JPH022792A - Infrared image pickup element and its driving method - Google Patents

Infrared image pickup element and its driving method

Info

Publication number
JPH022792A
JPH022792A JP63149721A JP14972188A JPH022792A JP H022792 A JPH022792 A JP H022792A JP 63149721 A JP63149721 A JP 63149721A JP 14972188 A JP14972188 A JP 14972188A JP H022792 A JPH022792 A JP H022792A
Authority
JP
Japan
Prior art keywords
detector
signal
accumulated
imaging device
trtrr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63149721A
Other languages
Japanese (ja)
Inventor
Yoshikuni Tanaka
田中 敬訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63149721A priority Critical patent/JPH022792A/en
Publication of JPH022792A publication Critical patent/JPH022792A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correct the sensitivity and the dark current of each image element individually and to remarkably reduce a noise of fixed pattern by impressing a bias voltage on each of detectors after outputting a signal from an individual detector in a detector group. CONSTITUTION:A signal charge corresponding to an incident infrared ray from an abject photoelectrically transduced and accumulated by an ultraviolet ray image pickup element 3 is read out in a row direction row by row by a horizontal scan pulse supplied from an X shift register 1 at every cycle to a gate of a transistor TRTrmn, and is accumulated in a capacitor Cn. And a reset TRTrR supplies the drain voltage of the TRTrR to a diode Dmn by a reset operation via a TRTrR, a TRTrhn, the accumulation capacitor Cn, and a TRTrmn in the above sequence. Therefore, an output signal in which dispersion in the sensitivity and the dark current are reduced can be obtained by controlling the voltage supplied from a D/A converter 6 to the drain of the TRTrR at every image element so as to correct the dispersion in the sensitivity and the dark current of each diode Dmn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は赤外線撮像素子に関し、特に複数個の検出器群
を一次元や二次元に構成した赤外線撮像素子とその駆動
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared imaging device, and more particularly to an infrared imaging device in which a plurality of detector groups are configured in one or two dimensions, and a method for driving the same.

〔従来の技術〕[Conventional technology]

波長10μ付近の熱赤外域の赤外線画像を検出する赤外
線撮像素子として水銀カドミュウムテルル(HgCdT
e)やインジュウムアンチモン(InSb)等の物質で
構成した検出器を用いた赤外線撮像素子が知られている
Mercury cadmium telluride (HgCdT
Infrared imaging devices using detectors made of materials such as InSb and indium antimony (InSb) are known.

第4図はこのような赤外線撮像素子の一例として検出器
を二次元に配列した二次元赤外線撮像素子の構成の一例
を示す模式的構成図である。図において、検出器はHg
CdTeやInSbなどの物質を用いたダイオードで、
該複数個のダイオードDll、012゜013〜Dmn
が行(X)及び列(Y)方向の二次元に配列され、各ダ
イオードには信号を読み出すためのトランジスタTrl
l、Tr12.Tr13〜Trmnが組み合わされてい
る。
FIG. 4 is a schematic configuration diagram showing an example of the configuration of a two-dimensional infrared imaging device in which detectors are arranged two-dimensionally as an example of such an infrared imaging device. In the figure, the detector is Hg
A diode using materials such as CdTe or InSb.
The plurality of diodes Dll, 012°013~Dmn
are arranged two-dimensionally in the row (X) and column (Y) directions, and each diode has a transistor Trl for reading out signals.
l, Tr12. Tr13 to Trmn are combined.

各ダイオードにおいて、入射してきた赤外線が光電変換
されて発生した信号電荷はX−シフトレジスタ13から
トランジスタTrmn(+=1,2e−m、 n=:1
,2゜・・・n)のゲートに供給される走査パルスによ
ってダイオードD11,021,031,041→01
2.D22.D32.D42→D13、D23. D3
3・・・の順で読み出され、蓄積コンデンサCn(n=
1,2t=・n)に蓄積される。トランジスタTrQn
(n=Q1. Q、 ・・・Qn)はダイオードDun
(m=1e2.−m、 n=1゜2、・・・n)に一定
のバイアスを与えるためのもので、そのゲートには一定
の電圧が加えられている。
In each diode, the signal charge generated by photoelectric conversion of the incoming infrared rays is transferred from the X-shift register 13 to the transistor Trmn (+=1, 2e-m, n=:1
, 2°...n), the diode D11,021,031,041→01
2. D22. D32. D42 → D13, D23. D3
3... are read out in the order of storage capacitor Cn (n=
1,2t=・n). Transistor TrQn
(n=Q1.Q, ...Qn) is the diode Dun
(m=1e2.-m, n=1°2, . . . n), and a constant voltage is applied to its gate.

