JPH022826B2 - - Google Patents

Info

Publication number
JPH022826B2
JPH022826B2 JP56192366A JP19236681A JPH022826B2 JP H022826 B2 JPH022826 B2 JP H022826B2 JP 56192366 A JP56192366 A JP 56192366A JP 19236681 A JP19236681 A JP 19236681A JP H022826 B2 JPH022826 B2 JP H022826B2
Authority
JP
Japan
Prior art keywords
sintered body
container
sintered
sintering
body container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56192366A
Other languages
Japanese (ja)
Other versions
JPS5895657A (en
Inventor
Michasu Komatsu
Hiroshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56192366A priority Critical patent/JPS5895657A/en
Publication of JPS5895657A publication Critical patent/JPS5895657A/en
Publication of JPH022826B2 publication Critical patent/JPH022826B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明はセラミツクス焼結体の製造方法及び製
造装置に関し、更に詳しくは、緻密で焼結上り面
が均質で優れた機械的強度を有するセラミツクス
焼結体の製造方法及び製造装置に関する。 〔発明の技術的背景とその問題点〕 窒化ケイ素を主成分として成るセラミツクス焼
結体は、1900℃程度の高温にまで耐えるという優
れた耐熱性を有すると共に、熱膨張係数が低いこ
とから優れた耐熱衝撃性をも有している。かかる
性質を利用し、この種の窒化ケイ素を主成分とし
て成るセラミツクス焼結体は、ガスタービン翼、
ノズル等の高温時に高強度が要求される構造部品
等に応用が試みられている。このようなセラミツ
クス焼結体は、従来、成形体をカーボン容器等に
収納して非酸化性雰囲気中において焼結すること
により製造されている。しかしながら、このよう
な、炭素から成る容器を用いた場合には、焼結時
に容器を形成している炭素が成形体の主成分であ
る窒化ケイ素等と反応して炭化ケイ素を生成し、
焼結体を変質させてしまい、得られる焼結体の機
械的強度を低下せしめるという問題点を有してい
る。又、かかる反応や成形体からの窒化ケイ素等
の蒸発飛散に伴ない、所望の焼結反応雰囲気が得
られない為焼結体表面に大きな空孔が生じて表面
肌が非常に荒くなり、そのため焼結上り(as
sinterd)のままの焼結体表面の機械的強度が、
表面に研削加工した場合に比べて大きく劣るとい
う問題点をも有している。 〔発明の目的〕 本発明の目的は、上記した問題点を解消し、緻
密で焼結上り面が均質で優れた機械的強度を有す
るセラミツクス焼結体を極めて簡便な方法で得る
ことができるセラミツクス焼結体の製造方法及び
製造装置を提供することにある。 〔発明の概要〕 本発明者らは、鋭意検討を重ねた結果、セラミ
ツクス焼結体の製造に際して、特定材質の焼結体
容器からなる製造容器を二重式以上にしたものを
使用し、第1の焼結体容器と第2の焼結体容器と
の間に焼結反応緩衝領域を設けることにより上記
目的が達成されることを見出し、本発明を完成す
るに至つた。 即ち、本発明のセラミツクス焼結体の製造方法
は、窒化ケイ素を主成分とする成形体を、該成形
体を収納する第1の焼結体容器及び該第1の焼結
体容器を収納できる第2の焼結体容器をその外郭
に1つ以上備え、該第1及び第2の焼結体容器を
アルミナ、窒化アルミニウム、窒化ケイ素、窒化
硼素、ジルコニア、ムライトの少なくとも1種で
構成し、かつ前記第1の焼結体容器と第2の焼結
体容器との間に焼結反応緩衝領域を設け、非酸化
性雰囲気中において焼結することを特徴とするも
のである。 又、上記製造方法において使用される本発明の
セラミツクス焼結体の製造装置は、窒化ケイ素を
主成分とする成形体を収納する第1の焼結体容器
及び該第1の焼結体容器を収納できる第2の焼結
体容器をその外郭に1つ以上備え、該第1及び第
2の焼結体容器をアルミナ窒化アルミニウム、窒
化硼素、ジルコニア及びムライトの少なくとも1
種で構成し、該第1の焼結体容器と第2の焼結体
容器との間に焼結反応緩衝領域を設け、非酸化性
雰囲気で焼結することを特徴とするものである。 以下において、本発明を更に詳しく説明する。 本発明において使用する焼結体容器は、第1図
に模式的に示した如く、成形体1を焼結反応領域
5を介して収納する第1の焼結体容器及び該容器
2を焼結反応緩衝領域6を介して収納できる第2
の焼結体容器3を備えてなるものであり、更にこ
れらの容器を収納する第2の焼結体容器4を外郭
に、1つ以上備えて成るものであつてもよい。そ
して、これらの焼結体容器の材質は、少なくとも
第1の焼結体容器2及び第2の焼結体容器3が、
成形体と反応しないものでなければならない。か
かる容器の材質としては、アルミナ、窒化アルミ
ニウム、窒化ケイ素、窒化硼素、ジルコニア、ム
ライトが挙げられ、これらから成る群より選ばれ
た1種もしくは2種以上のものを使用する。又、
上記した二重式焼結体容器よりも外郭に位置する
容器の材質は、通常セラミツクス焼結体の製造に
使用されている材質であれば、特に制限はなく、
これらとしては、例えば、炭素等が挙げられる。 これらの焼結体容器の構造は、一般に、セラミ
ツクス焼結体の製造に使用されている構造であれ
ば、いかなるものでも使用することができる。 本発明のセラミツクス焼結体の製造方法は、上
記した製造装置を用いて、その最内部の第1の焼
結体容器中にセラミツクス成形体を収納する。か
かる成形体は、通常の成形法によつて得られるも
のであり、例えば、セラミツクス粉末を所定量配
合した後、ボールミル等で粉砕混合し、バインダ
ー等を添加して成形することにより得ることがで
きる。しかる後前述の焼結体容器中に収納した成
形体を、非酸化性雰囲気中において焼結すること
により、緻密で焼結上り面が均質で機械的強度が
優れた焼結体が得られるものである。 又、本発明においては、焼結時に成形体と第1
の焼結体容器との間の焼結反応領域5及び第1の
焼結体容器と第2の焼結体容器との間の焼結反応
緩衝領域6に、窒化ケイ素、窒化アルミニウム及
び窒化硼素のそれぞれの粉末から成る群より選ば
れた1種もしくは2種以上の粉末を充填した状態
で行なうことが好ましい。かかる処置により、成
形体からの各成分の蒸発飛散が抑制されるため、
焼結上りのより良好な焼結体が得られる。 本発明に云う非酸化性雰囲気としては、例え
ば、N2,CO,Ar,NH3,H2等が挙げられ、目
的に応じて適宜選択することが好ましい。 焼結は、通常の焼結体の製造に際して用いられ
ている条件でよく、例えば、1500〜1900℃で0.5
〜2時間程度行なえばよい。 本発明において、容器を二重式以上の焼結体容
器にした理由は、多重構造にすることにより、成
形体1と第1の焼結体容器2との間に焼結反応領
域5を、又第1の焼結体容器2と第2の焼結体容
器3との間に焼結反応緩衝領域6を設ける事がで
き、成形体の焼結反応領域5の雰囲気を均一に保
持するというものである。つまり窒化ケイ素を主
成分とする成形体を焼結する際には窒化ケイ素自
体が分解を生じる。この分解を抑制するためには
焼結反応の雰囲気を高濃度でかつ安定したSiO2
+N2の雰囲気に保つ必要があるが、通常成形体
を焼結する際に用いられる焼結体容器では完全な
気密状態を得る事は不可能である。そこで本発明
は、焼結体容器を用いる場合でも焼結反応領域の
外側に、さらに焼結反応緩衝領域を設ける事によ
り、焼結反応領域の雰囲気を極めて安定でかつ高
濃度のSiO2+N2とする事ができるものである。 この結果、本発明では第1の焼結体容器と第2
の焼結体容器との間に設けられた焼結反応緩衝領
域によりa)外囲気等からの侵入による炭素等の
焼結反応に対する有害成分が成形体と第1の焼結
体容器との間に設けられた焼結反応領域に侵入す
る事、b)焼結反応領域の焼結反応雰囲気が第1
の焼結体容器を介して拡散等により変化する事、
を防止でき成形体を緻密でかつ、焼結上り面が均
質な機械械的強度の優れた焼結体とする事ができ
る。 以下において、実施例及び比較例を掲げ、本発
明を更に詳しく説明する。 実施例 1 窒化ケイ素(Si2N4)87.5重量%、酸化イツト
