optical system and outputs a detection current having an amplitude corresponding to a change in the light intensity. An amplifier unit 10 is connected to the photoreceptor element 6, which detects and amplifies the detected current and intermittently outputs an alternating current detection signal AC. The amplifying section 10 includes, for example, a narrow band filter circuit that filters a set frequency component and an AC amplifying circuit. For example, a smoothing section 11 consisting of an integrating circuit or the like is connected to the amplifying section 10, rectifies and smoothes the alternating current detection signal AC, and intermittently outputs a direct current detection signal DC having a corresponding peak value. A conversion unit 12 made of an A/D converter is connected to the smoothing unit 11, and sequentially converts the wave height component of the DC detection signal DC into corresponding sampling data DATA in synchronization with the sampling signal CTL. Therefore, each sampling data DATA is a sampling signal CTL that sequentially represents changes in the intensity of the received focused light.
The data will be shown in synchronization with

加えて出力回路部はメモリ部13と制御演算部14を有
する。メモリ部13は少くとも2つのメモリ領域M1と
M2を有し、変換部12により供給されるサンプリング
データを交互に記録し且つ新サンプリングデータの入力
毎に記録されたデータを更新する。制御演算部14は例
えばCPUで構成され、前述したサンプリング信号CT
Lを出力する他、メモリ部13をアドレス信号ADSに
より逐次アクセスし、一対のメモリ領域M1及びM2に
書き込まれている更新サンプリングデータを読み出し、
これらの相対比を演算する。演算結果に基いて物体の監
視距離範囲内への進入の有無を表わす出力信号OUTを
外部に出力する。
In addition, the output circuit section includes a memory section 13 and a control calculation section 14. The memory section 13 has at least two memory areas M1 and M2, alternately records the sampling data supplied by the conversion section 12, and updates the recorded data every time new sampling data is input. The control calculation unit 14 is composed of, for example, a CPU, and receives the above-mentioned sampling signal CT.
In addition to outputting L, the memory section 13 is sequentially accessed by the address signal ADS, and the updated sampling data written in the pair of memory areas M1 and M2 is read out.
Calculate these relative ratios. Based on the calculation result, an output signal OUT indicating whether or not an object has entered the monitoring distance range is output to the outside.

次に第4図のタイミングチャートに基き本発明にかかる
光電式反射型物体検出装置の動作を説明する。まず制御
演算部14は所定の間隔でサンプリング信号CTLを発
生する。該信号CTLは時系列的に配列されたクロック
パルスを含み順次サンプリングタイミングTI、T2.
T3゜T4・・・・・・を規定する。発振部8はこれら
サンプリングタイミングに同期してクロックパルスのパ
ルス幅に対応する時間分だけ発振し、高周波が重畳され
たサンプリング信号O8Cを出力する。
Next, the operation of the photoelectric reflective object detection device according to the present invention will be explained based on the timing chart of FIG. First, the control calculation unit 14 generates a sampling signal CTL at predetermined intervals. The signal CTL includes clock pulses arranged chronologically and sequentially at sampling timings TI, T2 .
T3°T4... is defined. The oscillator 8 oscillates for a time corresponding to the pulse width of the clock pulse in synchronization with these sampling timings, and outputs a sampling signal O8C on which a high frequency is superimposed.

次いで駆動部9は高周波重畳サンプリング信号O8Cに
応じて周波数変調された駆動電流を所定のタイミングT
I、T2・・・・・・で発光素子2に供給する。発光素
子2は周波数変調された発光をタイミングTl、T2.
T3・・・・・・の順に放出する。
Next, the drive unit 9 transmits the frequency-modulated drive current according to the high-frequency superimposed sampling signal O8C at a predetermined timing T.
I, T2, . . . are supplied to the light emitting element 2. The light emitting element 2 emits frequency-modulated light at timings Tl, T2 .
Release in the order of T3...

受光体素子6は反射光学系によって集光されたあらゆる
光成分を受光しその集光強度変化に応じた振幅変化を有
する検出電流を連続的に出力する。
The photoreceptor element 6 receives all the light components collected by the reflective optical system and continuously outputs a detection current having an amplitude change according to the change in the focused light intensity.

交流増幅部IOが該検出電流を検波し増幅して交流検出
電流ACを出力する。この検波により一次検出電流に含
まれるすべての雑音成分が除去されるので交流検出電流
ACの信号成分は実質的に発光に含まれている信号成分
のみを有する。換言すれば入射光側と反射集光側は信号
的に完全に対応している。
An AC amplifying unit IO detects and amplifies the detected current, and outputs an AC detected current AC. This detection removes all noise components included in the primary detection current, so that the signal component of the alternating current detection current AC substantially includes only the signal component included in the light emission. In other words, the incident light side and the reflected light condensing side completely correspond in terms of signals.

