JPH02283620A - Production of hexa uranium fluoride - Google Patents

Production of hexa uranium fluoride

Info

Publication number
JPH02283620A
JPH02283620A JP6551290A JP6551290A JPH02283620A JP H02283620 A JPH02283620 A JP H02283620A JP 6551290 A JP6551290 A JP 6551290A JP 6551290 A JP6551290 A JP 6551290A JP H02283620 A JPH02283620 A JP H02283620A
Authority
JP
Japan
Prior art keywords
reactor
fluorine
recovered
gaseous product
uranium trioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6551290A
Other languages
Japanese (ja)
Other versions
JP2960943B2 (en
Inventor
Harold Reginald Cartmell
ハロルド レジナルド カートメル
John Frederick Ellis
ジョン フレデリック エリス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sellafield Ltd
Original Assignee
British Nuclear Fuels PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Nuclear Fuels PLC filed Critical British Nuclear Fuels PLC
Publication of JPH02283620A publication Critical patent/JPH02283620A/en
Application granted granted Critical
Publication of JP2960943B2 publication Critical patent/JP2960943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/04Halides of uranium
    • C01G43/06Fluorides
    • C01G43/063Hexafluoride (UF6)
    • C01G43/066Preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE: To prevent the loss of fluorine in a gaseous product by bringing a recovered uranium trioxide into contact with a fluidized gas stream containing fluorine and an inert gas and recovering the gaseous product, from which uranium hexafluoride and the remaining gas are removed, through a reactor.
CONSTITUTION: The recovered UO3 is supplied to the fluidizing reactor with the supply of CaF2. The fluidized gas stream containing F2 and N2 as a diluent is passed through the reactor to react with the recovered UO3. The gaseous product obtained in the reactor is concentrated and the UF6 product is extracted. the residual gas is compressed and recovered. The supply of the recovered UO3 and the ratio of fluorine in the gas stream are controlled by monitoring the concentration of fluorine gas in the gaseous product and the temp. of the reactor and using a signal based on the monitoring. In the case that the concentration of fluorine in the gaseous product is 5-10 vol.%, the temperature ranging 470-500°C is most suitable as the condition in the reactor.
COPYRIGHT: (C)1990,JPO

Description

【発明の詳細な説明】 本発明は、三酸化ウラン、特に回収三酸化ウランから六
フッ化ウランを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing uranium hexafluoride from uranium trioxide, particularly recovered uranium trioxide.

本明細書中で使用される「回収三酸化ウラン」という語
句は、すでに放射線照射され、次いで公知の溶媒抽出法
によって再処理されて、再処理サイクルから特にウラン
不純物が分離除去された、酸化ウラン燃料から回収され
た三酸化ウランを意味する。
As used herein, the phrase "recovered uranium trioxide" refers to uranium oxide that has been previously irradiated and then reprocessed by known solvent extraction methods to specifically separate and remove uranium impurities from the reprocessing cycle. Refers to uranium trioxide recovered from fuel.

本発明によれば、回収三酸化ウランから六フッ化ウラン
を製造する方法が提供され、その方法は、回収三酸化ウ
ランを流動化反応器中に供給し、回収三酸化ウランをフ
ッ素及び不活性気体を含有する流動化気体ストリームと
接触させ、反応器から得られる気体状生成物と反応器の
温度をモニターし、次いでそれによって反応器中の三酸
化ウランの流速と流動化気体ストリーム中のフッ素の比
率を調節して、反応器中の回収三酸化ウランを所定の温
度範囲内に維持する工程を特徴とする。
According to the present invention, a method for producing uranium hexafluoride from recovered uranium trioxide is provided, the method comprising: feeding the recovered uranium trioxide into a fluidization reactor; contact with a fluidizing gas stream containing gas and monitoring the gaseous products obtained from the reactor and the temperature of the reactor, thereby controlling the flow rate of uranium trioxide in the reactor and the fluorine in the fluidizing gas stream. The method is characterized by a step of maintaining the recovered uranium trioxide in the reactor within a predetermined temperature range by adjusting the ratio of .

温度範囲は470℃〜500℃であることが好ましい。Preferably, the temperature range is 470°C to 500°C.

気体状生成物のフッ素含量をモニターすることが望まし
い。
It is desirable to monitor the fluorine content of the gaseous product.

反応器め回りに冷却装置を配置することが好都合である
It is advantageous to arrange a cooling device around the reactor.