リウム(Y2O3)5重量%、アルミナ(Al2O3
3.5重量%、窒化アルミニウム(AlN)3.5重量%
及び酸化チタン(TiO2)0.5重量%から成るそれ
ぞれの粉末を混合し、n―ブチルアルコールを加
え、ボールミルを用いて24時間粉砕混合した。 かかる混合粉末に、粘結剤としてパラフインを
重量比で7%添加し、700Kg/cm2の成形圧を印加
して、長さ60mm、幅40mm、厚さ10mmを有する板状
成形体を作製した。 かかる成形体を、先ず、700℃で粘結剤を揮散
除去した後、共にAl2O3,AlN及びSi3N4から成
る二重式焼結体容器に収納し、窒素ガス雰囲気中
において、1750℃で2時間焼結を行ない、焼結体
を得た。 実施例 2 実施例1において、焼結時に、二重式焼結体容
器の代わりに、Al2O3,AlN及びSi3N4から成る
二重式焼結体容器の外郭に、更に密閉型カーボン
容器を備えた三重式容器を用いた他は、すべて同
様の操作にて焼結体を得た。 実施例 3 実施例1において、焼結時に、成形体と容器及
び容器と容器の空隙を、AlN粉末で充填した他
は、すべて同様の操作にて焼結体を得た。 実施例 4 実施例2において、焼結時に、成形体と容器及
び容器と容器の空隙を、Si3N4粉末で充填した他
は、すべて同様の操作にて焼結体を得た。 比較例 1〜7 実施例1において、焼結時に使用する焼結体容
器を、第1表に示したものを使用した他はすべて
同様の操作にて、それぞれ焼結体を得た。
[Technical Field of the Invention] The present invention relates to a method and apparatus for producing a ceramic sintered body, and more specifically, a method and apparatus for producing a ceramic sintered body that is dense, has a homogeneous sintered surface, and has excellent mechanical strength. Regarding equipment. [Technical background of the invention and its problems] Ceramic sintered bodies mainly composed of silicon nitride have excellent heat resistance, being able to withstand temperatures as high as 1900°C, and have a low coefficient of thermal expansion. It also has thermal shock resistance. Utilizing these properties, this type of ceramic sintered body mainly composed of silicon nitride is used for gas turbine blades,
Attempts are being made to apply it to structural parts such as nozzles that require high strength at high temperatures. Such a ceramic sintered body has conventionally been manufactured by storing a molded body in a carbon container or the like and sintering it in a non-oxidizing atmosphere. However, when such a container made of carbon is used, the carbon forming the container reacts with silicon nitride, etc., which is the main component of the compact, to produce silicon carbide during sintering.
This has the problem of altering the quality of the sintered body and reducing the mechanical strength of the obtained sintered body. In addition, due to this reaction and the evaporation and scattering of silicon nitride, etc. from the compact, the desired sintering reaction atmosphere cannot be obtained, and large pores are formed on the surface of the sintered compact, resulting in a very rough surface. Sintered finish (as
The mechanical strength of the sintered body surface as it is (sinterd) is
It also has the problem that it is significantly inferior to the case where the surface is ground. [Object of the Invention] The object of the present invention is to solve the above-mentioned problems and to provide a ceramic sintered body that is dense, has a homogeneous sintered surface, and has excellent mechanical strength by an extremely simple method. An object of the present invention is to provide a method and apparatus for manufacturing a sintered body. [Summary of the Invention] As a result of extensive studies, the inventors of the present invention have developed a method for producing ceramic sintered bodies by using a manufacturing container made of a sintered body made of a specific material in a double or higher type. The inventors have discovered that the above object can be achieved by providing a sintering reaction buffer region between the first sintered body container and the second sintered body container, and have completed the present invention. That is, the method for manufacturing a ceramic sintered body of the present invention includes a first sintered body container that stores a molded body containing silicon nitride as a main component, and a first sintered body container that stores the molded body. One or more second sintered containers are provided on the outer shell thereof, and the first and second sintered containers are made of at least one of alumina, aluminum nitride, silicon nitride, boron nitride, zirconia, and mullite, Further, a sintering