さて第4図に示す様に今サンプリングタイミングT3と
14の間の時点Tにおいて物体4が監視距離範囲内に進
入したとする。すると進入時点T以前においては各サン
プリングタイミングTI。
Now, as shown in FIG. 4, it is assumed that the object 4 enters the monitoring distance range at time T between sampling timings T3 and T14. Then, before the approach time T, each sampling timing TI.

T2及びT3において交流検出信号ACは実質的に受光
素子6が物体からの反射集光を受光していないのである
からゼロに等しいか、あるいは入射光の囲り込みや周辺
反射物体からの反射に起因する極めて小さな振幅を有し
ている。他方進入時点T直後のサンプリングタイミング
T4におい°C1交流検出信号ACは物体4から反射し
た後集光された光が受光体素子6により受光されたのに
応じて大きな振幅を有している。
At T2 and T3, the alternating current detection signal AC is substantially equal to zero because the light receiving element 6 does not receive reflected light from the object, or it is due to the enclosing of the incident light or the reflection from surrounding reflective objects. Due to its extremely small amplitude. On the other hand, at the sampling timing T4 immediately after the entry time T, the °C1 AC detection signal AC has a large amplitude in response to the fact that the light reflected from the object 4 and then collected is received by the photoreceptor element 6.

次に・14滑部IIが該交流検出信号ACを平滑化L7
その振幅値に対応した波高値を有する直流検出信号DC
に変換する。変換部12はサンプリング信号CTLに同
期して、所定のタイミングT1.T2゜T3・・・・・
・でアナログの該直流検出信号DCをデジタル化し各波
高値に対応したサンプリングデータDATAを順次出力
する。
Next, 14 smoothing section II smoothes the AC detection signal AC L7
DC detection signal DC having a peak value corresponding to its amplitude value
Convert to The conversion unit 12 is synchronized with the sampling signal CTL at a predetermined timing T1. T2゜T3...
- digitizes the analog DC detection signal DC and sequentially outputs sampling data DATA corresponding to each peak value.

最後にサンプリングデータDATAはメモリ部13の一
対のメモリ領域M1とM2に交互に記録され且つ最新の
データによって更新される。例えばタイミングT1で発
生したデータは領域M1に書き込まれタイミングT2で
発生したデータは領域M2に書き込まれる。次いでタイ
ミングT3で発生したデータは領域M1の記録データを
消去した上でここに書き込まれ、タイミングT4で発生
したデータは領域M2の記録データを消去した上でここ
に書き込まれる。制御演算部14は所定の間隔で一対の
メモリ領域M1とM2をアドレスし一対の更新データを
読み取る。両者の相対比が演算される。物体進入時点T
以前においてはサンプリングデータの値に変化が無い為
、相対比は値1に近い。しかし、物体進入時点直前のタ
イミングT3で発生したサンプリングデータと直後のタ
イミングT4で発生したサンプリングデータを比較する
とそれらの値が大きく異なるので相対比は値1から大き
く変動し設定閾値を越える。これに応じて出力信号OU
Tは図示する様に低レベルから高レベルに切り換えられ
、物体進入の事実が識別される。
Finally, the sampling data DATA is alternately recorded in a pair of memory areas M1 and M2 of the memory section 13 and updated with the latest data. For example, data generated at timing T1 is written to area M1, and data generated at timing T2 is written to area M2. Next, the data generated at timing T3 is written here after erasing the recorded data in area M1, and the data generated at timing T4 is written here after erasing the recorded data in area M2. The control calculation unit 14 addresses a pair of memory areas M1 and M2 at predetermined intervals and reads a pair of updated data. A relative ratio between the two is calculated. Object entry point T
Since there is no change in the value of the sampling data in the past, the relative ratio is close to the value 1. However, when the sampling data generated at timing T3 immediately before the object entry point and the sampling data generated at timing T4 immediately after are compared, their values are significantly different, so the relative ratio changes greatly from the value 1 and exceeds the set threshold. Accordingly, the output signal OU
T is switched from a low level to a high level as shown to identify the fact of object entry.

上述した例においては、時間的に前後したサンプリング
データを相対比較して物体の進入有無を判別していたが
、これに替えて又は併用して、サンプリングデータを適
宜の時間間隔で絶対的に設定された参照値と比較して物
体進入有無を判別しても良い。特に本発明においては、
物体が監視距離範囲内に進入した時のみサンプリングデ
ータの値は大きくなるので絶対比較も有効である。
In the above example, the presence or absence of an object's entry was determined by relatively comparing the sampling data that came before and after the time, but instead of or in combination with this, it is possible to set the sampling data absolutely at appropriate time intervals. It may be determined whether an object has entered or not by comparing it with the reference value obtained. In particular, in the present invention,
Absolute comparison is also effective because the value of the sampling data increases only when the object enters the monitoring distance range.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、本発明によれば設定された監視距離範
囲内に進入した物体のみを検出する事ができるので、遠
方の異物体による反射等に起因する誤検出を生ずる事な
しに目的の物体のみを識別できるという効果がある。
As described above, according to the present invention, it is possible to detect only objects that have entered the set monitoring distance range, so that the target object can be detected without causing false detections due to reflections from distant foreign objects, etc. This has the effect of being able to identify only objects.

