JPH02280015A - Superconducting liquid level sensor - Google Patents

Superconducting liquid level sensor

Info

Publication number
JPH02280015A
JPH02280015A JP10297289A JP10297289A JPH02280015A JP H02280015 A JPH02280015 A JP H02280015A JP 10297289 A JP10297289 A JP 10297289A JP 10297289 A JP10297289 A JP 10297289A JP H02280015 A JPH02280015 A JP H02280015A
Authority
JP
Japan
Prior art keywords
liquid
liquid level
level sensor
superconducting wire
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10297289A
Other languages
Japanese (ja)
Inventor
Kazutaka Uda
和孝 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10297289A priority Critical patent/JPH02280015A/en
Publication of JPH02280015A publication Critical patent/JPH02280015A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the liquid level sensor which is suitable especially for a low temperature and can be handled easily by selecting the critical temperature of a superconductive line to the boiling point or above of a liquid to be measured, and allowing the electric resistance value of the superconductive line exposed on the liquid face to correspond to a liquid level. CONSTITUTION:A superconductive body in which the critical temperature of a superconductive line 1 is a little higher than the boiling point of the liquid is selected, measuring points 2 (21, 22, 23) are connected thereto in series at a prescribed interval, and a constant-current source 3 is connected to both its ends. Also, in order to measure a voltage generated in each measuring point 2, both ends of each measuring point 2 and a terminal 5 for measuring a voltage are connected by a wiring 6, and the electric resistance value of the superconductive line 1 exposed on the liquid face is allowed to correspond to a liquid level. According to this constitution, only the measuring point 2 being above the liquid face 7 has an electric resistance, and a resistance in the liquid becomes '0', therefore, by measuring this potential difference with a potentiometer 4, the liquid face 7 can be measured easily without providing a movable part.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、容器中の液体、特に沸点の低い液体の液位を
検出する超伝導液位センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a superconducting liquid level sensor that detects the liquid level of a liquid in a container, particularly a liquid with a low boiling point.

〈従来の技術〉 従来、液位の検出には、浮子式、浮力式、静電気式、放
射線式、超音波式及び、圧力式などのセンサが用いられ
ている。
<Prior Art> Conventionally, float-type, buoyancy-type, electrostatic-type, radiation-type, ultrasonic-type, pressure-type, and other sensors have been used to detect liquid level.

以上の、浮子式は液面に浮かせた浮子の位置で、浮力式
は浮子の浮力とバランスさせたバネなどの変位1から、
静電式は容器との対向電極間を誘電体としての液体が浸
す面積変化による容量の変化から、放射線式は透過力の
強いr線の液層による減衰量から、超音波式は超音波が
液面で反射してくる往復時間から一圧力式にブルドン管
やU字管による液圧の測定から、液位を検出していた。
As mentioned above, the float type is based on the position of the float floating on the liquid surface, and the buoyancy type is based on the displacement 1 of a spring balanced with the buoyancy of the float.
The electrostatic type is based on the change in capacitance due to the change in the area of the dielectric liquid immersed between the container and the opposing electrode, the radiation type is based on the attenuation due to the liquid layer of R-rays, which have strong penetrating power, and the ultrasonic type is based on the amount of attenuation caused by the liquid layer, and the ultrasonic type is based on the amount of ultrasonic waves. The liquid level was detected by measuring the liquid pressure using a Bourdon tube or U-shaped tube, using the pressure method based on the round trip time of reflection on the liquid surface.

第5図は圧力式液位針の一例を示したもので、容器8の
なかの液体の液面7の上に配設したパイプ16内の圧力
と、容器8の底面の圧力になるよう圧力発生装置18と
制御バルブ12で圧力の制御をされるパイプ17内の圧
力との差を検出する差圧計11によ1て液面の高さが測
定される。
FIG. 5 shows an example of a pressure type liquid level needle, in which the pressure in the pipe 16 disposed above the liquid level 7 in the container 8 and the pressure at the bottom of the container 8 are adjusted. The height of the liquid level is measured by a differential pressure gauge 11 that detects the difference between the pressure in the pipe 17 whose pressure is controlled by the generator 18 and the control valve 12.