reaction buffer region is provided between the first sintered body container and the second sintered body container, and sintering is performed in a non-oxidizing atmosphere. Furthermore, the apparatus for manufacturing a ceramic sintered body of the present invention used in the above manufacturing method includes a first sintered body container for storing a molded body containing silicon nitride as a main component; At least one second sintered body container that can be stored is provided on the outer shell of the first and second sintered body containers, and the first and second sintered body containers are made of at least one of alumina aluminum nitride, boron nitride, zirconia, and mullite.
A sintering reaction buffer region is provided between the first sintered body container and the second sintered body container, and sintering is performed in a non-oxidizing atmosphere. In the following, the invention will be explained in more detail. As schematically shown in FIG. 1, the sintered body container used in the present invention includes a first sintered body container that stores the molded body 1 via a sintering reaction area 5, and a sintered body container that stores the molded body 1 through a sintering reaction area 5. The second
2 sintered containers 3, and may further include one or more second sintered containers 4 on the outer shell for accommodating these containers. The material of these sintered body containers is such that at least the first sintered body container 2 and the second sintered body container 3 are
It must not react with the molded object. Examples of the material for such a container include alumina, aluminum nitride, silicon nitride, boron nitride, zirconia, and mullite, and one or more materials selected from the group consisting of these are used. or,
The material of the container located on the outer side of the above-mentioned double-type sintered body container is not particularly limited as long as it is a material normally used for manufacturing ceramic sintered bodies.
Examples of these include carbon and the like. The structure of these sintered body containers may be any structure that is generally used in the production of ceramic sintered bodies. The method for manufacturing a ceramic sintered body of the present invention uses the above-described manufacturing apparatus and stores a ceramic molded body in a first sintered body container located at the innermost part of the manufacturing apparatus. Such a molded body can be obtained by a normal molding method, and can be obtained, for example, by blending a predetermined amount of ceramic powder, pulverizing and mixing in a ball mill, etc., adding a binder, etc., and molding. . Thereafter, by sintering the molded body stored in the aforementioned sintered body container in a non-oxidizing atmosphere, a sintered body that is dense, has a homogeneous sintered surface, and has excellent mechanical strength can be obtained. It is. In addition, in the present invention, during sintering, the molded body and the first
silicon nitride, aluminum nitride, and boron nitride in the sintering reaction area 5 between the first sintered body container and the sintered reaction buffer area 6 between the first sintered body container and the second sintered body container. It is preferable to fill the powder with one or more powders selected from the group consisting of the following powders. This treatment suppresses the evaporation and scattering of each component from the molded body,
A sintered body with better sintering quality can be obtained. Examples of the non-oxidizing atmosphere in the present invention include N 2 , CO, Ar, NH 3 , H 2 and the like, and it is preferable to select it appropriately depending on the purpose. The sintering may be performed under the conditions normally used for manufacturing sintered bodies, for example, at 1500 to 1900°C with a temperature of 0.5
It is sufficient to do this for about 2 hours. In the present invention, the reason why the container is a double or more sintered body container is that the sintering reaction area 5 is formed between the molded body 1 and the first sintered body container 2 by having a multilayer structure. Furthermore, a sintering reaction buffer region 6 can be provided between the first sintered body container 2 and the second sintered body container 3, and the atmosphere in the sintered reaction region 5 of the compact is maintained uniformly. It is something. In other words, when a molded body containing silicon nitride as a main component is sintered, the silicon nitride itself decomposes. In order to suppress this decomposition, the atmosphere for the sintering reaction must be made of highly concentrated and stable SiO2.
Although it is necessary to maintain an atmosphere of +N 2 , it is impossible to achieve a completely airtight state with the sintered body container normally used when sintering the molded body. Therefore, even when using a sintered body container, the present invention provides a sintering reaction buffer area outside the sintering reaction area, thereby making the atmosphere of the sintering reaction area extremely stable and highly concentrated SiO 2 +N 2 . It is possible to do this. As a result, in the present invention, the first sintered body container and the second
Due to the sintering reaction buffer region provided between the green body and the first sintered body container, a) Harmful components such as carbon that enter from the surrounding air etc. to the sintering reaction are prevented between the green body and the first sintered body vessel. b) The sintering reaction atmosphere in the sintering reaction area is
change due to diffusion etc. through the sintered body container,
It is possible to prevent the molding from occurring and make the molded body a sintered body that is dense, has a homogeneous sintered surface, and has excellent mechanical strength. EXAMPLES Below, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 Silicon nitride (Si 2 N 4 ) 87.5% by weight, yttrium oxide (Y 2 O 3 ) 5% by weight, alumina (Al 2 O 3 )
3.5% by weight, aluminum nitride (AlN) 3.5% by weight
and titanium oxide (TiO 2 ) in an amount of 0.5% by weight were mixed, n-butyl alcohol was added thereto, and the mixture was ground and mixed using a ball mill for 24 hours. To this mixed powder, 7% by weight of paraffin was added as a binder, and a molding pressure of 700 kg/cm 2 was applied to produce a plate-shaped molded body having a length of 60 mm, a width of 40 mm, and a thickness of 10 mm. . After first volatilizing and removing the binder at 700°C, the molded body was placed in a double sintered body container made of Al 2 O 3 , AlN and Si 3 N 4 , and heated in a nitrogen gas atmosphere. Sintering was performed at 1750°C for 2 hours to obtain a sintered body. Example 2 In Example 1, during sintering, a sealed type sintered body was added to the outer shell of the double type sintered body container made of Al 2 O 3 , AlN, and Si 3 N 4 instead of the double type sintered body container. A sintered body was obtained in the same manner except that a triple container equipped with a carbon container was used. Example 3 A sintered body was obtained in the same manner as in Example 1, except that during sintering, the gaps between the molded body and the container and between the containers were filled with AlN powder. Example 4 A sintered body was obtained in the same manner as in Example 2, except that during sintering, the gaps between the molded body and the container and between the containers were filled with Si 3 N 4 powder. Comparative Examples 1 to 7 Sintered bodies were obtained in the same manner as in Example 1, except that the sintered body containers shown in Table 1 were used during sintering.

【表】 以上の操作により得られたそれぞれの焼結体に
ついて、その相対密度、成形体から焼結体となつ
た際の重量減少率及び常温における焼結上り面と
研削加工面の抗折強度を測定した。それらの結果
を第2表に示す。尚、実施例1〜3並びに比較例
3及び4で得た焼結体の焼結上り時の表面を、走
査型電子顕微鏡により撮影した写真を、第2図〜
第6図にそれぞれ示した。
[Table] For each sintered body obtained by the above operations, its relative density, weight loss rate when changing from compacted body to sintered body, and bending strength of the sintered upward surface and ground surface at room temperature was measured. The results are shown in Table 2. Incidentally, photographs taken with a scanning electron microscope of the surfaces of the sintered bodies obtained in Examples 1 to 3 and Comparative Examples 3 and 4 after sintering are shown in Figs.
Each is shown in Figure 6.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、二重式以上の焼結体容器を使
用して焼結を行なうことにより、成形体の蒸発飛
散が防止され、緻密で、且つ、容器の材質を選択
することにより、焼結上り面が均質で優れた機械
的強度を有する焼結体が簡便な方法で得られるも
のである。
According to the present invention, by performing sintering using a sintered body container of double type or more, evaporation and scattering of the molded body is prevented, and the sintered body is dense and compact, and by selecting the material of the container, A sintered body having a homogeneous cemented surface and excellent mechanical strength can be obtained by a simple method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の容器の概念図、第2図〜第6
図は焼結体の焼結上り面の、800倍の走査型電子
顕微鏡写真であり、第2図は実施例1、第3図は
実施例2、第4図は実施例3、第5図は比較例3
及び第6図は比較例4のそれぞれ焼結体である。
Figure 1 is a conceptual diagram of the container of the present invention, Figures 2 to 6
The figures are scanning electron micrographs of the sintered top surface of the sintered body at 800 times magnification, and Fig. 2 is Example 1, Fig. 3 is Example 2, Fig. 4 is Example 3, and Fig. 5. is comparative example 3
and FIG. 6 show the sintered bodies of Comparative Example 4, respectively.