流動化気体ストリームを一定の流速に維持して、流動化
気体ストリーム中の不活性気体の比率をフッ素の比率の
変化に対して相補的に変化させることが望ましい。
It is desirable to maintain the fluidizing gas stream at a constant flow rate and vary the proportion of inert gas in the fluidizing gas stream complementary to changes in the proportion of fluorine.

また、フッ化カルシウム顆粒を反応器中に断続的に供給
することが好都合である。
It is also advantageous to feed calcium fluoride granules intermittently into the reactor.

回収三酸化ウランとフッ素の反応は、高度に発熱的であ
り、従来から主要な問題点を与えていたこのような反応
の1つの結果として、固形物の反応器中での焼結があり
、それが反応速度を減少させ、反応器からの固形物の除
去を困難とする。本発明は、回収三酸化ウランの流速と
気体ストリーム中のフッ素の比率を、反応器から得られ
た気体状生成物中のフッ素の濃度と反応器の温度とに関
連づけることによって、固形物が焼結するような最適条
件を最小限にすることができる。
The reaction of recovered uranium trioxide with fluorine is highly exothermic, and one consequence of such reactions that has traditionally presented major problems is sintering of the solids in the reactor. It reduces the reaction rate and makes removal of solids from the reactor difficult. The present invention relates the flow rate of recovered uranium trioxide and the proportion of fluorine in the gaseous stream to the concentration of fluorine in the gaseous product obtained from the reactor and the temperature of the reactor. It is possible to minimize the optimal conditions that lead to

以下、本発明を添付の図面中に記載されたフローシート
を参照して、さらに実施例により、詳しく説明する。
Hereinafter, the present invention will be explained in detail by way of Examples with reference to the flow sheets illustrated in the accompanying drawings.

フローシートに示されるように、フッ素を含有する流動
化気体ストリームが希釈剤としての窒素とともに、公知
のフッ素容器(図示していない)から流動化反応器中に
供給されるが、顆粒状のフッ化カルシウムもまた上記反
応器中に断続的に供給される。顆粒状回収三酸化ウラン
は調節された速度で上記反応器中に供給されるが、そこ
で回収三酸化ウランはフッ素と反応して気体状の六フッ
化ウランを生成する。上記反応器中で起こる化学反応は
下記の通りである。
As shown in the flow sheet, a fluorine-containing fluidizing gas stream is fed into the fluidizing reactor from a conventional fluorine vessel (not shown) with nitrogen as a diluent; Calcium chloride is also fed intermittently into the reactor. Granular recovered uranium trioxide is fed at a controlled rate into the reactor where the recovered uranium trioxide reacts with fluorine to form gaseous uranium hexafluoride. The chemical reactions that occur in the reactor are as follows.

UOs +3F!  −一 U F s + 1 ’A
 O!この発熱的化学反応から生成される熱は、217
 Kcal/molU、である。
UOs +3F! -1 U F s + 1 'A
O! The heat generated from this exothermic chemical reaction is 217
Kcal/molU.

上記反応器から得られる気体状生成物はモニターされて
フッ素が検出され、上記反応器の温度もまたモニターさ
れる。回収三酸化ウランが反応器中に供給される速度及
び流動化気体ストリームに入るフッ素容器からのフッ素
の比率は、気体状生成物中の検出されたフッ素及び温度
の関数として調節される。このことによって、反応器中
の温度は最適範囲470〜500℃に調節されることが
できる。従って、温度変位は最小限にされる。最初に、
過剰のフッ素気体が気体状生成物中に検出された場合に
は、回収三酸化ウランの反応器中への供給が増加される
。また反応器の温度が50000まで上昇した場合には
、回収三酸化ウランの供給速度が減少され、必要であれ
ば、流動化気体ストリーム中のフッ素の比率が窒素含量
の相補的な増加を伴ってい減少される。フッ素の減少は
、反応器中で起こる化学反応数を減少させ、増加された
窒素含量は反応器からの熱伝達を助けるものである。
The gaseous products obtained from the reactor are monitored for fluorine and the temperature of the reactor is also monitored. The rate at which the recovered uranium trioxide is fed into the reactor and the proportion of fluorine from the fluorine vessel that enters the fluidizing gas stream are adjusted as a function of the detected fluorine in the gaseous product and the temperature. This allows the temperature in the reactor to be adjusted to an optimum range of 470-500°C. Therefore, temperature excursions are minimized. At first,
If excess fluorine gas is detected in the gaseous product, the feed of recovered uranium trioxide into the reactor is increased. Also, if the reactor temperature increases to 50,000 ℃, the feed rate of recovered uranium trioxide is reduced and, if necessary, the proportion of fluorine in the fluidized gas stream is increased with a complementary increase in the nitrogen content. reduced. The reduction in fluorine reduces the number of chemical reactions that occur in the reactor, and the increased nitrogen content aids in heat transfer from the reactor.