〈発明が解決しようとする課題〉 前記の液位センサである浮子式や浮力式は、可動部で検
出するため機械的な調整が必要で、また低温では正確な
動作が期待できない。静電式は容器を導体にして対向電
極との間隔を狭くしないと電気容量が小さく感度が低く
なり、電極間が狭くなると異物の付着による誤差や、シ
ョートなどが発生しやすくなる。
<Problems to be Solved by the Invention> The float-type and buoyancy-type liquid level sensors described above require mechanical adjustment because they use a movable part for detection, and cannot be expected to operate accurately at low temperatures. In an electrostatic type, if the container is used as a conductor and the distance between the opposite electrode and the counter electrode is not narrowed, the capacitance will be small and the sensitivity will be low.If the distance between the electrodes is narrowed, errors due to foreign matter adhesion and short circuits are likely to occur.

放射線を用いるものIr1r線の透過力が強いので取扱
いが難しい。
Those using radiation are difficult to handle due to the strong penetrating power of Ir1r rays.

超音波式は、非接触検知という利点があるが振動子への
汚れの付着などが誤差の原因になる他、極低温雰囲気で
実用的に使える製品は実現していない。
The ultrasonic method has the advantage of non-contact detection, but it can cause errors due to dirt adhering to the vibrator, and no product has been developed that can be used practically in extremely low-temperature environments.

圧力式は、液体容器の底面での液体の圧力とパイプから
の流体の圧力と等しくするものでパイプ中の流体である
液体、又は気体などのへの加圧装置と、その圧力の測定
器が必要になる。
The pressure type equalizes the pressure of the liquid at the bottom of the liquid container with the pressure of the fluid coming from the pipe, and requires a device to pressurize the liquid or gas in the pipe, and a device to measure the pressure. It becomes necessary.

又、圧力式では、極低温の液体の液面を測定するとき、
外気に触れる部分の結露又は付着した水分の凍結の可能
性があり、その対策も必要になる。
In addition, with the pressure method, when measuring the liquid level of cryogenic liquid,
There is a possibility of condensation on parts exposed to the outside air or freezing of attached moisture, so countermeasures are required.

更に、液体の粘度が高くなると液体の圧力測定に誤差が
多くなる欠点がある。
Furthermore, there is a drawback that as the viscosity of the liquid increases, errors in measuring the pressure of the liquid increase.

本発明は、従来の液位センサ、特に低温用がもつ課題を
解消し、取扱いが容易で安定した計測が可能な超伝導液
位センサを提供することを目的としている。
An object of the present invention is to solve the problems of conventional liquid level sensors, especially those for low temperatures, and to provide a superconducting liquid level sensor that is easy to handle and can perform stable measurements.

く課題を解決するだめの手段〉 本発明は、超伝導体の臨界温度Tc以下の温度で電気抵
抗が零になる特性を利用する液位センサである。
Means for Solving the Problems> The present invention is a liquid level sensor that utilizes the characteristic of a superconductor that its electrical resistance becomes zero at a temperature below the critical temperature Tc.

超伝導体には、従来の合金系のTcが20に程度から、
近年相欠いて開発されそのTcが。
Superconductors have a Tc of about 20 for conventional alloys,
In recent years, the Tc has been developed one after the other.

La−5r−Cu−0系の40に、Y−Ba−Cu−0
系の90に、B1−5r−Ca−Cu−0系の110K
(高Tc相)と80K(低Tc相)、TノーBa−Ca
−Cu−0系の125KC高Tc相)などが報告されて
いる。
La-5r-Cu-0 series 40, Y-Ba-Cu-0
90 of the system, 110K of B1-5r-Ca-Cu-0 system
(high Tc phase) and 80K (low Tc phase), T no Ba-Ca
-Cu-0 series 125KC high Tc phase) etc. have been reported.

一方、 tc化ガスも、プロパンやブタンなど常温でも
比較的低圧であるものと、沸点が低く常温では非常に高
圧になるものもある。このガスの1気圧での沸点と、そ
のガスの臨界温度は、第1表のようになっている。
On the other hand, TC gases include those such as propane and butane that have a relatively low pressure even at room temperature, and others that have a low boiling point and have a very high pressure at room temperature. The boiling point of this gas at 1 atmosphere and the critical temperature of the gas are shown in Table 1.

第1表 液化ガスの特性 第1表に示したような臨界温度が常温より低いガスは、
臨界温度まで冷却しないと液化できない。
Table 1 Characteristics of liquefied gases Gases whose critical temperature is lower than room temperature as shown in Table 1 are:
It cannot be liquefied unless it is cooled to a critical temperature.

以上のように液化したガスを、常圧の1気圧で使用する
ときはその沸点温度に保たれる。
When the gas liquefied as described above is used at normal pressure of 1 atmosphere, it is maintained at its boiling point temperature.

以上で説明した超伝導体と冷却ガスで、超伝導体とその
超伝導体のTcより低い沸点をもつ冷却ガスの液体のと
き、液面下の超伝導体は抵抗が零になシ、冷面上の超伝
導体はその常伝導状態での電気抵抗をもつので、その電
気抵抗を検出することによシ液位の検出が可能になる。
In the superconductor and cooling gas explained above, when the superconductor and the cooling gas have a boiling point lower than the Tc of the superconductor, the superconductor below the liquid surface has zero resistance and is cooled. Since a superconductor on a surface has electrical resistance in its normal conduction state, the liquid level can be detected by detecting that electrical resistance.

超伝導体は常伝導状態でも比較的比抵抗が小さいので、
超伝導体を細い線状の折れ曲がり、又は巻線構成にする
ことで、抵抗値を大きくすること、及び、この超伝導線
を、熱膨張係数が近似した電気絶縁体の基板、又は、保
護膜など低熱8遣の構成で固定と保護をしておくことが
望しい。
Superconductors have relatively low resistivity even in the normal conduction state, so
By forming the superconductor into a thin wire-shaped bend or winding configuration, the resistance value can be increased, and this superconductor wire can be formed into an electrically insulating substrate or a protective film with a similar coefficient of thermal expansion. It is desirable to fix and protect it with a low heat 8-way configuration.

本発明に於てば1以上で説明した超伝導線に。In the present invention, the superconducting wire described above.

一定電流を印加し、超伝導線に適宜配設した電圧検出タ
ーミナルからの出力で液位全検出する方式本発明は、超
伝導体のTcを、液位を検出する液体の沸点以上に選定
し、その超伝導の配線は、容器中の液体の増減で、液中
の部分が増減し電気抵抗値が増減する構成である。従っ
て、液の増減後も一定の遅延時間後は熱平衡に達し、電
気抵抗値の測定のみで液位測定が行なえ、かつ、可動部
分や複雑な付属装置などが不要な、小型で、取扱いも容
易な超伝導液位センサにすることができる。
A method in which a constant current is applied and the entire liquid level is detected by the output from a voltage detection terminal appropriately arranged on a superconducting wire.In the present invention, the Tc of the superconductor is selected to be higher than the boiling point of the liquid whose liquid level is to be detected. , the superconducting wiring is constructed so that as the liquid in the container increases or decreases, the portion in the liquid increases or decreases, and the electrical resistance value increases or decreases. Therefore, thermal equilibrium is reached after a certain delay time even after the liquid increases or decreases, and the liquid level can be measured only by measuring electrical resistance.It is also compact and easy to handle, with no moving parts or complicated attachments required. It can be made into a superconducting liquid level sensor.

〈実施例〉 本発明の実施例を図面を参照して説明する。<Example> Embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の超伝導液位センサの基本実施例を示
すものである。第1図に於て、8は液体の容器で、7は
液面を示し、液面7に垂直に太い線で表した超伝導線1
が設けられている。超伝導線1は常伝導状態のとき大き
い抵抗値をもたせる折り返し又はジグザグなどの形状で
線長を長くした測定点2(21,22,28)が一定間
隔で形成され、各測定点2を直列に接続して、その両端
に定電流源3を接続し、更に、各測定点2で発生した電
圧を測定するため各測定点2の両端と、電圧測定用のタ
ーミナル5の間を配線6で接続している。ターミナル5
には、各測定点での電位差を計る電位差計4が接続され
ている。
FIG. 1 shows a basic embodiment of the superconducting liquid level sensor of the present invention. In Figure 1, 8 is a liquid container, 7 is the liquid level, and the superconducting wire 1 is shown by a thick line perpendicular to the liquid level 7.
is provided. The superconducting wire 1 has measurement points 2 (21, 22, 28) formed at regular intervals with a long wire length in a folded or zigzag shape that has a large resistance value when in a normal conduction state, and each measurement point 2 is connected in series. A constant current source 3 is connected to both ends of the constant current source 3, and in order to measure the voltage generated at each measurement point 2, a wiring 6 is connected between both ends of each measurement point 2 and the terminal 5 for voltage measurement. Connected. terminal 5
A potentiometer 4 is connected to measure the potential difference at each measurement point.

以上の第1図の構成で、定電流源3で、超伝導線1に電
流を流しておくと、液面7より上の測定点2のみ電気抵
抗をもつので、その電位差を電位差計4で測定すること
で液面7を計ることができる。なお、測定点2は必要に
応じて数を多くして液位の測定精度を上げることができ
る。
With the configuration shown in FIG. 1 above, when a current is passed through the superconducting wire 1 using the constant current source 3, only the measurement point 2 above the liquid level 7 has electrical resistance, so the potential difference is measured using the potentiometer 4. By measuring, the liquid level 7 can be measured. Note that the number of measuring points 2 can be increased as necessary to improve the accuracy of measuring the liquid level.

第1実施例 第2図は、本発明の第1実施例であり、超伝導線1は電
気絶縁性基板14上に配線しである。
First Embodiment FIG. 2 shows a first embodiment of the present invention, in which the superconducting wire 1 is wired on an electrically insulating substrate 14.

この第1実施例では、測定点2をもつ超伝導線lが基板
14上に形成されている他は、第1図の液位センサの基
本構成図と同じであるので液体、および、その容器の図
示を省略して説明する。この図の基板14は、ガラス、
セラミックスまたはポリイミドなどの高分子材料などか
らなり電気絶縁性がよく熱膨張率の低い材料を用いた。
This first embodiment is the same as the basic configuration diagram of the liquid level sensor shown in FIG. 1, except that the superconducting wire l having the measurement point 2 is formed on the substrate 14. will be explained without illustration. The substrate 14 in this figure is made of glass,
A material made of ceramics or a polymeric material such as polyimide, which has good electrical insulation and a low coefficient of thermal expansion, was used.

超伝導線1は各測定点2での線長を長くするため折り返
し形状にし、かつ、測定点2の中間の基板14には切取
孔9を設けることで、測定点での発生抵抗値を大きくシ
、測定点間での熱伝導による影響を小さくして、液位測
定精度を高くしている。
The superconducting wire 1 is made into a folded shape to increase the wire length at each measurement point 2, and a cutout hole 9 is provided in the substrate 14 in the middle of the measurement point 2, thereby increasing the resistance value generated at the measurement point. Second, the influence of heat conduction between measurement points is reduced, increasing the accuracy of liquid level measurement.

なお、本実施例では入力インピーダンスが高い電圧計4
を用いたので、測定点の電位差の測定導線611′i従
来の金属線を超伝導線1にスボフト溶接や超音波ボンデ
ィングして用いた。
Note that in this embodiment, the voltmeter 4 with high input impedance is used.
Therefore, a conventional metal wire 611'i for measuring the potential difference at the measurement point was used by welding or ultrasonic bonding to the superconducting wire 1.

以上の基板14上に形成した超伝導線1を外気や液体か
ら保護する膜も、基板14と同様に、電気絶縁性と低熱
膨張率が必要であり溶融ガラス。
Like the substrate 14, the film that protects the superconducting wire 1 formed on the substrate 14 from outside air and liquid must have electrical insulation properties and a low coefficient of thermal expansion, and is made of molten glass.

ポリイミド等の高分子溶液、又は、セラミックのアルコ
キンド溶液〔ゾル・ゲル法)へ基板14ごとデイツプす
る方法により保護膜を形成した。
A protective film was formed by dipping the entire substrate 14 into a polymer solution such as polyimide or a ceramic alcokind solution (sol-gel method).

この超伝導液位センサの電源は、必ずしも定電流電源で
ある必要はなく、第2図のようにバイアス電流回路中に
抵抗Rと、Rで発生した電圧の測測定する電圧計4′で
バイアス電流の変動をモニターしておけば、バイアス電
流が少々変動しても測定値に変化はないので、通常の直
流電源10を用いることもできる。
The power source of this superconducting liquid level sensor does not necessarily have to be a constant current power source; as shown in Figure 2, the bias current circuit includes a resistor R and a voltmeter 4' that measures the voltage generated at R. If current fluctuations are monitored, the measured value will not change even if the bias current slightly fluctuates, so a normal DC power supply 10 can be used.

更に、各測定点2の電位差測定も、第1図のようにその
隣接したターミナル50間の電位差をスキャナー電圧計
で順次測定されるが、第2図のように1本液位センサの
ほぼアース電位になる最下位電位を基準にし、各測定点
2の電位差を順次積算した表にすると1図示しない液面
の上の測定点のみ電位差が発して第8図の測定値が得ら
れた。
Furthermore, to measure the potential difference at each measurement point 2, the potential difference between adjacent terminals 50 is sequentially measured using a scanner voltmeter as shown in Figure 1, but as shown in Figure 2, the potential difference between the adjacent terminals 50 is measured at approximately the ground level of one liquid level sensor. When the potential difference at each measurement point 2 is sequentially integrated in a table using the lowest potential as a reference, a potential difference is generated only at the measurement point (not shown) above the liquid level, and the measured values shown in FIG. 8 are obtained.

この第8図の横軸はターミナル5の位置で0がアースの
ターミナルで順次測定点の数を増したタミナルの位置を
示し、縦軸はアースと、その各ターミナル間の電位差を
示している。この第3図から測定点と電位差の関係が判
り、その電位差の立ち上りの点で液位を計測できる。
The horizontal axis in FIG. 8 is the position of terminal 5, where 0 is the ground terminal, and the terminal position where the number of measurement points is increased sequentially is shown, and the vertical axis shows the potential difference between the ground and each terminal. From FIG. 3, the relationship between the measurement point and the potential difference can be seen, and the liquid level can be measured at the point where the potential difference rises.

第2実施例 本発明の第2実施例を第4図に示した。第2実施例は、
超電導線1に関連する第4図の部分以外は、第1図の基
本構成及び、第2図の第1実施例と同じにすることがで
きるので、第4図に示した部分以外の説明は省略する。
Second Embodiment A second embodiment of the present invention is shown in FIG. The second example is
The parts other than the parts shown in FIG. 4 related to the superconducting wire 1 can be the same as the basic configuration shown in FIG. 1 and the first embodiment shown in FIG. 2, so the explanation of the parts other than those shown in FIG. Omitted.

この図において、15は円筒形の基板で、その外周に超
伝導線1が基板15に形成したらせん状の溝に沿1て巻
かれている。この超伝導線1は各測定点2で高密度に巻
かれ、各測定点20間では、近接して作ったスルーホー
ルを通し絶縁被膜をもった電圧測定用導線6によってタ
ーミナル5に接続されている。
In this figure, reference numeral 15 denotes a cylindrical substrate, around the outer periphery of which the superconducting wire 1 is wound along a spiral groove formed in the substrate 15. This superconducting wire 1 is wound densely at each measurement point 2, and between each measurement point 20, it is connected to a terminal 5 by a voltage measurement conductor 6 with an insulating coating through a through hole made close to each other. There is.

第4図の円筒形の基板、及び超伝導線、電圧測定用導線
などは第1実施例と同じように作成した。
The cylindrical substrate shown in FIG. 4, the superconducting wire, the conductive wire for voltage measurement, etc. were made in the same manner as in the first example.

この第2実施例の円筒は径を小さくしても機械的強度を
大きくでき、測定する液体の容器に上部にあけた小孔か
ら挿入して使用できる。
The cylinder of this second embodiment can have a large mechanical strength even if its diameter is reduced, and can be used by being inserted into a container containing a liquid to be measured through a small hole made at the top.

以上で説明した第1実施例の改良又は、変形として次の
構成が考えられる。これは第2図の形状の液位センサを
形成するとき、基板14上に、スハノタ法、MBE法、
又は、CVD法などによる物理的、又は、化学的な手段
による超伝導薄膜を作製するか、超伝導体を構成する元
素の化合物を用いてスプレー熱分解法やゾル・ゲル法に
よる超電導厚膜を作製し、続いてフォトリソグラフィー
と lエツチングにより超伝導線1と電位差測定用導線と同
じ超伝導膜から同時に作製するものである。
The following configuration can be considered as an improvement or modification of the first embodiment described above. When forming a liquid level sensor having the shape shown in FIG. 2, the Suhanota method, MBE method,
Alternatively, a superconducting thin film can be created by physical or chemical means such as CVD, or a superconducting thick film can be created by a spray pyrolysis method or a sol-gel method using a compound of elements constituting a superconductor. Then, by photolithography and l-etching, the superconducting wire 1 and the conductive wire for potential difference measurement are simultaneously manufactured from the same superconducting film.

従って、@記での実施例で説明した超伝導線1の中途へ
、後で、電位差測定用導線6を多数接続する工程が不要
になり、これで、超伝導液位センサの信頼性を向上させ
ることができる。
Therefore, the process of later connecting a large number of potential difference measurement conductors 6 to the middle of the superconducting wire 1 explained in the example in @ is no longer necessary, and this improves the reliability of the superconducting liquid level sensor. can be done.

以上の実施例のように形成した超伝導液位センサは、汚
れや異物の付着があっても熱の伝達が遅れ検出速度が多
少悪くなることがあっても動作不良の発生はなく、取扱
い上安全である。
The superconducting liquid level sensor formed as in the above example does not malfunction and is easy to handle, even if there is dirt or foreign matter attached to it, the heat transfer may be delayed and the detection speed may be slightly degraded. It's safe.

本発明の超伝導液位センサには保守が難しい。The superconducting liquid level sensor of the present invention is difficult to maintain.

又は、大がかりな付属装置の必要がなく、小型化に適し
、小型の液体容器にも使用できると共に、そのセンサを
組み合せ大型の容器にも使用可能になる。
Alternatively, there is no need for large-scale accessory equipment, and it is suitable for miniaturization, and can be used for small liquid containers, and by combining the sensor, it can also be used for large containers.

本液位センサの出力は、各測定点での超伝導線の抵抗の
有無に対応じたデジタル的出力であるから、マイコンな
どのデジタル機器への接続、自動計測又は制御などを行
なうのが容易である。
The output of this liquid level sensor is a digital output that corresponds to the presence or absence of resistance of the superconducting wire at each measurement point, so it is easy to connect to digital equipment such as a microcomputer and perform automatic measurement or control. It is.

更に、本発明の超伝導液位センサは、現在の超伝導体の
Tcが低いこともあるが、従来の液面センサが良好な動
作をしなかった液体窒素温度のような極〈低温での液位
センサとして有効に使うことができる。しかし、今後、
超伝導体材料の開発が進み+ Tcが高くなると、より
高い沸点の液体へ使用可能な液位センサを作製できる。
Furthermore, the superconducting liquid level sensor of the present invention can be used at extremely low temperatures, such as liquid nitrogen temperatures, where conventional liquid level sensors have not performed well, although the Tc of current superconductors may be low. It can be effectively used as a liquid level sensor. However, from now on,
As the development of superconductor materials progresses and +Tc increases, it becomes possible to create liquid level sensors that can be used for liquids with higher boiling points.

以上の実施例で説明したように、本発明の超伝導液位セ
ンサーは、測定する液体の沸点よりわずかにTcが高い
超伝導体分用い、感度のよい構成で、可動部がなく出力
がデジタルにできて取扱いも容易になるという特徴があ
る。
As explained in the above embodiments, the superconducting liquid level sensor of the present invention uses a superconductor whose Tc is slightly higher than the boiling point of the liquid to be measured, has a highly sensitive configuration, has no moving parts, and has a digital output. It has the characteristics of being easy to handle.

〈発明の効果〉 本発明は、測定する液体の沸点よりわずかにTcが高い
超伝導線を用い、その超伝導線の液中に浸った部分の抵
抗が零になることを利用する低温用に適した液位センサ
である。
<Effects of the Invention> The present invention uses a superconducting wire whose Tc is slightly higher than the boiling point of the liquid to be measured, and utilizes the fact that the resistance of the part of the superconducting wire immersed in the liquid becomes zero. It is a suitable liquid level sensor.

また本発明の超伝導液位センサは可動部を必要とせず、
液体用の容器の構造に合わせた形状にでき、異物などの
付着による誤動作もなく、取扱いが容易で安全性も高い
。更に、付属装置も小型化でき、出力もデジタルで処理
回路は低コスト化が図れるので小型の製造装置、測定機
器などに適用して、液位の自動計測や制御などを行なう
ことができる。
Furthermore, the superconducting liquid level sensor of the present invention does not require any moving parts;
It can be shaped to match the structure of the liquid container, prevents malfunctions due to adhesion of foreign objects, and is easy to handle and highly safe. Furthermore, the attached equipment can be made smaller, the output is digital, and the processing circuitry can be made at a lower cost, so it can be applied to small-sized manufacturing equipment, measuring equipment, etc., and can be used to automatically measure and control liquid levels.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の液位センサの基本接続構成図、第2図
は本発明の第1実施例の一部省略斜視図、第3図は第1
実施例の出力特性を示した図、第4図は本発明の第2実
施例の構成図、第5図は従来例の圧力式液位針の構成図
である。 1・・・超伝導線、2・・・測定点、4と4′・・・電
位差計、5・・・ターミナル、6・・・電位差測定用導
線、7・・・液面、8・・・容器、9・・切取孔、10
・直流電源、11・・・差圧計、12・・・制御バルブ
、13・・・圧力発生装置、14・・・基板、15・・
・円筒形基板。 16.17・・−パイプ。 代理人 弁理士 杉 山 毅 至(他1名)σ 第 5図 第 図 平成 事件の表示 特願平1−102972 2、発明の名称 超伝導液位センサ 補正をする者 事件との関係  特許出願人 住 所 8545大阪市阿倍野区長池町22番22号名
 称 (504)シャープ株式会社 代表者 辻   晴 雄
FIG. 1 is a basic connection configuration diagram of the liquid level sensor of the present invention, FIG. 2 is a partially omitted perspective view of the first embodiment of the present invention, and FIG. 3 is a diagram of the first embodiment of the present invention.
FIG. 4 is a diagram showing the output characteristics of the embodiment, FIG. 4 is a configuration diagram of a second embodiment of the present invention, and FIG. 5 is a configuration diagram of a conventional pressure type liquid level needle. DESCRIPTION OF SYMBOLS 1... Superconducting wire, 2... Measuring point, 4 and 4'... Potentiometer, 5... Terminal, 6... Leading wire for measuring potential difference, 7... Liquid level, 8...・Container, 9 ・Cut hole, 10
- DC power supply, 11... Differential pressure gauge, 12... Control valve, 13... Pressure generator, 14... Board, 15...
・Cylindrical board. 16.17...-Pipe. Agent Patent attorney Takeshi Sugiyama (and 1 other person) σ Figure 5 Illustration of the Heisei case Patent application No. 1-102972 2. Name of the invention Relationship to the superconducting liquid level sensor correction case Patent applicant Address 22-22 Nagaike-cho, Abeno-ku, Osaka 8545 Name (504) Sharp Corporation Representative Haruo Tsuji

Claims (1)