Claims (1)

【特許請求の範囲】 1 窒化ケイ素を主成分とする成形体を、該成形
体を収納する第1の焼結体容器及び該第1の焼結
体容器を収納できる第2の焼結体容器をその外郭
に1つ以上備え、該第1及び第2の焼結体容器が
アルミナ、窒化アルミニウム、窒化ケイ素、窒化
硼素、ジルコニア及びムライトから成る群より選
ばれた1種もしくは2種以上のものから成り、か
つ、該第1の焼結体容器と第2の焼結体容器との
間に焼結反応緩衝領域を設け、非酸化性雰囲気中
において焼結することを特徴とするセラミツクス
焼結体の製造方法。 2 焼結時に、成形体と第1の焼結体容器との間
の焼結反応領域及び第1の焼結体容器と第2の焼
結体容器との間の焼結反応緩衝領域が、窒化ケイ
素、窒化アルミニウム及び窒化硼素のそれぞれの
粉末からなる群より選ばれた1種もしくは2種以
上の粉末で充填されたものである特許請求の範囲
第1項記載のセラミツクス焼結体の製造方法。 3 窒化ケイ素を主成分とする成形体を収納する
第1の焼結体容器及び該第1の焼結体容器を収納
できる第2の焼結体容器をその外郭に1つ以上備
え、該第1及び第2の焼結体容器がアルミナ、窒
化アルミニウム、窒化ケイ素、窒化硼素、ジルコ
ニア及びムライトから成る群より選ばれた1種も
しくは2種以上のものから成りかつ、該第1の焼
結体容器と第2の焼結体容器との間に焼結反応緩
衝領域を設け、非酸化性雰囲気で焼結することを
特徴とするセラミツクス焼結体の製造装置。
[Claims] 1. A molded body containing silicon nitride as a main component; a first sintered body container that stores the molded body; and a second sintered body container that can house the first sintered body container. The first and second sintered bodies are made of one or more types selected from the group consisting of alumina, aluminum nitride, silicon nitride, boron nitride, zirconia, and mullite. A sintering reaction buffer region is provided between the first sintered body container and the second sintered body container, and the sintering is performed in a non-oxidizing atmosphere. How the body is manufactured. 2. During sintering, the sintering reaction area between the green body and the first sintered body container and the sintering reaction buffer area between the first sintered body container and the second sintered body container, The method for manufacturing a ceramic sintered body according to claim 1, wherein the ceramic sintered body is filled with one or more powders selected from the group consisting of powders of silicon nitride, aluminum nitride, and boron nitride. . 3. A first sintered body container for storing a molded body containing silicon nitride as a main component and one or more second sintered body containers capable of housing the first sintered body container are provided on the outer shell thereof, The first and second sintered bodies are made of one or more selected from the group consisting of alumina, aluminum nitride, silicon nitride, boron nitride, zirconia, and mullite, and the first sintered body 1. An apparatus for manufacturing a ceramic sintered body, characterized in that a sintering reaction buffer region is provided between a container and a second sintered body container, and sintering is performed in a non-oxidizing atmosphere.
JP56192366A 1981-11-30 1981-11-30 Manufacture and device for ceramic sintered body Granted JPS5895657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56192366A JPS5895657A (en) 1981-11-30 1981-11-30 Manufacture and device for ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56192366A JPS5895657A (en) 1981-11-30 1981-11-30 Manufacture and device for ceramic sintered body

Publications (2)

Publication Number Publication Date
JPS5895657A JPS5895657A (en) 1983-06-07
JPH022826B2 true JPH022826B2 (en) 1990-01-19

Family

ID=16290080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56192366A Granted JPS5895657A (en) 1981-11-30 1981-11-30 Manufacture and device for ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS5895657A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3840173A1 (en) * 1988-11-29 1990-05-31 Hoechst Ag SILICON NITRIDE CERAMICS WITH DEVITRIFIED INTEGRANULAR GLASS PHASE AND METHOD FOR THEIR PRODUCTION

Also Published As

Publication number Publication date
JPS5895657A (en) 1983-06-07

Similar Documents

Publication Publication Date Title
US4073845A (en) High density high strength S13 N4 ceramics prepared by pressureless sintering of partly crystalline, partly amorphous S13 N4 powder
US4221748A (en) Method for making porous, crushable core having a porous integral outer barrier layer having a density gradient therein
JPS5860677A (en) Manufacture of high tenacity silicon nitride sintered body
JPH0577632B2 (en)
US5156830A (en) Process for preparing an alpha-phase silicon nitride material and thereafter converting to non-densified beta-phase material
EP0540671B1 (en) Preparing silicon nitride with densification aid, and results
Giachello et al. Post-sintering of reaction-bonded silicon nitride
US4191720A (en) Method for making porous, crushable core having an integral outer barrier layer
US5055432A (en) Process for preparing a nitridable silicon-containing material having at least one densification aid including alumina, and the material resulting therefrom
US4946630A (en) Making hot pressed silicon nitride by use of low density reaction bonded body
US5166106A (en) Silicon-containing material having at least one densification aid including alumina
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
JPH022826B2 (en)
JPH021793B2 (en)
JP2002053376A (en) Method for sintering silicon nitride ceramics
Sanders et al. Characteristics of Si3N4‐SiO2‐Ce2O3 Compositions Sintered in High‐pressure Nitrogen
JPH0627029B2 (en) Silicon nitride sintered body and method for producing the same
JPH01160870A (en) Silicon nitride sintered compact and production thereof
JP2003002760A (en) Method for producing ceramics porous body
JPH013075A (en) Method for manufacturing aluminum nitride sintered body
JPS6131360A (en) Manufacture of composite sintered body
JPH0772105B2 (en) Silicon nitride sintered body and method for manufacturing the same
JPH01219062A (en) Production of silicon nitride sintered body
JPH0138075B2 (en)
JPS5895660A (en) Silicon nitride sintered body and manufacture