又サンプリングタイミングに同期した入射間欠光を用い
るので、物体の進入を実質的にリアルタイムで監視でき
るという効果がある。
Furthermore, since intermittent incident light synchronized with the sampling timing is used, there is an effect that the approach of an object can be monitored substantially in real time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは本発明にがかる光電式物体検出装置の全体構
成を示す概念図で、物体が最短監視距離にある状態を示
す。第1図Bは同じく物体が最長監視距離にある状態を
示す。第1図Cは同じく物体が最長監視距離を越えて存
在する状態を示す。 第2図は本発明にかかる光電式物体検出装置の他の実施
例を示す部分拡大図である。第3図は本発明にがかる光
電式物体検出装置の全体回路構成を示すブロック図であ
る。第4図は第3図に示す回路の動作を説明する為のタ
イ る。 1・・・ケース、 3・・・レンズ、 5・・・集光レンズ、 7・・・反射鏡、 9・・・駆動部、 11・・・平滑部、 13・・・メモリ部、 ミングチャートてあ 2・・・発光素子、 4・・・物 体、 6・・・受光体素子、 8・・・発振部、 10・・・増幅部、 12・・・変換部、 14・・・制御演算部。 出 願 人 株式会社 コ パ ル t Q 第2 図
FIG. 1A is a conceptual diagram showing the overall configuration of a photoelectric object detection device according to the present invention, and shows a state where an object is at the shortest monitoring distance. FIG. 1B also shows the object at the longest monitoring distance. FIG. 1C also shows a state in which an object exists beyond the maximum monitoring distance. FIG. 2 is a partially enlarged view showing another embodiment of the photoelectric object detection device according to the present invention. FIG. 3 is a block diagram showing the overall circuit configuration of the photoelectric object detection device according to the present invention. FIG. 4 is used to explain the operation of the circuit shown in FIG. 3. DESCRIPTION OF SYMBOLS 1...Case, 3...Lens, 5...Condensing lens, 7...Reflector, 9...Drive part, 11...Smooth part, 13...Memory part, Mining chart 2... Light emitting element, 4... Object, 6... Photoreceptor element, 8... Oscillating section, 10... Amplifying section, 12... Conversion section, 14... Control Arithmetic section. Applicant Copal Co., Ltd. Q Figure 2

Claims (1)

【特許請求の範囲】 1、光を発生する発光部と、所定の監視距離範囲を有す
る監視領域を通過してその距離方向に延びる光軸を有し
該光軸に沿って発光を入射する入射光学系と、該光軸に
進入した物体から反射した反射光を集め物体の光軸方向
距離に応じて受光領域の特定位置に集光する反射光学系
と、受光領域に沿って配置され該監視距離内に進入した
物体からの反射集光のみを受光する有限受光体素子と、
該受光体素子が反射光を受光した時に物体検出信号を発
生する出力回路部とからなる光電式物体検出装置。 2、該有限受光体素子は最長監視距離に対応する集光位
置と最短監視距離に対応する集光位置の間に渡って配置
されている請求項1に記載の光電式物体検出装置。 3、該有限受光体素子は最長監視距離に対応する集光位
置に一致した受光面端部を有し、該反射光学系は最長監
視距離以内にある物体からの反射光を該受光体素子上に
集光する為の反射鏡を有する請求項1に記載の光電式物
体検出装置。 4、該発光部はサンプリング信号に応じて間欠的に発光
する発光素子を含み、該出力回路部は受光された反射光
の強度に応じて逐次サンプリングデータを作成し時間的
に前後するサンプリングデータの相対比が設定閾値を越
えた時物体検出信号を出力する演算処理部を有する請求
項1に記載の光電式物体検出装置。 5、該発光部は一定の周波数で変調された光を発生する
発光素子を含み、該出力回路部は受光素子から供給され
る反射光強度に対応した変調電気信号を検波する回路を
含んでいる請求項1に記載の光電式物体検出装置。
[Claims] 1. A light emitting unit that generates light, an optical axis that passes through a monitoring area having a predetermined monitoring distance range and extends in the distance direction, and an incident light that emits light along the optical axis. an optical system, a reflective optical system that collects reflected light from an object that has entered the optical axis and focuses the light on a specific position in the light receiving area according to the distance of the object in the optical axis direction; and a reflective optical system that is arranged along the light receiving area and monitors the light receiving area. a finite photoreceptor element that receives only reflected light from an object that has entered within a distance;
A photoelectric object detection device comprising an output circuit section that generates an object detection signal when the photoreceptor element receives reflected light. 2. The photoelectric object detection device according to claim 1, wherein the finite photoreceptor element is arranged between a light collection position corresponding to the longest monitoring distance and a light collection position corresponding to the shortest monitoring distance. 3. The finite photoreceptor element has a light-receiving surface edge that coincides with the light focusing position corresponding to the maximum monitoring distance, and the reflective optical system directs reflected light from an object within the maximum monitoring distance onto the photoreceptor element. 2. The photoelectric object detection device according to claim 1, further comprising a reflecting mirror for condensing light. 4. The light emitting section includes a light emitting element that emits light intermittently in response to a sampling signal, and the output circuit section sequentially creates sampling data according to the intensity of the received reflected light, and outputs sampling data that comes and goes back and forth in time. The photoelectric object detection device according to claim 1, further comprising an arithmetic processing section that outputs an object detection signal when the relative ratio exceeds a set threshold. 5. The light emitting section includes a light emitting element that generates light modulated at a certain frequency, and the output circuit section includes a circuit that detects a modulated electrical signal corresponding to the intensity of reflected light supplied from the light receiving element. The photoelectric object detection device according to claim 1.
JP1104879A 1989-04-25 1989-04-25 Photoelectric object detector Expired - Fee Related JPH0786531B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1104879A JPH0786531B2 (en) 1989-04-25 1989-04-25 Photoelectric object detector
US07/509,402 US5187361A (en) 1989-04-25 1990-04-16 Object detection apparatus of the photoelectric reflection type with sampled data
EP90107598A EP0394888B1 (en) 1989-04-25 1990-04-21 Object detection apparatus of the photoelectric reflection type
DE69028238T DE69028238T2 (en) 1989-04-25 1990-04-21 Device for detecting an object of the photoelectric reflection type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1104879A JPH0786531B2 (en) 1989-04-25 1989-04-25 Photoelectric object detector