次に蓄積コンデンサCnに接続されたトランジスタTr
hnは蓄積コンデンサCnに蓄積された信号電荷を読み
だすためのもので、Y−シフトレジスタ14からTrh
nのゲートに供給される走査パルスによってC1,C2
,C3,C4・・・の順で読みだされ、読みだされた信
号電荷はバッファトランジスタTroを介して外部に出
力される。リセットトランジスタTrRはY−シフトレ
ジスタ14かもTrhnのゲートに供給される走査パル
スの一周期ごとに信号電荷をリセットするものである。
Next, the transistor Tr connected to the storage capacitor Cn
hn is for reading out the signal charge accumulated in the storage capacitor Cn, and Trh is used from the Y-shift register 14.
C1, C2 by the scanning pulse supplied to the gate of n
, C3, C4, etc., and the read signal charges are output to the outside via the buffer transistor Tro. The reset transistor TrR resets the signal charge every period of the scanning pulse supplied to the gate of the Y-shift register 14 or Trhn.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の技術において、検出器となる各ダイオー
ドの感度、暗電流は一定ではなく、画素ごとに変化して
周知の固定パターン雑音となる。
In the conventional technology described above, the sensitivity and dark current of each diode serving as a detector are not constant, but vary from pixel to pixel, resulting in well-known fixed pattern noise.

この固定パターン雑音を除去するため、従来デジタルメ
モリに固定パターン雑音情報を記憶させて映像信号の補
正を行っていたが、固定パターン雑音の大きさが目的と
する映像信号より大きく、このため精密な補正を行うに
は固定パターン雑音情報を取り込むためのA/Dコンバ
ータに12〜16ビツトの分解能が要求されるために補
正が難しく、撮像装置の規模が大きくなり、また画質が
悪い欠点があった6 本発明の目的は上記従来の欠点をなくし、固定パターン
雑音の大きさが小さい赤外線撮像素子とその駆動方法を
提供することにある。
In order to remove this fixed pattern noise, the fixed pattern noise information was conventionally stored in digital memory to correct the video signal, but the size of the fixed pattern noise was larger than the target video signal. Correction requires a resolution of 12 to 16 bits for the A/D converter that captures the fixed pattern noise information, which makes correction difficult, increases the size of the imaging device, and has the disadvantage of poor image quality. 6. It is an object of the present invention to eliminate the above-mentioned conventional drawbacks and to provide an infrared imaging device with small fixed pattern noise and a method for driving the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の赤外線撮像素子にお
いては、入射赤外線を受けて光電変換する一次元又は二
次元に配列された複数個の検出器群と、この検出器群で
光電変換さ九て蓄積された入射赤外線に対応する信号電
荷を一定周期ごとに順次走査して読み出す走査手段とを
備えた赤外線撮像素子において、前記検出器群の個々の
検出器からの信号を出力した後各検出器の個々にバイア
ス電圧を印加する手段を有するものである。
In order to achieve the above object, the infrared imaging device of the present invention includes a plurality of detector groups arranged one-dimensionally or two-dimensionally that receive incident infrared rays and perform photoelectric conversion, and a group of detectors that perform photoelectric conversion by this detector group. In an infrared imaging device equipped with a scanning means for sequentially scanning and reading out signal charges corresponding to incident infrared rays accumulated at regular intervals, each detection is performed after outputting a signal from each detector of the detector group. The device has means for applying a bias voltage to each of the devices.

また、本発明の赤外線撮像素子の駆動方法においては、
一次元又は二次元に配列された複数個の検出器群に入射
した赤外線を光電変換して蓄積し、入射赤外線に対応し
て蓄積された信号電荷を一定周期ごとに順次走査して読
み出し5個々の検出器からの信号を出力した後1個々の
検出器にバイアス電圧を印加するとともに印加する前記
バイアス電圧を各検出器ごとに制御するものである。
Furthermore, in the method for driving an infrared imaging device of the present invention,
The infrared rays incident on a plurality of detector groups arranged one-dimensionally or two-dimensionally are photoelectrically converted and accumulated, and the accumulated signal charges corresponding to the incident infrared rays are sequentially scanned at regular intervals and read out 5 individually. After outputting the signals from the detectors, a bias voltage is applied to each detector, and the applied bias voltage is controlled for each detector.

〔作用〕[Effect]

各検出器に加えるバイアス電圧を各検出器の固定パター
ン雑音に対応させて印加し、記憶手段に記憶された固定
パターン雑音情報に基づき、各検出器に印加するバイア
ス電圧を制御することにより各検出器の動作点を各個に
独立して設定する。
The bias voltage applied to each detector is applied in correspondence with the fixed pattern noise of each detector, and the bias voltage applied to each detector is controlled based on the fixed pattern noise information stored in the storage means. The operating point of each device is set independently.

〔実施例〕〔Example〕

次に本発明について図面を参照して詳細に説明する。 Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の赤外線撮像素子の構成を示す模式的構
成図である。図において、検出器はHgCdTeやIn
Sbなどの物質を用いたダイオードで、該複数個のダイ
オードD11,012,013−Dmnが行(X)及び
列(Y)方向の二次元に配列され、各ダイオードには信
号を読み出すためのトランジスタTrll、Tr12.
Tr13〜Trmnが組み合わされている。
FIG. 1 is a schematic configuration diagram showing the configuration of an infrared imaging device according to the present invention. In the figure, the detector is HgCdTe or In
A diode using a substance such as Sb, and a plurality of diodes D11,012,013-Dmn are arranged two-dimensionally in the row (X) and column (Y) directions, and each diode is equipped with a transistor for reading out signals. Trll, Tr12.
Tr13 to Trmn are combined.

各ダイオードにおいて、入射してきた赤外線が光電変換
されて発生した信号電荷はX−シフトレジスタ1からト
ランジスタTrmn(m=1.2t=m、 n=1.2
゜・・・n)のゲートに供給される走査パルスによって
Dll、021,031,041→012.D22.D
32.D42→013.D23. D33・・・の順で
読み出され、蓄積コンデンサCn(n =1.2゜・・
・n)に蓄積される。
In each diode, the signal charge generated by photoelectric conversion of the incoming infrared rays is transferred from the X-shift register 1 to the transistor Trmn (m=1.2t=m, n=1.2
Dll, 021,031,041→012. D22. D
32. D42→013. D23. D33... is read out in the order of storage capacitor Cn (n = 1.2°...
・Accumulated in n).

次に蓄積コンデンサCnに接続されたトランジスタTr
hn(hn=h1*t12t”’hn)は蓄積コンデン
サCnに蓄積された信号電荷を読みだすためのもので、
Y−シフトレジスタ2からTrhnのゲートに供給され
る走査パルスによってCI、C2,C3,C4・・・の
順で読みだされ、読みだされた信号電荷はバッファトラ
ンジスタTroを介して外部に出力される。リセットト
ランジスタTrRはY−シフトレジスタ2からTrhn
のゲートに供給される走査パルスの一周期ごとに信号電
荷をリセットするものである。
Next, the transistor Tr connected to the storage capacitor Cn
hn (hn=h1*t12t"'hn) is for reading the signal charge accumulated in the storage capacitor Cn,
CI, C2, C3, C4, etc. are read out in this order by the scanning pulse supplied from the Y-shift register 2 to the gate of Trhn, and the read signal charges are output to the outside via the buffer transistor Tro. Ru. The reset transistor TrR is connected from Y-shift register 2 to Trhn.
The signal charge is reset every period of the scanning pulse supplied to the gate of the gate.

次に第2図は本発明の赤外線撮像素子の駆動法を説明す
るブロック図である。第1図、第2図を参照すると、前
述したとおり、赤外線撮像、素子3で光電変換され、蓄
積された被写体からの入射赤外線に対応した信号電荷は
一定周期ごとにX−シフトレジスタ1からトランジスタ
Trmnのゲートに供給される水平走査パルスにより一
列ずつ行方向に順次読みだされ、蓄積コンデンサCnに
蓄積される。
Next, FIG. 2 is a block diagram illustrating a method for driving an infrared imaging device according to the present invention. Referring to FIGS. 1 and 2, as mentioned above, the signal charges corresponding to the incident infrared rays from the subject that are photoelectrically converted and accumulated in the infrared imaging element 3 are transferred from the X-shift register 1 to the transistor at regular intervals. The data is sequentially read out column by column in the row direction by a horizontal scanning pulse supplied to the gate of Trmn, and stored in the storage capacitor Cn.

次に蓄積された信号電荷はY−シフトレジスタからトラ
ンジスタTrhnのゲートに供給される垂直走査パルス
によって一画素ごとに順次出力される。
Next, the accumulated signal charges are sequentially output pixel by pixel by a vertical scanning pulse supplied from the Y-shift register to the gate of the transistor Trhn.

制御信号発生器4はX−シフトレジスタ1、Y−シフト
レジスタ2を制御して走査パルスを発生させる。このと
き制御信号発生器4は一画素ごとの信号が出力される都
度リセットトランジスタTrRにリセットパルスを供給
し、トランジスタTrhnによりバッファトランジスタ
Troのゲートに読みだされた信号電荷をリセットし次
の画素からの信号出力に備える。
A control signal generator 4 controls the X-shift register 1 and the Y-shift register 2 to generate scanning pulses. At this time, the control signal generator 4 supplies a reset pulse to the reset transistor TrR every time a signal for each pixel is output, resets the signal charge read out to the gate of the buffer transistor Tro by the transistor Trhn, and starts from the next pixel. Prepare for signal output.

次に記憶回路5は赤外線撮像素子3の固定パターン雑音
に対応した補正信号を記憶する手段で、一画素ごとに信
号電荷が読みだされると、これと同時に記憶された補正
信号を出力しD/A変換器6に供給する。D/A変換器
6の出力はリセットトランジスタTrRのドレインに供
給される。前述したとおりリセットトランジスタTrR
は一画素ごとにバッファトランジスタTroのゲートに
読みだされた信号電荷をリセットする動作を行っている
が、図から明らかなとおり、このリセット動作により、
トランジスタT r R4Trhn−4蓄積コンデンサ
Cn→トランジスタTrmnを介してダイオードDmn
にTrRのドレイン電圧が供給される。すなわちトラン
ジスタTrRのドレイン電圧が各ダイオードのバイアス
電圧として供給される。従って前述のD/A変換器6か
らリセットトランジスタTrRのドレインに供給される
電圧を各ダイオードD m nの感度、暗電流のバラツ
キを補正するように一画素ごとに制御すれば感度、暗電
流のバラツキが減少した出力信号を得ることができる。
Next, the storage circuit 5 is a means for storing a correction signal corresponding to the fixed pattern noise of the infrared image sensor 3, and when the signal charge is read out for each pixel, it outputs the stored correction signal at the same time. /A converter 6. The output of the D/A converter 6 is supplied to the drain of the reset transistor TrR. As mentioned above, the reset transistor TrR
performs an operation to reset the signal charge read out to the gate of the buffer transistor Tro for each pixel, and as is clear from the figure, this reset operation causes
Transistor T r R4 Trhn-4 Storage capacitor Cn → diode Dmn via transistor Trmn
The drain voltage of the TrR is supplied to the TrR. That is, the drain voltage of the transistor TrR is supplied as a bias voltage to each diode. Therefore, if the voltage supplied from the D/A converter 6 to the drain of the reset transistor TrR is controlled for each pixel so as to correct the variations in sensitivity and dark current of each diode Dmn, the sensitivity and dark current will be reduced. An output signal with reduced variation can be obtained.

信号処理回路7は前記感度、暗電流のバラツキが減少し
た出力信号からさらに残留したバラツキを完全になくす
ための処理回路である。第3図にそのブロック図を示す
。第2図の構成をとる赤外線撮像素子回路8の出力はA
/D変換器9でデジタル化され、記憶回路10に取り込
まれる。取り込まれた信号は演算回路11でバラツキ補
正に必要な補正量が計算され、再び記憶回路10に記憶
される。
The signal processing circuit 7 is a processing circuit for completely eliminating remaining variations from the output signal in which the variations in sensitivity and dark current have been reduced. FIG. 3 shows its block diagram. The output of the infrared image sensor circuit 8 having the configuration shown in FIG. 2 is A
The data is digitized by the /D converter 9 and taken into the storage circuit 10. The captured signal is used in an arithmetic circuit 11 to calculate the amount of correction required for variation correction, and then stored in the memory circuit 10 again.

補正回路12はA/D変換器の出力から前記補正量を減
算しバラツキをなくした画像信号を得る。このとき赤外
線撮像素子の出力は第2図において述べた手段により感
度、暗電流のバラツキを減少させた出力信号が得られる
ため、A/D変換器以後の信号処理が従来より少ない1
2〜14ビツト以下の分解能での信号処理でよい。
The correction circuit 12 subtracts the correction amount from the output of the A/D converter to obtain a uniform image signal. At this time, the output of the infrared image sensor is obtained by the means described in Fig. 2, so that an output signal with reduced variations in sensitivity and dark current is obtained, so the signal processing after the A/D converter is less than before.
Signal processing with a resolution of 2 to 14 bits or less is sufficient.

以上の説明から明らかなように、本実施例は検出器に加
えるバイアス電圧を一画素ごとに制御するものである。
As is clear from the above description, in this embodiment, the bias voltage applied to the detector is controlled for each pixel.

この構成に上れば各画素の感度。In this configuration, the sensitivity of each pixel.

暗電流を個々に補正でき、固定パターン雑音を大幅に減
少できる。
Dark current can be corrected individually and fixed pattern noise can be significantly reduced.

なお以上の説明では赤外線検出器が二次元配列の例につ
いて述べたがこれは、−次元配列の場合についても全く
同様の構成方法で赤外線撮像素子が実現できることは詳
細な説明から明らかである。
In the above description, an example in which the infrared detectors are arranged in a two-dimensional array has been described, but it is clear from the detailed explanation that an infrared imaging device can be realized using the same construction method even in the case of a -dimensional array.

この場合の構成は当業者には自明であるから詳細な説明
は省略する。
Since the configuration in this case is obvious to those skilled in the art, detailed explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上述べたとおり、本発明によれば固定パターン雑音を
大幅に減少できる赤外線撮像素子を実現できる効果を有
するものである。
As described above, the present invention has the effect of realizing an infrared imaging device that can significantly reduce fixed pattern noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の赤外線撮像素子を示す構成図、第2図
はその駆動法を示すブロック図、第3図は固定パターン
雑音除去の信号処理回路を示すブロック図、第4図は従
来の赤外線撮像素子の構成を示す模式的構成図である。 1.13・・・X−シフトレジスタ 3・・・赤外線撮像素子 5.10・・・記憶回路 7・・・信号処理回路 9・・・A/D変換器 12・・・補正回路 2.14・・・Y−シフトレジスタ 4・・・制御信号発生器 6・・・D/A変換器 8・・・赤外線撮像素子回路 11・・・・・・演算回路
Fig. 1 is a block diagram showing the infrared imaging device of the present invention, Fig. 2 is a block diagram showing its driving method, Fig. 3 is a block diagram showing a signal processing circuit for fixed pattern noise removal, and Fig. 4 is a block diagram showing the conventional infrared imaging device. FIG. 2 is a schematic configuration diagram showing the configuration of an infrared imaging device. 1.13...X-shift register 3...Infrared imaging device 5.10...Storage circuit 7...Signal processing circuit 9...A/D converter 12...Correction circuit 2.14 ... Y-shift register 4 ... Control signal generator 6 ... D/A converter 8 ... Infrared image sensor circuit 11 ... Arithmetic circuit

Claims (2)

【特許請求の範囲】[Claims] (1)入射赤外線を受けて光電変換する一次元又は二次
元に配列された複数個の検出器群と、この検出器群で光
電変換されて蓄積された入射赤外線に対応する信号電荷
を一定周期ごとに順次走査して読み出す走査手段とを備
えた赤外線撮像素子において、前記検出器群の個々の検
出器からの信号を出力した後各検出器の個々にバイアス
電圧を印加する手段を有することを特徴とする赤外線撮
像素子。
(1) A group of multiple detectors arranged in one or two dimensions that receive incident infrared rays and photoelectrically convert them, and a signal charge corresponding to the incident infrared rays that is photoelectrically converted and accumulated by this detector group at a certain period. In the infrared imaging device, the infrared imaging device is equipped with a scanning means for sequentially scanning and reading out each detector, including means for applying a bias voltage to each detector individually after outputting a signal from each detector of the detector group. Characteristic infrared imaging device.
(2)一次元又は二次元に配列された複数個の検出器群
に入射した赤外線を光電変換して蓄積し、入射赤外線に
対応して蓄積された信号電荷を一定周期ごとに順次走査
して読み出し、個々の検出器からの信号を出力した後、
個々の検出器にバイアス電圧を印加するとともに印加す
る前記バイアス電圧を各検出器ごとに制御することを特
徴とする赤外線撮像素子の駆動方法。
(2) The infrared rays incident on a plurality of detector groups arranged one-dimensionally or two-dimensionally are photoelectrically converted and accumulated, and the accumulated signal charges corresponding to the incident infrared rays are sequentially scanned at regular intervals. After reading out and outputting the signals from the individual detectors,
1. A method for driving an infrared imaging device, comprising applying a bias voltage to each detector and controlling the applied bias voltage for each detector.
JP63149721A 1988-06-17 1988-06-17 Infrared image pickup element and its driving method Pending JPH022792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63149721A JPH022792A (en) 1988-06-17 1988-06-17 Infrared image pickup element and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63149721A JPH022792A (en) 1988-06-17 1988-06-17 Infrared image pickup element and its driving method

Publications (1)

Publication Number Publication Date
JPH022792A true JPH022792A (en) 1990-01-08

Family

ID=15481365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63149721A Pending JPH022792A (en) 1988-06-17 1988-06-17 Infrared image pickup element and its driving method

Country Status (1)

Country Link
JP (1) JPH022792A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032349A (en) * 1998-07-09 2000-01-28 Olympus Optical Co Ltd Image input device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032349A (en) * 1998-07-09 2000-01-28 Olympus Optical Co Ltd Image input device

Similar Documents

Publication Publication Date Title
US7223954B2 (en) Apparatus for accessing an active pixel sensor array
EP0862829B1 (en) An image sensor with high dynamic range linear output
US7605376B2 (en) CMOS sensor adapted for dental x-ray imaging
EP3154258B1 (en) Image sensor with multiple photoelectric conversion means per pixel, using only some pixel photoelectric conversion means for focus detection and all for image capture
US5990471A (en) Motion detection solid-state imaging device
US8681253B2 (en) Imaging system for creating an output signal including data double-sampled from an image sensor
US5280358A (en) Photoelectric converting apparatus having an analog memory
JPH04220239A (en) Method and apparatus for reading data from solid x-ray detector
KR20080031907A (en) Low noise data capture for digital radiography
US20100329421A1 (en) Suppression of direct detection events in x-ray detectors
JP3337976B2 (en) Imaging device
JP4135486B2 (en) Image sensor
US5144444A (en) Method and apparatus for improving the output response of an electronic imaging system
EP0397669B1 (en) Input scanner
JPH09247536A (en) Mos type solid-state image pickup device and its drive method
JP3959925B2 (en) Image processing apparatus and imaging device
KR100314801B1 (en) Apparatus for panning and scaling window in image sensor
JPH10209868A (en) A/d converting device
JP3241882B2 (en) Solid-state imaging device
US4573078A (en) Method for operating a CCD imager of the field transfer type
JPH06245145A (en) Method for driving solid-state image pickup device
JPH022792A (en) Infrared image pickup element and its driving method
EP0876053A1 (en) Method for driving a solid state image sensor
JP2002538707A (en) Image sensor
JPS6361560A (en) Driving circuit of image sensor