【特許請求の範囲】 1、液体容器に蓄えた液体の沸点以上の臨界温度をもち
、線状に、かつ、熱容量の小さくした実装の超伝導体を
、前記液体の量に対応して浸す長さが変わるよう設置し
、前記液体の液面上に露出した前記超伝導線の電気抵抗
値を前記液体の液位に対応させることを特徴とする超伝
導液位センサ。 2、前記超伝導線を電気絶縁性で、かつ、ほぼ同じ熱膨
張率の無機酸化物、又は、ポリイミド、エポキシ樹脂等
からなる材料で支持又は保護したことを特徴とする請求
項1記載の超伝導液位センサ。
[Scope of Claims] 1. A superconductor having a critical temperature higher than the boiling point of the liquid stored in a liquid container and mounted linearly with a small heat capacity is immersed for a length corresponding to the amount of the liquid. A superconducting liquid level sensor, characterized in that the superconducting wire is installed so that the height of the superconducting wire changes, and the electric resistance value of the superconducting wire exposed above the surface of the liquid corresponds to the level of the liquid. 2. The superconducting wire according to claim 1, wherein the superconducting wire is supported or protected by a material made of an inorganic oxide, polyimide, epoxy resin, etc., which is electrically insulating and has approximately the same coefficient of thermal expansion. Conductive liquid level sensor.
JP10297289A 1989-04-20 1989-04-20 Superconducting liquid level sensor Pending JPH02280015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10297289A JPH02280015A (en) 1989-04-20 1989-04-20 Superconducting liquid level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10297289A JPH02280015A (en) 1989-04-20 1989-04-20 Superconducting liquid level sensor

Publications (1)

Publication Number Publication Date
JPH02280015A true JPH02280015A (en) 1990-11-16

Family

ID=14341668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10297289A Pending JPH02280015A (en) 1989-04-20 1989-04-20 Superconducting liquid level sensor

Country Status (1)

Country Link
JP (1) JPH02280015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304074A (en) * 2006-05-15 2007-11-22 National Institute For Materials Science Liquefied gas level sensor element
CN102829840A (en) * 2011-06-15 2012-12-19 北京化工大学 On-line material level identifying system and method of interval stirring heating device based on temperature detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304074A (en) * 2006-05-15 2007-11-22 National Institute For Materials Science Liquefied gas level sensor element
CN102829840A (en) * 2011-06-15 2012-12-19 北京化工大学 On-line material level identifying system and method of interval stirring heating device based on temperature detection
CN102829840B (en) * 2011-06-15 2015-03-25 北京化工大学 On-line material level identifying system and method of interval stirring heating device based on temperature detection

Similar Documents

Publication Publication Date Title
US5546009A (en) Detector system using extremely low power to sense the presence or absence of an inert or hazardous fuild
US4265117A (en) Surface temperature detecting apparatus
US7021136B2 (en) Mass flow meter with symmetrical sensors
Yeager et al. A review of cryogenic thermometry and common temperature sensors
US20040008471A1 (en) Relative humidity sensor with integrated signal conditioning
US6938478B2 (en) Impedance level meter for liquids in tanks
US20080148844A1 (en) Superconductive Level Indicator for Liquid Hydrogen and Liquid Neon, and Measuring Method for Liquid Level Measurement
US11346698B2 (en) Compact pressure and flow sensors for very high temperature and corrosive fluids
US5018387A (en) Cryogenic liquid level measuring apparatus
US3267730A (en) Sensing element for the measurement of liquid level
US4246787A (en) Fast response temperature sensor and method of making
JPH02280015A (en) Superconducting liquid level sensor
US2930232A (en) Device for manifesting thermal boundaries
US3381529A (en) Static anemometer
US2948872A (en) Sensing means
US20030177826A1 (en) Liquid nitrogen level sensor-monitor device using high Tc superconductors and method of manufacture thereof
US11067454B2 (en) Stability of a resistance temperature detector
US3357248A (en) Temperature indicating apparatus
CN107843317A (en) A kind of reference test bar and its scaling method for the demarcation of superconducting line liquid level gauge
Jüngst et al. Superconducting helium level sensor
JP6934252B2 (en) Cryogenic temperature sensor
US5015988A (en) Temperature probe
JPH0242321A (en) Liquid level gauge
Velichkov et al. Capacitive level meters for cryogenic liquids with continuous read-out
JP2000131258A (en) Fouling detecting sensor