Publications (2)

Publication Number Publication Date
JPH02284086A true JPH02284086A (en) 1990-11-21
JPH0786531B2 JPH0786531B2 (en) 1995-09-20

Family

ID=14392483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1104879A Expired - Fee Related JPH0786531B2 (en) 1989-04-25 1989-04-25 Photoelectric object detector

Country Status (1)

Country Link
JP (1) JPH0786531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158814A (en) * 2014-05-30 2015-12-16 肖巍 Detector for medium inside pipe, and detector assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172269A (en) * 1981-04-17 1982-10-23 Omron Tateisi Electronics Co Limited reflection type photoelectric detector
JPS61284689A (en) * 1985-06-12 1986-12-15 Yoshida Kogyo Kk <Ykk> Body detecting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172269A (en) * 1981-04-17 1982-10-23 Omron Tateisi Electronics Co Limited reflection type photoelectric detector
JPS61284689A (en) * 1985-06-12 1986-12-15 Yoshida Kogyo Kk <Ykk> Body detecting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158814A (en) * 2014-05-30 2015-12-16 肖巍 Detector for medium inside pipe, and detector assembly
CN105158814B (en) * 2014-05-30 2018-11-20 侯文婷 In-pipe media probe and detector assembly

Also Published As

Publication number Publication date
JPH0786531B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US5187361A (en) Object detection apparatus of the photoelectric reflection type with sampled data
JP5804467B2 (en) Signal processing device and scanning distance measuring device
JP5596011B2 (en) Photoelectric sensor, object detection and distance measuring method
US4166960A (en) Smoke detector
JP2015501927A (en) Improvements in or relating to processing of time-of-flight signals
JP6261681B2 (en) Improvements in or relating to processing of time-of-flight signals
US20070102523A1 (en) Laser velocimetric image scanning
EP0566852B1 (en) Human body detection system
JP2008157718A (en) Optical device and electronic apparatus
JP6070306B2 (en) Image processing apparatus, object detection method, and object detection program
JPH02284086A (en) Photoelectric type object detector
US5444431A (en) Intrusion monitoring device
JP3141119B2 (en) Pulse signal detector and light wave distance meter
CA2062550C (en) Optical distance measuring apparatus
US4156816A (en) Optical fire-detector
JP3333646B2 (en) Infrared human body detector
JPH0571957A (en) Active range finder
JP4423690B2 (en) Infrared detector
JP2741981B2 (en) Object position detection device
JPH05256947A (en) Distance measuring apparatus
JP3196976B2 (en) Photoelectric separated smoke detector
JPH0425655B2 (en)
JPH0640889U (en) Photoelectric object detector
JPH11250361A (en) Infrared detection device
JP2022067204A (en) Ic for photoelectronic sensor and photoelectronic sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees