JPH02281185A - Ultrasonic acceleration of room temperature nuclear fusion - Google Patents

Ultrasonic acceleration of room temperature nuclear fusion

Info

Publication number
JPH02281185A
JPH02281185A JP1102968A JP10296889A JPH02281185A JP H02281185 A JPH02281185 A JP H02281185A JP 1102968 A JP1102968 A JP 1102968A JP 10296889 A JP10296889 A JP 10296889A JP H02281185 A JPH02281185 A JP H02281185A
Authority
JP
Japan
Prior art keywords
heavy water
nuclear fusion
ultrasonic waves
electrode
fusion reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1102968A
Other languages
Japanese (ja)
Inventor
Yasuyuki Sugano
康幸 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1102968A priority Critical patent/JPH02281185A/en
Publication of JPH02281185A publication Critical patent/JPH02281185A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PURPOSE:To enhance the probability that nuclear fusion reaction occurs and to accelerate room temp. nuclear fusion by electrolyzing heavy water while heavy water is irradiated with ultrasonic waves. CONSTITUTION:A spiral platinum electrode (anode) 3 and a disc-shaped palladium electrode (cathode) 4 are arranged in a glass container 2 filled with heavy water 1 and, further, an ultrasonic dipping horn 5 wherein a piezoelectric vibrator 8 made of ceramics is bonded to the tip of a titanium rod is arranged thereabove and oscillated ultrasonic waves are amplified within a horn to be propagated through the heavy water 1. Then, ultrasonic waves are oscillated and the heavy water 1 is electrolyzed while irradiated with ultrasonic waves to generate nuclear fusion reaction. By this method, the palladium electrode is always held to a highly active state and the motion of the deuterium atomic nucleus taken in the crystal lattice of palladium is made active to enhance the probability that nuclear fusion reaction occurs and the effect for enhancing the efficiency of room temp. nuclear fusion reaction by an electrolytic method is obtained.

Description

【発明の詳細な説明】 気体を含んだ液体中に超音波を照射すると、小さな気泡
が発生し、それが成長して圧縮破壊されるとき、非常に
高い温度と圧力が発生する。この圧力と温度について、
理論的に正確に計算することも、実験的に正しく測定す
ることも困難であるとされているが、精巧なモデルから
、温度が数千度、圧力が100気圧から1000気圧、
加熱時間が1マイクロ秒以下という推測がなされている
DETAILED DESCRIPTION OF THE INVENTION When ultrasonic waves are irradiated into a liquid containing gas, small bubbles are generated, and when they grow and are compressed and destroyed, extremely high temperatures and pressures are generated. Regarding this pressure and temperature,
Although it is said to be difficult to accurately calculate theoretically or to measure correctly experimentally, sophisticated models have shown that the temperature is several thousand degrees, the pressure is between 100 and 1000 atmospheres, and
It is estimated that the heating time is 1 microsecond or less.

さらに圧縮破壊に伴う温度領域には2種の領域があり、
気泡中にもともと存在していた気体は約5500°C1
気泡周囲の液体は約2100″′Cに達することが報告
されている。
Furthermore, there are two types of temperature ranges associated with compression fracture.
The gas that originally existed in the bubbles was approximately 5500°C1
It has been reported that the liquid surrounding the bubble reaches approximately 2100''C.

本発明は、重水の中に超音波を照射しながら重水を電気
分解することによって、核融合反応の起きる確率を高め
、電気分解法による常温核融合反応を、促進することを
目的とするものである。
The purpose of the present invention is to increase the probability of nuclear fusion reactions occurring by electrolyzing heavy water while irradiating ultrasonic waves into heavy water, and to promote cold fusion reactions by electrolysis. be.

[従来の技術] 従来の電気分解法による常温核融合法は、白金電極(陽
極)とバラジュウム電極(陰極)とを用いて重水を電気
分解する、原理的な方法であり、常温核融合反応の収率
が低く、工業的に利用できる方法ではなかった。
[Conventional technology] The conventional cold fusion method using electrolysis is a principle method of electrolyzing heavy water using a platinum electrode (anode) and a rosemium electrode (cathode), and is a method for cold fusion reactions. The yield was low and the method was not industrially applicable.

[本発明が解決しようとする課題] 本発明は、電気分解法による常温核融合反応において、
核融合が起きる確率を高くすることを課題として、下記
の点を改善しようとしたものである。
[Problems to be solved by the present invention] The present invention solves the following problems in a cold fusion reaction using an electrolysis method.
The goal was to increase the probability of nuclear fusion occurring, and the following improvements were made.

a1重水素の原子核が、陰極を構成する金属の結晶格子
中に、取り込まれやすくする。
a1 The deuterium nucleus is easily incorporated into the crystal lattice of the metal constituting the cathode.

b 結晶格子中に取り込まれた重水素の、原子核の動き
を激しくする。
b Increases the movement of the atomic nucleus of deuterium incorporated into the crystal lattice.

[課題を解決するための手段] 重水の中に超音波を照射しながら、白金電極(陽極)と
パラジュウム電極(陰極)とを用いて、重水を電気分解
し、常温核融合反応を起こさせる。
[Means for solving the problem] Heavy water is electrolyzed using a platinum electrode (anode) and a palladium electrode (cathode) while irradiating ultrasonic waves into heavy water to cause a cold fusion reaction.

「作用」 λ 電気分解の進行に伴って、電極の表面に酸素(陽極
)や重水素(陰極)の気体が発生する。発生した気体は
、重水中に照射されている超音波からエネルギーを吸収
し、小さな気泡となり、それが成長して圧縮破壊される
ので、電極に気泡が付着することがなく、復極剤を使用
しないで分極作用を抑制することができる。
"Operation" λ As electrolysis progresses, gases such as oxygen (anode) and deuterium (cathode) are generated on the surface of the electrode. The generated gas absorbs energy from the ultrasonic waves being irradiated into the heavy water and becomes small bubbles, which grow and are compressed and destroyed. This prevents bubbles from adhering to the electrode and allows the use of a depolarizing agent. It is possible to suppress the polarization effect without having to do so.

b、気泡の圧縮破壊によって、衝撃波と共に、電極表面
に向かった重水のジェット流が発生して、電極表面を侵
食し、不活性な被膜を除去する。その結果、バラジュウ
ム電極の触媒性を高めると共に、電極反応を促進するこ
とができる。
b. Compressive destruction of the bubbles generates a shock wave and a jet stream of heavy water toward the electrode surface, which erodes the electrode surface and removes the inert coating. As a result, the catalytic properties of the baradium electrode can be improved and electrode reactions can be promoted.

C3気泡の圧縮破壊で生じた熱によって、重水が熱分解
され、非常に反応性の高い重水素原子が生成される。
The heat generated by the compressive collapse of the C3 bubbles causes thermal decomposition of heavy water, producing highly reactive deuterium atoms.

電気分解し、核融合反応を起こさせる、常温核融合超音
波促進法。
A cold fusion ultrasound acceleration method that causes electrolysis and fusion reactions.

[効果] 本発明によれば、バラジュウム電極を常に活性の高い状
態に保ち、重水素イオンを高温高圧で、パルス的に通電
中のバラジュウム電極に作用させ、重水素原子が重水素
分子になるときの反応熱で、バラジュウム電極を局所的
に加熱する作用の総和によって、パラジコウムの結晶格
子中に取り込まれた重水素の原子核の運動を激しくし、
核融合反応が起きる確率を高め、電気分解法による常温
核融合反応の収率を高める効果がある。
[Effect] According to the present invention, the baradium electrode is always kept in a highly active state, and deuterium ions are applied to the energized baradium electrode in a pulsed manner at high temperature and high pressure, and when deuterium atoms become deuterium molecules. With the heat of reaction, the sum of the effects of locally heating the palladium electrode intensifies the movement of the deuterium nuclei incorporated into the palladium crystal lattice,
It has the effect of increasing the probability of nuclear fusion reactions occurring and increasing the yield of cold fusion reactions using electrolysis.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明を実施する装置の、断面の模式図である。 (1)重水 (2)ガラス容器 (3)白金電極(4)
パラジュウム電極 (5)超音波液浸ホーン (6)交
流電源 (7)電極 (8)圧電振動子 (9)ステン
レス製綱ぎ環 (10)0リング (I I)気体の出
入り口 (I2)冷却液d 重水の熱分解によって生成
された重水素原子が、バラジコウム電極表面にふれ、重
水素分子になるとき、多量の熱を放出する。 e 触媒活性が高められたバラジコウムの結晶格子と接
する界面で、熱分解によって生成された非常に反応性の
高い重水素原子と、電気分解によって生成された非常に
反応性の高い発生期の重水素イオンとが、高温、同圧に
さらされることによって、電気分解法による常温核融合
反応の場に、特殊な反応場がパルス的に提供される。 「実施例] 重水(1)を満たしたガラス容器(2)の中に、渦巻き
状をした白金電極(陽極)(3)と、円盤状をしたバラ
ジュウム電極(陰極)(4)を設置する。さらにその」
1方に、チタン棒の先にセラミックス製圧電振動子が接
着しである超音波液浸ホーン(5)を設置し、超音波発
振器で発振された超音波が、ポーン内で増幅されて重水
中に伝播できるようにする。このようにしたうえで、超
音波を発振させ、重水中に超音波を照射しながら重水を
(13)直流電源
The drawing is a schematic cross-sectional view of an apparatus for carrying out the invention. (1) Heavy water (2) Glass container (3) Platinum electrode (4)
Palladium electrode (5) Ultrasonic immersion horn (6) AC power source (7) Electrode (8) Piezoelectric vibrator (9) Stainless steel rope ring (10) O-ring (I) Gas inlet/outlet (I2) Coolant d When deuterium atoms produced by the thermal decomposition of heavy water touch the surface of the Baladicium electrode and become deuterium molecules, they release a large amount of heat. e Highly reactive deuterium atoms generated by thermal decomposition and highly reactive nascent deuterium generated by electrolysis at the interface with the crystal lattice of Baladicium with increased catalytic activity. By exposing the ions to high temperature and the same pressure, a special reaction field is provided in pulses to the cold fusion reaction field by electrolysis. "Example" A spiral-shaped platinum electrode (anode) (3) and a disk-shaped rosemium electrode (cathode) (4) are placed in a glass container (2) filled with heavy water (1). Moreover,
On one side, an ultrasonic immersion horn (5) with a ceramic piezoelectric vibrator glued to the tip of a titanium rod is installed. be able to propagate to After doing this, the ultrasonic wave is oscillated and the heavy water is irradiated with the ultrasonic wave (13) DC power source.

Claims (1)

【特許請求の範囲】[Claims] 重水の中に超音波を照射することによって、重水を電気
分解する際に起こる常温核融合反応を、促進させること
を特徴とする、常温核融合超音波促進法。
A cold fusion ultrasonic acceleration method characterized by promoting the cold fusion reaction that occurs when heavy water is electrolyzed by irradiating ultrasonic waves into heavy water.
JP1102968A 1989-04-21 1989-04-21 Ultrasonic acceleration of room temperature nuclear fusion Pending JPH02281185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1102968A JPH02281185A (en) 1989-04-21 1989-04-21 Ultrasonic acceleration of room temperature nuclear fusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1102968A JPH02281185A (en) 1989-04-21 1989-04-21 Ultrasonic acceleration of room temperature nuclear fusion

Publications (1)

Publication Number Publication Date
JPH02281185A true JPH02281185A (en) 1990-11-16

Family

ID=14341570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1102968A Pending JPH02281185A (en) 1989-04-21 1989-04-21 Ultrasonic acceleration of room temperature nuclear fusion

Country Status (1)

Country Link
JP (1) JPH02281185A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595572A2 (en) * 1992-10-26 1994-05-04 General Electric Company Ultrasonic parametric amplifier
FR2708779A1 (en) * 1993-03-25 1995-02-10 Arnaud Guy Method and device for producing nuclear fusion of hydrogen isotopes
WO1995016995A1 (en) * 1993-12-03 1995-06-22 E-Quest Sciences Method for producing heat
WO1995020816A1 (en) * 1994-01-27 1995-08-03 Universita' Degli Studi Di Siena Energy generation and generator by means of anharmonic stimulated fusion
WO1995023413A1 (en) * 1994-02-23 1995-08-31 The Regents Of The University Of California Converting acoustic energy into useful other energy forms
WO2009072063A1 (en) * 2007-12-05 2009-06-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for initiating thermonuclear fusion
US8858892B2 (en) 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
WO2018023862A1 (en) * 2016-08-04 2018-02-08 清华大学 Device and method for achieving deuterium-deuterium thermonuclear fusion by ultrasonic cavitation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595572A2 (en) * 1992-10-26 1994-05-04 General Electric Company Ultrasonic parametric amplifier
EP0595572A3 (en) * 1992-10-26 1995-07-12 Gen Electric Ultrasonic parametric amplifier.
FR2708779A1 (en) * 1993-03-25 1995-02-10 Arnaud Guy Method and device for producing nuclear fusion of hydrogen isotopes
WO1995016995A1 (en) * 1993-12-03 1995-06-22 E-Quest Sciences Method for producing heat
WO1995020816A1 (en) * 1994-01-27 1995-08-03 Universita' Degli Studi Di Siena Energy generation and generator by means of anharmonic stimulated fusion
WO1995023413A1 (en) * 1994-02-23 1995-08-31 The Regents Of The University Of California Converting acoustic energy into useful other energy forms
US5659173A (en) * 1994-02-23 1997-08-19 The Regents Of The University Of California Converting acoustic energy into useful other energy forms
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
WO2009072063A1 (en) * 2007-12-05 2009-06-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for initiating thermonuclear fusion
US8858892B2 (en) 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
WO2018023862A1 (en) * 2016-08-04 2018-02-08 清华大学 Device and method for achieving deuterium-deuterium thermonuclear fusion by ultrasonic cavitation

Similar Documents

Publication Publication Date Title
Mason et al. Practical sonochemistry: Power ultrasound uses and applications
Suslick Sonoluminescence and sonochemistry
Lepoint et al. What exactly is cavitation chemistry?
SUSlick Kirk-Othmer encyclopedia of chemical technology
Crum Sonoluminescence
US20230311171A1 (en) Cleaning apparatus and method, and monitoring thereof
Merouani et al. Computational engineering study of hydrogen production via ultrasonic cavitation in water
Pollet Let’s not ignore the ultrasonic effects on the preparation of fuel cell materials
Chatel Sonochemistry: new opportunities for green chemistry
Weissler Sonochemistry: the production of chemical changes with sound waves
JPH02281185A (en) Ultrasonic acceleration of room temperature nuclear fusion
Loranger et al. Comparative study of sonochemical effects in an ultrasonic bath and in a large-scale flow-through sonoreactor
Webster Cavitation
Mason et al. An introduction to sonoelectrochemistry
Nikitenko Plasma Formation during Acoustic Cavitation: Toward a New Paradigm for Sonochemistry.
Gallego-Juárez et al. Ultrasonic defoaming and debubbling in food processing and other applications
Leighton Transient excitation of insonated bubbles
JP2007059317A (en) Plasma generator and plasma generation method
Birkin et al. An activated fluid stream–New techniques for cold water cleaning
Kerabchi et al. Depth effect on the inertial collapse of cavitation bubble under ultrasound: special emphasis on the role of the wave attenuation
Chendke et al. Second-order sonochemical phenomena—extensions of previous work and applications in industrial processing
Suslick The sonochemical hot spot
Luche et al. Practical considerations for process optimization
Swamy et al. Application of ultrasound in leaching
Henglein et al. Oxidation of iodide by the intense acoustic bursts of an extracorporeal lithotripter