フッ化カルシウム顆粒は反応器中の熱伝達を助け、また
最初の回収三酸化ウラン中の不純物、例えばプルトニウ
ム及びトリウムを保持する。
The calcium fluoride granules aid in heat transfer in the reactor and also retain impurities such as plutonium and thorium in the initial recovered uranium trioxide.

三酸化ウランの反応器への供給は従来型のスクリューコ
ンベヤー及び回転式バルブによって行うことができ、こ
の回転式バルブは三酸化ウランをスクリューコンベヤー
に分配する。適当な回転式バルブは英国ムコン社から得
ることができる。スクリューコンベヤーはlのステージ
から他のステージに分配するように配置されたステージ
を有していてもよい。
The feeding of uranium trioxide to the reactor can be carried out by a conventional screw conveyor and rotary valve, which distributes the uranium trioxide to the screw conveyor. A suitable rotary valve can be obtained from Mucon Ltd., UK. The screw conveyor may have stages arranged to distribute from one stage to another.

六フッ化ウラン及び少量の残存気体を除去した後の気体
状生成物を反応器を通じて回収させて気体状生成物中の
フッ素損失を防止することができる。
The gaseous product after removing uranium hexafluoride and a small amount of residual gas can be recovered through the reactor to prevent fluorine loss in the gaseous product.

実施例 182kg/時の回収UO,を3kg/時のCaF2の
供給とともに、流動床反応器中に供給した。
Example 182 kg/h of recovered UO, were fed into a fluidized bed reactor with a feed of 3 kg/h of CaF2.

87kg/時のF、と希釈剤としての2.5kg/時の
N2とを含有する流動化気体ストリームを反応器を通過
させて回収UO,と反応させた。反応器から得られた気
体状生成物を濃縮してUF、生成物を抽出した(〜22
5kg/時)。残存気体を圧縮して、回収させた。気体
状生成物中のフッ素ガスの濃度と反応器の温度をモニタ
ーし、モニターから生じた信号を用いて、回収UO,の
反応器への供給と気体ストリーム中のフッ素の比率を調
節した。気体状生成物中のフッ素の濃度が5〜lO容量
%である場合に、反応器内の条件が470〜500°C
の最適温度範囲内において最適であることを見出した。
A fluidizing gas stream containing 87 kg/h F and 2.5 kg/h N2 as diluent was passed through the reactor to react with the recovered UO. The gaseous product obtained from the reactor was concentrated to extract the UF product (~22
5 kg/hour). Residual gas was compressed and recovered. The concentration of fluorine gas in the gaseous product and the reactor temperature were monitored, and the signals generated from the monitors were used to adjust the feed of recovered UO, to the reactor and the proportion of fluorine in the gas stream. When the concentration of fluorine in the gaseous product is 5-10% by volume, the conditions in the reactor are 470-500 °C.
It was found that the temperature is optimum within the optimum temperature range of .

【図面の簡単な説明】 第1図は、本発明の方法の実施を示すフローシートであ
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow sheet illustrating the implementation of the method of the invention.

Claims (14)

【特許請求の範囲】[Claims] (1)回収三酸化ウランから六フッ化ウランを製造する
方法であって、 流動化反応器中に回収三酸化ウランを供給し、その回収
三酸化ウランをフッ素及び不活性気体を含有する流動化
気体ストリームと接触させ、上記反応器から得られる気
体状生成物と反応器の温度をモニターし、次いで、それ
によって上記反応器中に三酸化ウランが供給される速度
と上記流動化気体ストリーム中のフッ素の比率を調節し
て、反応器中の回収三酸化ウランを所定の温度範囲に維
持することを特徴とする方法。
(1) A method for producing uranium hexafluoride from recovered uranium trioxide, which involves supplying the recovered uranium trioxide into a fluidization reactor, and fluidizing the recovered uranium trioxide in a fluidization reactor containing fluorine and an inert gas. The gaseous product obtained from the reactor and the temperature of the reactor are monitored, thereby determining the rate at which uranium trioxide is fed into the reactor and the temperature of the fluidized gas stream. A method characterized in that the proportion of fluorine is adjusted to maintain the recovered uranium trioxide in the reactor within a predetermined temperature range.
(2)温度範囲が470℃から500℃の間である請求
項1に記載の方法。
(2) The method of claim 1, wherein the temperature range is between 470°C and 500°C.
(3)反応器の回りに冷却装置を配置して反応器を前記
温度範囲内の温度に維持する請求項2に記載の方法。
3. The method of claim 2, wherein a cooling device is disposed around the reactor to maintain the reactor at a temperature within the temperature range.
(4)気体状生成物のフッ素含量がモニターされる請求
項1〜3のいずれかに記載の方法。
(4) A method according to any one of claims 1 to 3, wherein the fluorine content of the gaseous product is monitored.
(5)流動化気体ストリームが一定の流速に維持され、
流動化気体ストリーム中の不活性気体の比率がフッ素の
比率が変化するのに対して相補的に変化する請求項1〜
4のいずれかに記載の方法。
(5) the fluidizing gas stream is maintained at a constant flow rate;
Claims 1 to 3, wherein the proportion of inert gas in the fluidizing gas stream varies complementary to the proportion of fluorine.
4. The method according to any one of 4.
(6)フッ化カルシウムを含有する顆粒が反応器中に断
続的に供給される請求項1〜5のいずれかに記載の方法
(6) The method according to any one of claims 1 to 5, wherein the granules containing calcium fluoride are fed intermittently into the reactor.
(7)流動化気体ストリーム中のフッ素の比率が気体状
生成物の5〜10容量%となるように調節される請求項
1〜6のいずれかに記載の方法。
7. A process according to claim 1, wherein the proportion of fluorine in the fluidizing gas stream is adjusted to between 5 and 10% by volume of the gaseous product.
(8)気体状生成物を濃縮してその中に存在する六フッ
化ウランを抽出し、次いで圧縮して回収する請求項1〜
7のいずれかに記載の方法。
(8) The gaseous product is concentrated to extract the uranium hexafluoride present therein, and then compressed and recovered.
7. The method according to any one of 7.
(9)請求項1に記載の方法を実施するための装置であ
って、 流動化反応器、前記反応器中に回収三酸化ウランを供給
するための装置、フッ素及び不活性気体を含有する流動
化気体ストリームを反応器中に供給する装置、反応器の
温度をモニターする装置、反応器から得られた気体状生
成物中のフッ素をモニターする装置並びに上記温度モニ
ター装置及び気体状生成物モニター装置から得られる信
号に応じて、回収三酸化ウランの流速と流動化気体スト
リーム中のフッ素の比率を調節して、回収三酸化ウラン
を反応器中の所定の温度範囲内の温度に維持する装置を
有することを特徴とする装置。
(9) An apparatus for carrying out the method according to claim 1, comprising a fluidization reactor, an apparatus for feeding recovered uranium trioxide into the reactor, a fluidization reactor containing fluorine and an inert gas. A device for feeding a gaseous stream into a reactor, a device for monitoring the temperature of the reactor, a device for monitoring fluorine in the gaseous product obtained from the reactor, and a device for monitoring the temperature and gaseous product as described above. an apparatus that adjusts the flow rate of the recovered uranium trioxide and the proportion of fluorine in the fluidizing gas stream in response to signals obtained from the reactor to maintain the recovered uranium trioxide at a temperature within a predetermined temperature range in the reactor. A device characterized by having:
(10)回収三酸化ウランを供給するための装置が、そ
の回収三酸化ウランをスクリューコンベヤー装置中に分
配するために配置された回転式バルブを有している請求
項9に記載の方法。
10. The method of claim 9, wherein the device for supplying recovered uranium trioxide comprises a rotary valve arranged to distribute the recovered uranium trioxide into a screw conveyor device.
(11)反応器から得られた気体状生成物を濃縮して、
それから六フッ化ウランを抽出する装置を有する請求項
9または10に記載の方法。
(11) concentrating the gaseous product obtained from the reactor;
11. A method according to claim 9, comprising a device for extracting uranium hexafluoride therefrom.
(12)六フッ化ウランの抽出後に気体状生成物を圧縮
する装置と圧縮された気体状生成物を反応器中に回収す
る装置を有する請求項11に記載の装置。
12. The apparatus of claim 11, comprising a device for compressing the gaseous product after extraction of the uranium hexafluoride and a device for recovering the compressed gaseous product into the reactor.
(13)フッ化カルシウムを含有する顆粒を反応器中に
供給する請求項9〜12のいずれかに記載の装置。
(13) The apparatus according to any one of claims 9 to 12, wherein granules containing calcium fluoride are fed into the reactor.
(14)請求項1〜8のいずれかに記載の方法により製
造される六フッ化ウラン。
(14) Uranium hexafluoride produced by the method according to any one of claims 1 to 8.
JP2065512A 1989-03-15 1990-03-15 Method for producing uranium hexafluoride Expired - Fee Related JP2960943B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8906004.0 1989-03-15
GB898906004A GB8906004D0 (en) 1989-03-15 1989-03-15 A process for producing uranium hexafluoride

Publications (2)

Publication Number Publication Date
JPH02283620A true JPH02283620A (en) 1990-11-21
JP2960943B2 JP2960943B2 (en) 1999-10-12

Family

ID=10653411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2065512A Expired - Fee Related JP2960943B2 (en) 1989-03-15 1990-03-15 Method for producing uranium hexafluoride

Country Status (3)

Country Link
JP (1) JP2960943B2 (en)
FR (1) FR2644447B1 (en)
GB (2) GB8906004D0 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207999A (en) * 1991-08-13 1993-05-04 Cameco Corporation Generation of fluorine via thermal plasma decomposition of metal fluoride
CA2710432C (en) 2007-12-26 2016-04-26 Thorium Power, Inc. Nuclear reactor, fuel assembly consisting of driver-breeding modules for a nuclear reactor and a fuel cell for a fuel assembly
US8116423B2 (en) 2007-12-26 2012-02-14 Thorium Power, Inc. Nuclear reactor (alternatives), fuel assembly of seed-blanket subassemblies for nuclear reactor (alternatives), and fuel element for fuel assembly
US9355747B2 (en) 2008-12-25 2016-05-31 Thorium Power, Inc. Light-water reactor fuel assembly (alternatives), a light-water reactor, and a fuel element of fuel assembly
US10170207B2 (en) 2013-05-10 2019-01-01 Thorium Power, Inc. Fuel assembly
US10192644B2 (en) 2010-05-11 2019-01-29 Lightbridge Corporation Fuel assembly
WO2011143172A1 (en) 2010-05-11 2011-11-17 Thorium Power, Inc. Fuel assembly with metal fuel alloy kernel and method of manufacturing thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704261A (en) * 1955-01-17 1987-11-03 The United States Of America As Represented By The United States Department Of Energy Method for fluorination of uranium oxide

Also Published As

Publication number Publication date
FR2644447A1 (en) 1990-09-21
FR2644447B1 (en) 1992-07-24
GB2229172B (en) 1992-07-22
GB8906004D0 (en) 1989-04-26
GB2229172A (en) 1990-09-19
JP2960943B2 (en) 1999-10-12
GB9001748D0 (en) 1990-03-28

Similar Documents

Publication Publication Date Title
EP0230087B1 (en) Preparation of a uranium dioxide material
EP2373577B1 (en) Processes and systems for producing silicon tetrafluoride from fluorosilicates in a fluidized bed reactor
AU2003276207A1 (en) Polymer treatment
US4158701A (en) Pyrohydrolysis system for processing fluorine-containing spent and waste materials
CN111918839B (en) Method and apparatus for producing molybdenum hexafluoride
JPH02283620A (en) Production of hexa uranium fluoride
US4020146A (en) Production of uranium dioxide
JP2002060212A (en) Method and apparatus for separating metal chloride from gaseous reaction mixture obtained at synthesizing chlorosilane
US3551098A (en) Process for decomposing sodium fluosilicate and/or sodium bifluoride into sodium fluoride,hydrogen fluoride and silicon tetrafluoride
US5723100A (en) Uranium oxide production
US20080025894A1 (en) Two step uo2 production process
US3009768A (en) Continuous process for preparing uranium hexafluoride from uranium tetrafluoride andoxygen
US5698173A (en) Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors
US3264070A (en) Removal of actinide halides from alumina
US20020076375A1 (en) Proces for making calcium chlorides
US3242647A (en) Hydrochloric acid recovery
GB2100712A (en) Uranium peroxide and a process for obtaining it
US4421556A (en) Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides
US3135599A (en) Production of uranium metal powder in a pulsed fluidized bed and powder resulting therefrom
WO1999036352A2 (en) Process for recovering anhydrous hydrogen fluoride from uranium hexafluoride
US4352857A (en) Spherical crystalline sodium uranate and process of producing same by adjusting the uranium containing solution in crystallizer
JPS61165347A (en) Manufacture of purified, substantially odorless solid benzoic acid
JP2541019B2 (en) Method for producing silicon nitride powder
Shimada et al. Experimental study on fluoride volatility process for thorium fuels
US3222847A (en) Process of spraying and cooling a gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees