JPH0227925B2 - TSUKISEITAIKYUGATA - Google Patents

TSUKISEITAIKYUGATA

Info

Publication number
JPH0227925B2
JPH0227925B2 JP2385684A JP2385684A JPH0227925B2 JP H0227925 B2 JPH0227925 B2 JP H0227925B2 JP 2385684 A JP2385684 A JP 2385684A JP 2385684 A JP2385684 A JP 2385684A JP H0227925 B2 JPH0227925 B2 JP H0227925B2
Authority
JP
Japan
Prior art keywords
mold
powder
molding
firing
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2385684A
Other languages
Japanese (ja)
Other versions
JPS60166405A (en
Inventor
Akira Yanagisawa
Hiroyuki Noguchi
Takeo Nakagawa
Takehiro Inagaki
Yoshikazu Hayashi
Masanobu Tsuchida
Toyoji Fuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinto Industrial Co Ltd
Original Assignee
Shinto Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinto Kogyo KK filed Critical Shinto Kogyo KK
Priority to JP2385684A priority Critical patent/JPH0227925B2/en
Priority to MX200937A priority patent/MX161282A/en
Priority to CA000451448A priority patent/CA1266159A/en
Priority to AT84103966T priority patent/ATE64876T1/en
Priority to KR1019840001857A priority patent/KR910000953B1/en
Priority to AU26640/84A priority patent/AU566385B2/en
Priority to IN247/MAS/84A priority patent/IN160636B/en
Priority to DE8484103966T priority patent/DE3484752D1/en
Priority to BR8401651A priority patent/BR8401651A/en
Priority to EP84103966A priority patent/EP0121929B1/en
Publication of JPS60166405A publication Critical patent/JPS60166405A/en
Publication of JPH0227925B2 publication Critical patent/JPH0227925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/003Apparatus or processes for treating or working the shaped or preshaped articles the shaping of preshaped articles, e.g. by bending
    • B28B11/008Blow moulding, e.g. with or without the use of a membrane

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Moulds, Cores, Or Mandrels (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は通気性耐久型に関するものである。 陶器、陶磁器で代表されるセラミツク製品、プ
ラスチツク製品、金属製品、ゴム製品、ガラス製
品などの完成品または半製品を得る方法として、
液状、スラリー状または軟化した材料を、キヤビ
テイを有する型を用して成形(鋳造を含む以下同
じ)する方法は従来より広く行われている。 この成形法に用いる型としては、一般に下記の
ような要求を満すものが望ましいが、従来ではこ
の各種要求を満足できる実用的な成形型がなかつ
た。 目的とする成形に耐え得る十分な機械的、化
学的特性(圧縮強度、曲げ強度、耐摩耗性、耐
食性など)を備え、できるだけ多数回にわたり
反覆使用でき、生産サイクルを高くできるこ
と、 良好な表面性状を備え、複雑形状や薄肉形状
に対応できる転写性を有すること、 型の大型化が容易で、しかも寸法精度が良い
こと、 キヤビテイー内の空気、ガス、水等の除去を
行え、成形品の表面や内部にピンホールや巣を
発生させないこと、 型の製作が容易で安価に得られること、 すなわち、たとえば陶器や陶磁器の素地を成形
するための型としては石こう型が用いられ、多孔
性によりスラリー状混合物(スリツプ)の水分を
吸収する方法がとられているが、この石こう型は
周知のような強度が低く、耐摩耗性に乏しく、成
形材料と化学反応を起しやすいため、せいぜい数
百回の耐久性しかなく、強制吸引をかけると数十
回しか使用できない。また、肌が荒いため成形品
がきれいになりにくく、強度が低いため大型化に
適さず、さらに吸水した型を乾燥させる場合に、
表面が焼石こうとなつて剥離を起しやすく、これ
を避けるため低温乾燥を行うので、この工程に長
時間を要し生産サイクルが低下する。従つて、
の条件を満すことはできても〜の条件を満
すことができない。 また、プラスチツクやゴム等の立体的な成品を
得る場合には、一般に固定金型と可動金型が用い
られ、液状又は軟化させた材料を金型に装入し所
定の圧力で加圧を行つて成形するが、キヤビテイ
ー内で空気や材料にまき込まれた空気類を除去で
きないため、の条件を満すことが難しく、良品
歩留りが低下したり、煩雑なバリ取り作業を要す
るなどの不具合が生じ、また、金属質の型である
ことにより、の条件を満すことができない。 本発明は前記したような従来の成形型の不具合
を解消し、多数回の使用に耐え得る良好な強度や
耐摩耗性と共に良好な表面性状、耐食性、寸法精
度を備え、複雑形状、薄肉形状及び大型形状に対
応しやすく、しかも型全体に通気性を有してい
て、キヤビテイー内や成形材料中の空気、ガス、
水等の除去を効果的に行え、さらに製作を簡易か
つ安価に行えるこの種通気性耐久型を提供しよう
とするものである。 上記目的を達成するため、本発明は特殊材料に
よる複合焼成構造としたもので、すなわち、非鉄
金属粉とセラミツク粉を骨材としこれに蒸発する
液体成分を含むシリカ系粘結材を重量配合比で
(1〜5):(1〜5):1に混合するか、あるいは
この配合に更に補強繊維を20容積%以下で添加混
合したスラリー状試料を、模型や現物を用いて流
し込み成形し、成形体を乾燥後酸化性雰囲気中で
焼成した複合焼成体からなり、該複合焼成体が、
少なくとも型面を含む外周部に非鉄金属酸化物の
分散した緻密な硬化層を有し、型全体が気孔率50
%以下の多孔質構造となつていることを特徴とす
るものである。 以下本発明の実施例を添付図面に基づいて説明
する。 第1図ないし第4図は本発明による通気性耐久
型の実施例を示すもので、非鉄金属粉とセラミツ
ク粉(耐火物粉)を骨材とする複合焼成体1から
なつている。この複合焼成体1は、少なくとも型
面11を含む外周部に緻密な硬化層2を有する。
第2図の態様では硬化層2が中心部にまで到つて
いるが、第1図のように硬化層2の内側に未焼成
混合組織からなるバツキング層3を有していても
よい。 第1図と第2図は分割型とした実施例を示すも
ので、型面11に通ずる通路12が硬化層により
作られ、通路12には成形材料を送り込むための
導管27が取付けられている。用途に応じて硬化
層及びバツキング層を貫いてピン用穴を形成しま
た必要に応じ、型冷却、保温のための導管やヒー
タを埋設してもよい。 第3図と第4図は本発明の他の実施例を示すも
ので、非鉄金属粉とセラミツク粉(耐火物粉)及
び補強繊維4を骨材とする複合焼成体1からなつ
ている。第3図の複合焼成体1は、さきの実施例
と同様に、外周の緻密な硬化層2とその内側の未
焼成混合物からなるバツキング層3を有してお
り、しかも硬化層2とバツキング層3の各層内及
びそれら両層の境界には補強繊維4がほぼ一様に
分散されていて、この分散状の補強繊維4がバツ
キング層3を構成する未焼成混合組織を強化し、
また硬化層2とバツキング層3の間に渡されるこ
とでそれら両層の付着力を増強している。第4図
の実施例では型全体が硬化層2からなつていて、
この層全体に補強繊維4が分散している。 前記硬化層2は、第5a図のようにセラミツク
粉に分散した非鉄金属粉の酸化物粒20と焼成セ
ラミツク粒21との接合組織からなつている。こ
の硬化層2の生成機構は必ずしも明確ではない
が、一般には非鉄金属粉が酸化し、セラミツク粒
子との界面で拡散接合的な接着が行われた結果と
考えられる。そして、この硬化層2には、乾燥工
程及び焼成工程でシリカ系粘結材中の蒸発成分が
硬化層内部から外部に抜けて消失することによる
微細(5〜20μmのごとし)な気孔22を有し、
この微細な気孔22により、多孔質でありながら
緻密で平滑な面性状を構成する。 一方、硬化層2の内側バツキング層3は、第5
b図のように焼成のなされないままの非鉄金属粉
粒20′とセラミツク粉粒21′の混合組織からな
つており、それら非鉄金属粉粒20′の界面には
さきに述べたようにシリカ系粘結材中の蒸発成分
の消失とあいまち粗な気孔22′が形成されてい
る。この気孔22′は硬化層2の気孔22と通じ
ており、従つて複合焼成体1は全体が多孔質通気
構造となつている。前記気孔22,22′は亀裂
でないことに特徴がある。気孔質は後述する配合
条件焼成条件などによるが、一般に1〜50%の範
囲となつており、圧縮強度約200〜900Kg/cm2以上
の特性を備える。 しかして、第1図ないし第4図で示されるよう
な本発明の通気性耐久型は、骨材と粘結材を配合
混練してスラリー状試料を得しめ、このスラリー
状試料を流し込み成形する工程と、混合成形体を
乾燥する工程と、この工程を経たものを酸化性雰
囲気条件で焼成する工程により得られる。 まず、スラリー状試料を得る工程は、非鉄金属
粉とセラミツク粉あるいはさらに補強繊維を十分
に撹拌混合し、これに蒸発する液体成分を含むシ
リカ系粘結材の1種または2種以上を添加して十
分に混合撹拌することからなる。 ここで、「蒸発する液体成分を含むシリカ系粘
結材」を使用するのは、非鉄金属粉粒子とセラミ
ツク粉粒子とを接合するとともに、乾燥ないし焼
成行程で液体成分が蒸発し組織中から成形体ない
しは焼成体外部に抜けることにより微細なオープ
ンポアからなる気孔を形成し、通気性を得るため
である。 この蒸発する液体成分を含むシリカ系粘結材の
例としてはコロイダルシリカが代表的である。コ
ロイダルシリカはシリカSiO2のコロイド溶液を
安定にしたもので、水を分散媒としたものであ
る。この場合は蒸発成分は水であり、水分の蒸発
で気孔が形成される。 また、蒸発する液体成分を含むシリカ系粘結材
としては、エチルシリケートすなわち、アルコー
ル系溶剤性シリカゲルが挙げられる。これは分散
媒としてアルコール系溶剤たとえばメタノールや
エタノールなどを使用したものであり、蒸発成分
はメタノールやエタノールなどのアルコール系溶
剤である。 次に「非鉄金属粉」としては、主としてニツケ
ル粉、クロム粉、マンガン粉、モリブデン粉、チ
タン粉、銅粉、コバルト粉、タングステン粉など
が用いられる。これはそれぞれ単種粉として用い
られてもよいし、2種以上の混合粉として、ある
いは合金粉のかたちで、もしくは複合粉の形態で
用いられてもよい。必要に応じ上記以外の非鉄金
属粉、たとえば、亜鉛粉、スズ粉、鉛粉なども用
いることができるが、強度、耐熱性などの特性は
低下する。 なお、本発明者らは、鋳鉄粉などの鉄系粉末に
よつても同様な試みを行つたが、低温で溶融する
スラグ状の物質が発生して表面性状が劣化し成形
型としての使用に制約があることを知見した。ま
た、酸化物の化学的安定性が乏しく、サビが成形
品の表面等に付着する危険があり、陶器素地の成
形やプラスチツク類の成形上大きな問題となる。
これに対し、非鉄金属粉は適宜選択を行うことに
より鉄系粉の不具合が解消され、すぐれた特性を
示す。すなわち強度が高く、耐熱性、耐食性が向
上し、また寸法精度や表面性状が改善され、色相
も良好で商品価値が高いものとなる。 「セラミツク粉」としては、たとえばムライ
ト、焼成アルミナ、活性アルミナ、電融アルミ
ナ、クロマイト、シリマナイトなどで代表される
中性系のもの、溶融シリカ、ジルコニウム、溶融
ジルコンで代表される酸性系のものが一般に適当
であるが、マグネシア質で代表される塩基性のも
のや滑石なども用いることができる。 また、「補強繊維」としては、一般に鋼系のも
のが適用といえる。とくにステンレス系の鋼繊維
は焼成工程で腐蝕しないため、硬化層及びバツキ
ング層の両層に対する補強効果が高いからであ
る。これ以外の補強繊維たとえば通常の鋼繊維、
ガラス繊維、アルミナ繊維などのセラミツク系繊
維、カーボン繊維などを用いても補強効果は得ら
れ、亀裂防止、セラミツク粉の脱落防止のメリツ
トは得られる。たとえばガラス繊維はシリカ系粘
結材との接着性が良好であるため大きな補強効果
を期待でき、極端に鉄酸化物をきらう場合に有用
である。 前記非鉄金属粉とセラミツク粉とシリカ系粘結
材の配合比は、概ね重量比で(1〜5):(1〜
5):1が好ましく、この配合比により強度、通
気性、熱伝導性、表面性状などの諸特性をバラン
スよく得ることができる。ここで、配合比の下限
を規定したのは、成形型として使用可能な最低限
の強度を得るのに必要だからであり、上限を規定
したのは、骨材が多すぎると成形性の面からシリ
カ系粘結材の被覆能を低下させ、強度の低下や型
表面の安定性劣化を生じさせるからである。非鉄
金属粉の上限を規定したのは、セラミツク粉とシ
リカ系粘結材の配合が適正であつても非鉄金属粉
が過剰となると十分な強度が得られず、かつまた
表面性状が悪化し、転写性が損われるからであ
る。セラミツク粉の上限を限定したのは、過度の
配合により強度が損われるからである。シリカ系
粘結材は骨材の接合に必要であると共に通気性を
与えるために必要である。シリカ系粘結材もまた
過度の配合を行うと必要以上の多孔質化により強
度が低下する。 補強繊維を併用する場合、その添加量は概ね1
〜20vol%とすべきである。1%未満では強度向
上や寸法安定性などの効果を期待できない。しか
し20vol%を超える添加はフアイバーボールが生
じやすくなり、成形性を低下させる。また、硬化
層表面への析出が過剰となつて肌を悪くし、か
つ、コスト的にも不利である。 なお、非鉄金属粉の粒径は一般に最大寸法で2
〜500μm、セラミツク粉は最大寸法で10〜300μ
mが望ましい。下限を規定したのは、転写性と型
面の表面あらさの面からは粒径の細かいほどよい
が、反面において、クラツクが入りやすくなるか
らである。上限を規定したのは、強度の点および
多孔質化が過剰となつて型面性状を低下させるか
らである。補強繊維は、型の大きさなどにより、
たとえば長さ0.5〜30mm、太さ5〜400μmの範囲
のものを適当に選択すればよい。 次いで前記スラリー状試料を所望型形状に固化
成形する。これはたとえば、模型又は現物あるい
はマスターモデル等をセツトした型枠にスラリー
状試料を流し込み、所要時間放置することなどに
より行う。この流し込みに際して、硬化剤を加え
たり、充填性を助長するため振動を加えたり、ス
クイズすることも効果的である。導管付やガイド
を持つ成形型とする場合には、この流し込み成形
に際して型枠内にビンやパイプ類を装入しておく
ことにより簡単に実施できる。 次に、本発明は、前工程から得られた成形体を
型枠から脱型したのち、自然乾燥又は/及び着火
乾燥を行う。これは、亀裂の発生が歪発生の防止
を図ると共に、シリカ系粘結材に含まれるアルコ
ール分や水分などを蒸発せしめることにより多孔
質化を図るためで、前者の自然乾燥は1〜48時間
のごとき範囲から適当に選択する。また、乾燥を
促進するために、高温雰囲気、熱風などを用いる
こともできる。後者の着火乾燥は、成形体をトー
チランプなどで直接着火することにより行えばよ
い。 この乾燥工程の終つた成形体は、全体に通気性
を有しており、無加圧注型用などとしてはそのま
までも使用することが可能である。しかし、機械
的強度は低く、耐久性の低下は否めないため、本
発明は乾燥工程の終つた成形体を酸化性雰囲気条
件で焼成する。酸化性雰囲気は空気でもよいし酸
素供給を配慮したいわゆる酸素富化空気などでも
よい。焼成条件は、非鉄金属粉種、配合比、型寸
法目的とする気孔率などにもよるが、一般に焼成
温度600〜1500℃、焼成時間1時間以上とすべき
である。 焼成温度の下限を600℃、焼成時間の下限を1
時間としたのは、焼成が不十分となつて本発明の
特徴である緻密な硬化層が形成されず、耐久型と
して必要な強度が得られないからである。焼成温
度の上限を1500℃としたのは、硬化層は形成され
るものの、寸法精度の低下、表面の荒れ、転写性
の劣化が生ずるからである。焼成時間は長いほど
強度が向上するが、表面の荒れや生産性の低下を
もたらすおそれがある。型寸法などにもよるが最
長でも50時間を限度とすべきである。 この酸化性雰囲気での焼成工程によりセラミツ
ク粉の焼成と成形体に分散されている非鉄金属粉
の酸化焼成が進行し、表面から内部に向かつて緻
密な硬化層が漸進的に生成され、このとき同時に
成形体中に残留するシリカ系粘結材蒸発成分が除
去されるため多孔質化が促進され、焼成の完了に
より第1図ないし第4図で示すような複合焼成体
1からなる通気性耐久型が得られる。 なお、本発明において、通気性(気孔率)を調
整するには、非鉄金属粉とセラミツク粉の種類、
粒径、非鉄金属粉、セラミツク粉、シリカ系粘結
材の配合比、流し込み成形の際の振動やスクイズ
条件、焼成条件などを必要強度等を考慮しつつ任
意に設定すればよい。 第6図はシリカ系粘結材:骨材(非鉄金属粉+
セラミツク粉)の配合比と気孔率の関係を示すも
ので、シリカ系粘結材配合比を高くすると気孔率
が高くなる傾向を示すことがわかる。 次に本発明の使用状況と作用と説明する。 第7図ないし第9図は本発明による通気性型の
使用例を示すもので、第7a図と第7b図は本発
明の型を陶器素地成形用のスリツプキヤステング
型として用い、スラリー状材料(スリツプ)Wを
加圧注入して水分の排出を行うようにしたもの、
第8a図ないし第8d図はプラスチツクのブロー
成形型に適用した例を示す。第9図はアルミニウ
ム合金鋼、銅、鉄などの溶融金属、モルタル、ロ
ウ、耐火物などの液状ないしスラリー状材料Wを
無加圧吸引方式で成形する場合に適用したものを
示す。 第7a図において、複合焼成は固定型1aと可
動型1bに分割され、それら両型により構成され
るキヤビテイ10にスラリー状材料Wが所定の流
し込み圧力で加圧注入される。この圧力によりキ
ヤビテイー10内の空気が複合焼成体の気孔を通
して外部に排除されるのに続いて、スラリー状材
料Wに含まれる水分が気孔を通して排除され、一
定時間後に可動型1bを開くことにより成形品
W1が取り出される。なお、この工程において、
スラリー状材料Wの注入に先立ちあるいは注入と
併行して第9図と同様に型外部から吸引力を作用
させてもよい。 第8a図において、複合焼成体は可動型1b,
1bとして構成されており、成形用材料(パリソ
ン)W′は予め加熱軟化され、ダイス30の空気
吹込管31により1次膨出が与えられた状態で可
動型1b,1b内に挿入される。次いで第8b図
のように型締めされ、成形用材料W′はキヤビテ
イー10に閉じ込められる。そして第8c図のご
とく、空気吹込管31により成形用材料W′内に
空気が圧入され、これにより成形用材料W′は膨
張し、その圧力でキヤビテイ10内の空気は硬化
層やバツキング層の気孔を通して外部に放出さ
れ、成形用材料W′は型面11,11に密接する。
次いで第8d図のごとくダイス30を離脱させ、
所定時間保持することにより成形用材料は冷却
し、成形品となる。上記工程において、第8b図
の型締め時あるいはそれ以降に可動型1b,1b
の外部から吸引力を作用させてもよい。 第9図の無加圧吸引方式による成形は、たとえ
ば固定型1aと可動型1bに分割構成し、型面1
1,11に塗型剤や離型剤を施し、成形装置に組
込んで材料の注入、離型を行うもので、この成形
にあたつて予め固定型1aと可動型1bの所望個
所に吸引部8,8を設け、この吸引部8,8をホ
ースなどを介して真空ポンプなどの減圧装置9に
接続し、材料Wの注入時又は/及び成形中、吸引
力を作用させる。 なお、図示しないが本発明による型は低加圧吸
引方式での成形にも適用できる。すなわち、この
場合は、公知の減圧鋳造装置における金型の代り
に複合焼成体からなる固定型と可動型を用い、そ
れら固定型と可動型の所望個所に吸引部を設け、
それら吸引部を第9図の場合と同様に減圧装置に
接続し、可動型に型開閉シリンダのピストンロツ
ドを連結すればよい。 成形にあたつては、液状又はスラリー状の材料
をるつぼ状容器に収容し、るつぼ状容器上の密閉
蓋に設けた導気孔から気体を圧入することによ
り、導管を通して固定型と可動型のキヤビテイに
材料を押上げ、それと併行して減圧装置により吸
引部を通して吸引力を作用させるものである。 さらに、軟質塊状物質の塑性流動を伴う成形を
行う場合には、従来の金型からなる雄型の代りに
本発明による複合焼成体を用い、たとえば雌型に
対応する固定型をプレスベツト側に固定し、雄型
に対応する可動型をプレススライド側に取付け、
それら両型の所望部位に吸引部を設けて減圧装置
に接続しておけばよい。成形にあたつては、材料
を固定型の型面に充填し、次いで可動型を作動し
て材料に必要な加圧力を加えながらさきの吸引部
を通して吸気を行うものである。なお、本発明は
プラスチツクシートの真空成形用型等としても用
いられる。 上記のような各成形において、本発明では成形
型が非鉄金属粉とセラミツク粉を骨材とする複合
焼成体1からなつており、この複合焼成体1が非
鉄金属粉の酸化した緻密な硬化層2で型面11を
含む外周面を形成しているため、型強度が少なく
とも200Kg/cm2以上と高いと共に、良好な耐摩耗
性、耐熱性など耐久性として必要な条件を備えて
いる。 したがつて、急熱、急冷の繰返しや型締め圧の
繰返し等によつても亀裂、欠け、ボロツキの発生
がなく、成形型において重要なコーナー部の欠け
等が生じない。また、耐食性が良好で、化学的に
安定しているため、成形品を変質させたり、品位
低下をもたらすこともない。それ故たとえばスリ
ツプキヤステイング用の型に用いた場合には、耐
用回数を飛躍的に向上することができる。骨材と
補強繊維を併用した場合には、曲わ強度も高く、
寸法変化も少ない特徴が得られる。 さらに、耐久型としての良好な特性を有してい
るのに加え、複合焼成体1を構成する硬化層2、
またはこれと内側のバツキング層3とが、微細な
気孔22,22′からなる多孔質で構成されてお
り、金型の場合のように通気個所が限定されず、
型全体に良好な通気性を備えている。 そしてまた、型面を構成する硬化層2は吸引孔
を有しているにも拘わず、緻密で、しかも鉄系粉
の場合に問題となつた表面性状の劣化がなく、表
面あらさが小さい。それ故、流し込み成形により
作られることとあいまち、良好な転写性と型再現
性を備えている。 従つて、第7a図ないし第9図のように成形過
程で所望個所から吸引、あるいは加圧を行うこと
によりキヤビテイーないし型面の全域を均一に負
圧化または正圧化させることができ、これによ
り、キヤビテイーないし型面のすみずみまで材料
をまんべんなく充填させ良好な転写性を与えるこ
とができると同時に、キヤビテイー内の空気や材
料充填時に巻きこまれた空気あるいは材料から放
出されるガスや水などを迅速かつ確実に排除でき
る。 しかも、本発明の型は金型に比較して熱伝導率
が低く、鋳造等に用いた場合溶湯の低速、低圧の
流入でも湯回りが良好である。これらのことか
ら、表面や内部にピンホールや巣の発生のない複
雑形状、薄肉形状の成形品をきわめて簡単に成形
することができるものである。 なお、上記実施例における吸引部8,8は流し
込み成形時に吸気管を型枠に装入することで得て
もよいし、焼成後に設けてもよい。吸引部以外の
外面については、適宜目どめ材を塗着したり、あ
るいは気密シーケンスに装着したり、面状体を接
合するなどの方法をとればよい。勿論、第8a図
ないし第8d図のごとく多孔枠体28を取付ける
ことで型全体を吸引部とすることもできる。上記
実施例では、分割型の双方を複合焼成体で構成し
夫々の型を吸気しているが、場合によつては分割
型の片方だけを複合焼成体としたり、片方のみを
吸気してもよい。 次に本発明の具体的な実施例を示す。 実施例 本発明より通気性型を試作した。試作型の材
料諸元を下記第1表に示す。
The present invention relates to a breathable and durable type. As a method of obtaining finished or semi-finished products such as pottery, ceramic products, plastic products, metal products, rubber products, glass products, etc.
BACKGROUND ART Methods of molding (including casting, hereinafter the same) a liquid, slurry, or softened material using a mold having a cavity have been widely used. It is generally desirable for the mold used in this molding method to satisfy the following requirements, but hitherto there has been no practical mold that can satisfy these various requirements. It must have sufficient mechanical and chemical properties (compressive strength, bending strength, abrasion resistance, corrosion resistance, etc.) to withstand the desired molding process, be able to be used repeatedly as many times as possible, increase the production cycle, and have good surface quality. It has transferability that can handle complex shapes and thin-walled shapes, it is easy to make larger molds and has good dimensional accuracy, it can remove air, gas, water, etc. in the cavity, and the surface of the molded product For example, gypsum molds are used as molds for molding pottery or ceramic bases, and their porosity makes it difficult to form slurry. However, this method is known to absorb moisture from the slip mixture, but this plaster mold has low strength, poor wear resistance, and is prone to chemical reactions with the molding material, so it can be used for several hundred times at most. It has a durability of only a few times, and if forced suction is applied, it can only be used a few dozen times. In addition, the rough skin makes it difficult to clean the molded product, and the low strength makes it unsuitable for larger sizes.Furthermore, when drying a mold that has absorbed water,
The surface becomes calcined gypsum and is prone to peeling, and to avoid this, low temperature drying is performed, so this process takes a long time and reduces the production cycle. Therefore,
Although it is possible to satisfy the condition of , it is not possible to satisfy the condition of . Furthermore, when producing three-dimensional products such as plastic or rubber, fixed molds and movable molds are generally used, and liquid or softened materials are charged into the mold and pressurized at a predetermined pressure. However, since it is not possible to remove the air and air trapped in the material within the cavity, it is difficult to meet the above conditions, resulting in problems such as a decrease in the yield of good products and the need for complicated deburring work. Also, because the mold is made of metal, the following conditions cannot be met. The present invention solves the above-mentioned problems of conventional molding molds, has good strength and abrasion resistance that can withstand multiple uses, as well as good surface quality, corrosion resistance, and dimensional accuracy, and can be used for complex shapes, thin-walled shapes, and It is easy to handle large shapes, and the entire mold is breathable, preventing air, gas, and
The purpose is to provide this kind of breathable and durable type which can effectively remove water and the like and which can be manufactured easily and inexpensively. In order to achieve the above object, the present invention has a composite fired structure made of special materials, that is, non-ferrous metal powder and ceramic powder are used as aggregates, and a silica-based binder containing a liquid component that evaporates is added to the aggregate in a weight mixing ratio. (1 to 5): (1 to 5): 1, or a slurry sample prepared by adding reinforcing fibers to this mixture in an amount of 20% by volume or less, is poured and molded using a model or the actual product, It consists of a composite fired body obtained by drying the molded body and firing it in an oxidizing atmosphere, and the composite fired body has the following characteristics:
At least the outer periphery including the mold surface has a dense hardened layer in which non-ferrous metal oxide is dispersed, and the entire mold has a porosity of 50.
% or less. Embodiments of the present invention will be described below based on the accompanying drawings. FIGS. 1 to 4 show an embodiment of the breathable and durable type according to the present invention, which is composed of a composite fired body 1 made of non-ferrous metal powder and ceramic powder (refractory powder) as aggregates. This composite fired body 1 has a dense hardened layer 2 at least on the outer peripheral portion including the mold surface 11.
In the embodiment shown in FIG. 2, the hardened layer 2 extends to the center, but a backing layer 3 made of an unfired mixed structure may be provided inside the hardened layer 2 as shown in FIG. Figures 1 and 2 show an embodiment of a split mold, in which a passage 12 leading to the mold surface 11 is made of a hardened layer, and a conduit 27 for feeding the molding material is attached to the passage 12. . Depending on the application, holes for pins may be formed through the hardening layer and the backing layer, and if necessary, conduits and heaters for mold cooling and heat retention may be embedded. FIGS. 3 and 4 show another embodiment of the present invention, which consists of a composite fired body 1 made of nonferrous metal powder, ceramic powder (refractory powder), and reinforcing fibers 4 as aggregates. Similar to the previous embodiment, the composite fired body 1 shown in FIG. Reinforcing fibers 4 are almost uniformly dispersed within each layer of 3 and at the boundary between both layers, and these dispersed reinforcing fibers 4 strengthen the unfired mixed structure constituting the backing layer 3,
Furthermore, by being passed between the hardened layer 2 and the backing layer 3, the adhesion between both layers is enhanced. In the embodiment shown in FIG. 4, the entire mold consists of a hardened layer 2,
Reinforcing fibers 4 are dispersed throughout this layer. The hardened layer 2 consists of a bonding structure of oxide particles 20 of nonferrous metal powder dispersed in ceramic powder and fired ceramic particles 21, as shown in FIG. 5a. Although the formation mechanism of this hardened layer 2 is not necessarily clear, it is generally considered to be the result of oxidation of non-ferrous metal powder and diffusion bonding at the interface with ceramic particles. This hardened layer 2 has fine pores 22 (about 5 to 20 μm) caused by the evaporated components in the silica-based binder passing from the inside of the hardened layer to the outside and disappearing during the drying and firing steps. have,
These fine pores 22 form a porous yet dense and smooth surface. On the other hand, the inner backing layer 3 of the hardened layer 2
As shown in Figure b, it consists of a mixed structure of unfired non-ferrous metal powder 20' and ceramic powder 21', and the interface between these non-ferrous metal powder 20' contains silica-based particles as mentioned earlier. Coarse pores 22' are formed due to the disappearance of the evaporated components in the binder. These pores 22' communicate with the pores 22 of the hardened layer 2, so that the entire composite fired body 1 has a porous ventilation structure. The pores 22, 22' are characterized in that they are not cracks. Although the porosity depends on the composition and firing conditions described below, it is generally in the range of 1 to 50%, and has a compressive strength of about 200 to 900 Kg/cm 2 or more. Therefore, in the breathable durable type of the present invention as shown in FIGS. 1 to 4, aggregate and caking material are mixed and kneaded to obtain a slurry sample, and this slurry sample is poured and molded. step, a step of drying the mixed molded body, and a step of firing the product through this step under oxidizing atmosphere conditions. First, the step of obtaining a slurry sample is to sufficiently stir and mix nonferrous metal powder and ceramic powder or reinforcing fibers, and then add one or more types of silica-based binder containing a liquid component that evaporates. and thoroughly mix and stir. Here, the ``silica-based binder containing an evaporable liquid component'' is used to bond non-ferrous metal powder particles and ceramic powder particles, and the liquid component evaporates during the drying or firing process, forming the material from within the structure. This is to obtain air permeability by forming pores consisting of fine open pores by passing through the body or the outside of the fired body. Colloidal silica is a typical example of a silica-based binder containing this evaporable liquid component. Colloidal silica is a stabilized colloidal solution of silica SiO 2 using water as a dispersion medium. In this case, the evaporated component is water, and pores are formed by the evaporation of water. Furthermore, examples of the silica-based binder containing a liquid component that evaporates include ethyl silicate, that is, alcohol-based solvent-based silica gel. This uses an alcoholic solvent such as methanol or ethanol as a dispersion medium, and the evaporated component is an alcoholic solvent such as methanol or ethanol. Next, as the "non-ferrous metal powder", nickel powder, chromium powder, manganese powder, molybdenum powder, titanium powder, copper powder, cobalt powder, tungsten powder, etc. are mainly used. Each of these may be used as a single powder, a mixed powder of two or more kinds, an alloy powder, or a composite powder. If necessary, non-ferrous metal powders other than those mentioned above, such as zinc powder, tin powder, lead powder, etc., can also be used, but properties such as strength and heat resistance will deteriorate. The inventors of the present invention made a similar attempt using iron-based powder such as cast iron powder, but a slag-like substance that melts at low temperatures was generated and the surface quality deteriorated, making it impossible to use it as a mold. We found that there are restrictions. In addition, the chemical stability of the oxide is poor, and there is a risk that rust may adhere to the surface of molded products, which poses a major problem in molding ceramic bases and plastics.
On the other hand, non-ferrous metal powders, if appropriately selected, can overcome the problems associated with iron-based powders and exhibit excellent properties. That is, it has high strength, improved heat resistance and corrosion resistance, improved dimensional accuracy and surface texture, good hue, and high commercial value. Examples of "ceramic powder" include neutral types such as mullite, calcined alumina, activated alumina, fused alumina, chromite, and sillimanite, and acidic types such as fused silica, zirconium, and fused zircon. Although generally suitable, basic materials such as magnesia, talc, etc. can also be used. Furthermore, as the "reinforcing fiber", steel-based fibers are generally applicable. In particular, since stainless steel fibers do not corrode during the firing process, they have a high reinforcing effect on both the hardened layer and the backing layer. Other reinforcing fibers, such as ordinary steel fibers,
Reinforcing effects can also be obtained by using ceramic fibers such as glass fibers and alumina fibers, carbon fibers, etc., and the advantages of preventing cracks and preventing ceramic powder from falling off can also be obtained. For example, glass fiber has good adhesion with silica-based binders, so it can be expected to have a great reinforcing effect, and is useful in cases where iron oxides are extremely objectionable. The blending ratio of the nonferrous metal powder, ceramic powder, and silica-based binder is approximately (1-5):(1-5) by weight.
5):1 is preferable, and various properties such as strength, air permeability, thermal conductivity, and surface texture can be obtained in a well-balanced manner by this blending ratio. Here, the lower limit of the mixing ratio was specified because it is necessary to obtain the minimum strength that can be used as a mold, and the upper limit was specified because if there is too much aggregate, the moldability will deteriorate. This is because it reduces the covering ability of the silica-based binder, resulting in a decrease in strength and deterioration in the stability of the mold surface. The reason for setting the upper limit for non-ferrous metal powder is that even if the blend of ceramic powder and silica-based binder is appropriate, if the non-ferrous metal powder is in excess, sufficient strength will not be obtained, and the surface quality will deteriorate. This is because transferability is impaired. The reason why the upper limit of ceramic powder is limited is that the strength will be impaired if excessively blended. The silica-based binder is necessary for bonding aggregates and for providing air permeability. If the silica-based binder is also excessively blended, the strength will decrease due to excessive porosity. When reinforcing fibers are used together, the amount added is approximately 1
It should be ~20vol%. If it is less than 1%, effects such as improved strength and dimensional stability cannot be expected. However, addition of more than 20 vol% tends to cause fiber balls, which reduces moldability. Further, excessive precipitation on the surface of the hardened layer deteriorates the skin and is also disadvantageous in terms of cost. In addition, the particle size of non-ferrous metal powder is generally 2 in the maximum dimension.
~500μm, ceramic powder is 10~300μm in maximum dimension
m is desirable. The lower limit was specified because, although from the standpoint of transferability and surface roughness of the mold surface, the smaller the particle size, the better, but on the other hand, cracks are more likely to occur. The upper limit was specified because of the need for strength and because excessive porosity would deteriorate the surface properties of the mold. The reinforcing fiber varies depending on the size of the mold etc.
For example, a material having a length of 0.5 to 30 mm and a thickness of 5 to 400 μm may be appropriately selected. Next, the slurry sample is solidified and molded into a desired shape. This is done, for example, by pouring a slurry sample into a mold set with a model, actual object, master model, etc., and leaving it for a required period of time. During this pouring, it is also effective to add a hardening agent, apply vibration to promote filling properties, or squeeze. When using a mold with a conduit or a guide, this can be easily carried out by inserting bottles or pipes into the mold during pour molding. Next, in the present invention, after the molded product obtained in the previous step is removed from the mold, it is subjected to natural drying and/or ignition drying. This is to prevent the generation of cracks and distortion, as well as to make the silica-based binder more porous by evaporating the alcohol and water contained in it; the former is naturally dried for 1 to 48 hours. Select from a range such as: Further, in order to accelerate drying, a high temperature atmosphere, hot air, etc. can also be used. The latter ignition drying may be performed by directly igniting the molded body with a torch lamp or the like. The molded product after this drying process has air permeability throughout and can be used as it is for pressureless casting. However, the mechanical strength is low and durability is unavoidably lowered, so in the present invention, the molded body after the drying process is fired in an oxidizing atmosphere. The oxidizing atmosphere may be air or may be so-called oxygen-enriched air in consideration of oxygen supply. The firing conditions depend on the nonferrous metal powder type, blending ratio, mold dimensions, intended porosity, etc., but generally the firing temperature should be 600 to 1500°C and the firing time should be at least 1 hour. The lower limit of firing temperature is 600℃, the lower limit of firing time is 1
The reason why the time is set is because the firing is insufficient and a dense hardened layer, which is a feature of the present invention, is not formed, and the strength necessary for a durable type cannot be obtained. The reason why the upper limit of the firing temperature was set at 1500°C is that although a hardened layer is formed, dimensional accuracy decreases, the surface becomes rough, and transferability deteriorates. The longer the firing time, the higher the strength, but there is a risk of roughening the surface and reducing productivity. Although it depends on the mold dimensions, etc., the maximum time should be 50 hours. This firing process in an oxidizing atmosphere progresses the firing of the ceramic powder and the oxidative firing of the non-ferrous metal powder dispersed in the molded body, and a dense hardened layer is gradually generated from the surface to the inside. At the same time, the evaporated components of the silica-based binder remaining in the molded body are removed, promoting porosity, and upon completion of firing, the composite fired body 1 as shown in Figures 1 to 4 has an air permeable property. A mold is obtained. In addition, in the present invention, in order to adjust the air permeability (porosity), the type of nonferrous metal powder and ceramic powder,
The particle size, the blending ratio of nonferrous metal powder, ceramic powder, and silica-based binder, vibration and squeezing conditions during pour molding, firing conditions, etc. may be arbitrarily set while taking into consideration the required strength and the like. Figure 6 shows silica-based binder: aggregate (non-ferrous metal powder +
It shows the relationship between the blending ratio of ceramic powder) and the porosity, and it can be seen that the porosity tends to increase as the blending ratio of the silica-based binder increases. Next, the usage situation and operation of the present invention will be explained. Figures 7 to 9 show examples of the use of the breathable mold according to the present invention, and Figures 7a and 7b show how the mold of the present invention is used as a slip casting mold for molding ceramic base material, and slurry-like material is (Slip) A device in which water is discharged by pressurized injection of W.
Figures 8a to 8d show an example of application to a plastic blow mold. FIG. 9 shows a method applied to forming liquid or slurry materials W such as molten metals such as aluminum alloy steel, copper, and iron, mortar, wax, and refractories using a non-pressure suction method. In FIG. 7a, the composite firing is divided into a fixed mold 1a and a movable mold 1b, and a slurry-like material W is injected under a predetermined pouring pressure into a cavity 10 constituted by these two molds. Due to this pressure, the air in the cavity 10 is expelled to the outside through the pores of the composite fired body, and then the water contained in the slurry-like material W is expelled through the pores, and after a certain period of time, the movable mold 1b is opened and molded. Goods
W 1 is taken out. In addition, in this process,
Prior to or concurrently with the injection of the slurry material W, a suction force may be applied from outside the mold as in FIG. 9. In FIG. 8a, the composite fired body is a movable mold 1b,
1b, the molding material (parison) W' is heated and softened in advance, and is inserted into the movable molds 1b, 1b while being given a primary bulge by the air blowing pipe 31 of the die 30. The mold is then clamped as shown in FIG. 8b, and the molding material W' is confined in the cavity 10. Then, as shown in FIG. 8c, air is injected into the molding material W' by the air blowing pipe 31, which causes the molding material W' to expand, and this pressure causes the air in the cavity 10 to blow into the hardened layer and backing layer. The molding material W' is discharged to the outside through the pores and comes into close contact with the mold surfaces 11, 11.
Then, as shown in Fig. 8d, the die 30 is released,
By holding for a predetermined time, the molding material is cooled and becomes a molded product. In the above process, the movable molds 1b, 1b are
The suction force may be applied from outside. Molding by the non-pressure suction method shown in FIG. 9, for example, is divided into a fixed mold 1a and a movable mold 1b,
A mold coating agent and mold release agent are applied to mold parts 1 and 11, and the material is injected and mold released by incorporating it into a molding device. The suction parts 8, 8 are connected to a pressure reducing device 9 such as a vacuum pump via a hose or the like, and a suction force is applied during injection of the material W and/or during molding. Although not shown, the mold according to the present invention can also be applied to molding using a low pressure suction method. That is, in this case, a fixed mold and a movable mold made of a composite fired body are used instead of the mold in the known vacuum casting apparatus, and suction parts are provided at desired locations on the fixed mold and the movable mold.
These suction parts may be connected to a pressure reducing device as in the case of FIG. 9, and the piston rod of the mold opening/closing cylinder may be connected to the movable mold. During molding, a liquid or slurry material is placed in a crucible-shaped container, and gas is pressurized through the air hole provided in the airtight lid on the crucible-shaped container to form fixed and movable cavities through conduits. The material is pushed up, and at the same time a suction force is applied through a suction section by a pressure reducing device. Furthermore, when forming a soft lumpy material with plastic flow, the composite fired body of the present invention is used in place of the male mold made of conventional metal molds, and a fixed mold corresponding to the female mold is fixed to the press bed side. Then, attach the movable mold corresponding to the male mold to the press slide side,
A suction section may be provided at a desired location of both types and connected to a decompression device. During molding, the material is filled into the mold surface of a fixed mold, and then the movable mold is operated to apply the necessary pressure to the material while sucking air through the suction section. The present invention can also be used as a mold for vacuum forming plastic sheets. In each of the above-mentioned moldings, according to the present invention, the mold is composed of a composite fired body 1 made of non-ferrous metal powder and ceramic powder as aggregates, and this composite fired body 1 is made of a dense hardened layer of oxidized non-ferrous metal powder. 2 forms the outer circumferential surface including the mold surface 11, the mold strength is as high as at least 200 kg/cm 2 or more, and it also has the necessary conditions for durability such as good abrasion resistance and heat resistance. Therefore, no cracking, chipping, or crumbling will occur even after repeated rapid heating and cooling, repeated mold clamping pressure, etc., and no chipping at important corners of the mold will occur. In addition, since it has good corrosion resistance and is chemically stable, it does not alter the quality of molded products or cause deterioration in quality. Therefore, when used, for example, in a mold for slip casting, the service life can be dramatically increased. When aggregate and reinforcing fibers are used together, the bending strength is high,
A feature of little dimensional change can be obtained. Furthermore, in addition to having good properties as a durable type, the hardened layer 2 constituting the composite fired body 1,
Alternatively, this and the inner backing layer 3 are made of porous material consisting of fine pores 22, 22', and the ventilation locations are not limited as in the case of a mold.
The entire mold has good ventilation. Furthermore, although the hardened layer 2 constituting the mold surface has suction holes, it is dense, and there is no deterioration in surface quality, which was a problem with iron-based powder, and the surface roughness is small. . Therefore, since it is made by pour molding, it has good transferability and mold reproducibility. Therefore, by applying suction or pressure from a desired location during the molding process as shown in Figures 7a to 9, the entire cavity or mold surface can be uniformly made negative or positive. This makes it possible to evenly fill the material to every corner of the cavity or mold surface and provide good transferability, while at the same time eliminating air inside the cavity, air drawn in during material filling, and gas and water released from the material. Can be eliminated quickly and reliably. Furthermore, the mold of the present invention has a lower thermal conductivity than a metal mold, and when used for casting, etc., the molten metal flows well even when the molten metal flows in at a low velocity and low pressure. For these reasons, molded products with complex shapes and thin shapes without pinholes or cavities on the surface or inside can be molded very easily. In addition, the suction parts 8, 8 in the above embodiment may be obtained by inserting the intake pipe into the mold during casting molding, or may be provided after firing. For the outer surface other than the suction part, methods such as applying a sealing material as appropriate, attaching it to an airtight sequence, or joining a planar body may be used. Of course, the entire mold can also be used as a suction section by attaching a porous frame 28 as shown in FIGS. 8a to 8d. In the above embodiment, both of the split molds are composed of composite fired bodies, and each mold is inhaled, but in some cases, only one of the divided molds is made of a composite fired body, or even if only one side is inhaled. good. Next, specific examples of the present invention will be shown. Example A breathable mold according to the present invention was experimentally produced. The material specifications of the prototype mold are shown in Table 1 below.

【表】【table】

【表】 上記A〜Gを均一に混合撹拌してスラリー状
試料を得しめ、それぞれマスターモデル(洋食
器、衛生陶器、容器、ミシン部品)を入れた型
枠に流し込み、400×400×200mmの成形体を得
た。固化した成形体を脱型後、A〜Cについて
3時間の熱風乾燥を行い、D〜Gについて直接
着火による0.5時間の乾燥を行い、空気条件で
焼成温度900℃〜1500℃の範囲で焼成して通気
性型を得た。 通気性型A、D、E、Fについて焼成温度一
定(1100℃)条件での焼成時間と圧縮強度との
関係を示すと第10図のとおりであり、通気性
型A、Bについて焼成時間一定(6時間)の条
件での圧縮強度と焼成温度の関係を示すと第1
1図のとおりである。これらから本発明の通気
性型は圧縮強度が高く、焼成時間または焼成温
度の増加とともに強度が増加することがわか
る。通気性型C、Gについて焼成時間一定(6
時間)での焼成温度と曲げ強度の関係を示す第
12図のとおりであり、繊維混入量と寸法変化
の関係を示すと第13図のとおりである。これ
らから、補強繊維を添加した場合には曲げ強度
が著しく向上すると共に、型寸法の変化が抑制
されることがわかる。なお、無添加の場合も寸
法精度が良好であり、金属粉として鋳鉄粉を用
い同条件で製作した場合の約1.6%に比し大幅
にすぐれていることがわかる。 通気性型A〜Gについて、焼成温度一定
(1000℃)の条件での焼成時間と硬化層厚さ及
び気孔率(見掛気孔率)の関係を検討した結果
を示す第14図のとおりである。本発明の場
合、型全体に少なくとも20%以上の気孔率を有
していることがわかる。なお、型寸法が小さな
場合には中心まで硬化層となるが、気孔率は最
低でも20%は確保できることが確認された。 気孔率35%の通気性型Cを用い、第7a図、
第7b図に示すデイナーウエアーのスリツプキ
ヤステイング耐久試験を行つた。スリツプは衛
生陶器に通常用いられているカリオン、粘土、
石英、長石、陶石、セルベン、石灰石の適量混
合物で、着肉速度10分間で10〜12mmが得られる
よう導管により10Kg/cm2の圧力でキヤビテイー
に流し込み成形した。その結果、本発明による
吸気性型は20000回以上の使用を行つても正確
な形状の成形品が得られ、型に700mmHgの吸引
力を作用させての減圧鋳込み、注入前に同圧の
吸引力を作用させての減−加圧鋳込みを行つて
も同様な耐久性が得られ、成形品もきわめて緻
密で気孔が皆無であつた。 従来の石こう型の場合、単なる自然吸水でも
せいぜい300回が限界で、吸引力を併用すると
80回程度が上限であることから、本発明は飛躍
的に耐久性を向上できることがわかる。これは
本発明の場合、通気性があるにも拘らず機械的
強度が高く、耐摩耗性も良好で、かつ急熱急冷
の熱的変化にも影響を受けないことによるもの
である。 気孔率38%の通気性型Dを用い、第8a図な
いし第8d図に示すプラスチツク製品(自動車
ヘツドレスト)のブロー成形を行つた。成形材
料は軟質塩化ビニール、パリソン厚2.5mmを用
い、吹込み圧力3Kg/cm2で行つた。また、型締
め後空気吹込み前に700mmHgの吸引力を作用さ
せる手法もあわせて採用してみた。 この場合の成形品と成形型の表面あらさを測
定した結果を示すと第15図のとおりであり、
すぐれた転写性の得られていることがわかる。
これは、流し込み成形であるうえに、型面が緻
密でしかも型面全域に良好な通気性を有してい
ることによるものであり、従来のこの種成形型
が金型であることで問題になつていたキヤビテ
イー内のエア残存とそれによる転写性低下がう
まく解消され、実用性の高いものとなつてい
る。なお、上記の型をプラスチツクの真空成形
型に用いてしぼ模様付シートを成形した場合も
同様な結果が示された。 気孔率35%の通気性型Eを用い、純銅製品
(肉厚1.3mm×20mm)重力鋳造を行いつつ、700
mmHgの吸引を行つた。鋳込み条件は鋳込み温
度950℃、鋳込み時間3〜5sec、離型時間15〜
50秒で行つた。 その結果、ひけもなく、鋳肌も著しく良く、
表面及び内部に巣のない良質の純銅鋳物が得ら
れた。型は150回の使用後も型の損傷は全く見
られなかつた。 以上説明した本発明の第1発明によるときは、
機械的強度が高く、また耐摩耗性、耐熱性にすぐ
れ、しかも型全体に良好な通気性と吸水性を備え
ると共に表面性状が良好でかつ、耐食性が良く成
形品の品質劣化や品位低下を起さない成形型とす
ることができ、大型で複雑、薄肉な成型品用の型
をも簡単かつ安価に製作することができる。本発
明の第2発明によるときには、上記に加えさらに
一段と強度が高く、寸法安定性も良好で耐久性の
高いこの種通気性型を提供できる。 本発明は陶磁器で代表されるセラミツク系製品
の吸水成形型として好適であるほか、プラスチツ
ク製品、ゴム製品、ガラス製品、金属製品等各種
液状、スラリー状あるいは軟質塊状、フイルム状
物質の成形型として適用できるものである。
[Table] A slurry sample was obtained by uniformly mixing and stirring the above A to G, and each was poured into a mold containing a master model (Western tableware, sanitary ware, container, sewing machine parts). A molded body was obtained. After demolding the solidified molded bodies, A to C were dried with hot air for 3 hours, D to G were dried by direct ignition for 0.5 hours, and fired under air conditions at a firing temperature in the range of 900°C to 1500°C. A breathable mold was obtained. Figure 10 shows the relationship between firing time and compressive strength at a constant firing temperature (1100°C) for breathable types A, D, E, and F, and for breathable types A and B at a constant firing time. The relationship between compressive strength and firing temperature under the conditions of (6 hours) is as follows:
As shown in Figure 1. From these results, it can be seen that the breathable mold of the present invention has high compressive strength, and the strength increases as the firing time or temperature increases. Baking time is constant for breathable types C and G (6
Figure 12 shows the relationship between the firing temperature and bending strength (time), and Figure 13 shows the relationship between the amount of fiber mixed in and the dimensional change. From these results, it can be seen that when reinforcing fibers are added, the bending strength is significantly improved and changes in mold dimensions are suppressed. Furthermore, it can be seen that the dimensional accuracy is good even when no additives are used, and is significantly better than the approximately 1.6% when manufactured under the same conditions using cast iron powder as the metal powder. Figure 14 shows the results of examining the relationship between firing time, hardened layer thickness, and porosity (apparent porosity) under conditions of a constant firing temperature (1000°C) for breathable types A to G. . In the case of the present invention, it can be seen that the entire mold has a porosity of at least 20% or more. Note that if the mold size is small, the hardened layer will extend to the center, but it was confirmed that a minimum porosity of 20% can be maintained. Using breathable type C with a porosity of 35%, Figure 7a,
A slip casting durability test was conducted on the dinner wear shown in Figure 7b. Slips are made of carillon, clay, or clay commonly used for sanitary ware.
A mixture of appropriate amounts of quartz, feldspar, chinastone, cervene, and limestone was poured into the cavity through a conduit at a pressure of 10 kg/cm 2 to obtain a thickness of 10 to 12 mm at a deposition rate of 10 minutes. As a result, the suction mold according to the present invention can be used more than 20,000 times to produce a molded product with an accurate shape. Similar durability was obtained even when reduced-pressure casting was performed by applying force, and the molded product was extremely dense and had no pores. In the case of conventional plaster molds, the limit of natural water absorption is at most 300 times, but when combined with suction power,
Since the upper limit is about 80 times, it can be seen that the present invention can dramatically improve durability. This is because, in the case of the present invention, despite its air permeability, it has high mechanical strength, good abrasion resistance, and is not affected by thermal changes caused by rapid heating and cooling. Using air-permeable mold D having a porosity of 38%, a plastic product (automobile headrest) shown in FIGS. 8a to 8d was blow molded. The molding material used was soft vinyl chloride, parison thickness 2.5 mm, and the blowing pressure was 3 Kg/cm 2 . We also adopted a method of applying a suction force of 700 mmHg after mold clamping and before air blowing. The results of measuring the surface roughness of the molded product and mold in this case are shown in Figure 15.
It can be seen that excellent transferability was obtained.
This is due to the fact that, in addition to being a pour molding process, the mold surface is dense and has good air permeability throughout the entire mold surface. The remaining air in the aged cavity and the resulting deterioration in transfer performance have been successfully resolved, making it highly practical. Similar results were also obtained when the above-mentioned mold was used as a plastic vacuum molding mold to mold a grained sheet. Using breathable type E with a porosity of 35%, pure copper products (thickness 1.3 mm x 20 mm) are gravity cast.
mmHg suction was performed. The casting conditions are: casting temperature 950℃, casting time 3~5sec, mold release time 15~
It took 50 seconds. As a result, there is no sinkage and the casting surface is extremely good.
A high-quality pure copper casting with no cavities on the surface or inside was obtained. No damage to the mold was observed even after 150 uses. According to the first invention of the present invention explained above,
It has high mechanical strength, excellent abrasion resistance and heat resistance, and has good air permeability and water absorption throughout the mold, as well as good surface texture and good corrosion resistance, which prevents quality deterioration and quality deterioration of molded products. Therefore, it is possible to easily and inexpensively manufacture molds for large, complex, and thin-walled molded products. According to the second aspect of the present invention, in addition to the above, it is possible to provide this type of breathable mold which has even higher strength, good dimensional stability, and high durability. The present invention is suitable as a water absorption mold for ceramic products such as ceramics, and can also be applied as a mold for various liquid, slurry, soft block, and film materials such as plastic products, rubber products, glass products, and metal products. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明による耐久通気性
型の実施態様を例示する断面図、第5a図と第5
b図は本発明の型の組織を概略的に示す断面図、
第6図は本発明における骨材配合比と気孔率の関
係を示すグラフ、第7a図と第7b図は本発明を
陶磁器用素地の成形に用いた場合の使用状態図、
第8a図ないし第8d図は本発明をプラスチツク
のブロー成形に用いた場合の使用状態図、第9図
は本発明を減圧成形に適用した場合の使用状態
図、第10図は本発明における焼成時間と圧縮強
度の関係を示すグラフ、第11図は圧縮強度と焼
成温度の関係を示すグラフ、第12図は焼成温度
と曲げ強度の関係を示すグラフ、第13図は繊維
混入量と寸法変化の関係を示すグラフ、第14図
は焼成時間と硬化層厚さ及び気孔率の関係を示す
グラフ、第15図は成形型と成形品の表面あらさ
測定結果を示すグラフである。 1,1′……複合焼成型、2……硬化層、4…
…補強繊維。
1 to 4 are cross-sectional views illustrating embodiments of durable breathable types according to the present invention, and FIGS. 5a and 5.
Figure b is a cross-sectional view schematically showing the structure of the mold of the present invention;
FIG. 6 is a graph showing the relationship between aggregate blending ratio and porosity in the present invention, and FIGS. 7a and 7b are usage state diagrams when the present invention is used for molding ceramic bases.
Figures 8a to 8d are usage state diagrams when the present invention is applied to plastic blow molding, Figure 9 is a usage diagram when the present invention is applied to vacuum molding, and Figure 10 is a usage state diagram when the present invention is applied to blow molding of plastics. A graph showing the relationship between time and compressive strength, Figure 11 is a graph showing the relationship between compressive strength and firing temperature, Figure 12 is a graph showing the relationship between firing temperature and bending strength, and Figure 13 is a graph showing the relationship between fiber content and dimensional change. FIG. 14 is a graph showing the relationship between firing time, hardened layer thickness, and porosity. FIG. 15 is a graph showing the surface roughness measurement results of the mold and molded product. 1, 1'... Composite firing mold, 2... Hardened layer, 4...
...Reinforcement fiber.

Claims (1)

【特許請求の範囲】 1 非鉄金属粉とセラミツク粉を骨材としこれに
蒸発する液体成分を含むシリカ系粘結材を重量配
合比で(1〜5):(1〜5):1に混合したスラ
リー状試料を流し込み成形し、成形体を乾燥後酸
化性雰囲気中で焼成した複合焼成体からなり、該
複合焼成体が、非鉄金属酸化物の分散した緻密な
硬化層を有し、型全体が気孔率50%以下の多孔質
構造となつていることを特徴とする通気性耐久
型。 2 非鉄金属粉とセラミツク粉を骨材としこれに
蒸発する液体成分を含むシリカ系粘結材を重量配
合比で(1〜5):(1〜5):1に配合しさらに
補強繊維を20容積%以下で混合したスラリー状試
料を流し込み成形し、成形体を乾燥後酸化性雰囲
気中で焼成した複合焼成体からなり、該複合焼成
体が、非鉄金属酸化物及び補強繊維の分散した緻
密な硬化層を有し、型全体が気孔率50%以下の多
孔質構造となつていることを特徴とする通気性耐
久型。
[Scope of Claims] 1 Non-ferrous metal powder and ceramic powder are used as aggregates, and a silica-based binder containing an evaporable liquid component is mixed in the weight ratio of (1 to 5): (1 to 5): 1. A composite fired body is obtained by pouring and molding a slurry-like sample, drying the molded body, and firing it in an oxidizing atmosphere. A breathable and durable type with a porous structure with a porosity of 50% or less. 2 Non-ferrous metal powder and ceramic powder are used as aggregates, and a silica-based binder containing a liquid component that evaporates is mixed in a weight ratio of (1 to 5): (1 to 5): 1, and reinforcing fibers are further added to 20 A composite fired body is obtained by pouring and molding a slurry sample mixed at a volume percent or less, drying the molded body, and firing it in an oxidizing atmosphere. A breathable and durable type that has a hardened layer and the entire mold has a porous structure with a porosity of 50% or less.
JP2385684A 1983-04-09 1984-02-10 TSUKISEITAIKYUGATA Expired - Lifetime JPH0227925B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2385684A JPH0227925B2 (en) 1984-02-10 1984-02-10 TSUKISEITAIKYUGATA
MX200937A MX161282A (en) 1983-04-09 1984-04-06 FORMING, COMPOSITE AND DURABLE MODEL TO MANUFACTURE THREE-DIMENSIONAL PRODUCTS
CA000451448A CA1266159A (en) 1983-04-09 1984-04-06 Composite and durable forming model with permeability
AT84103966T ATE64876T1 (en) 1983-04-09 1984-04-09 TRANSLUCENT FORM.
KR1019840001857A KR910000953B1 (en) 1983-04-09 1984-04-09 Composite and durable forming model with permability
AU26640/84A AU566385B2 (en) 1983-04-09 1984-04-09 Permeable moulds
IN247/MAS/84A IN160636B (en) 1983-04-09 1984-04-09
DE8484103966T DE3484752D1 (en) 1983-04-09 1984-04-09 PERMANENT SHAPE.
BR8401651A BR8401651A (en) 1983-04-09 1984-04-09 COMPOSITE AND DURABLE SHAPE
EP84103966A EP0121929B1 (en) 1983-04-09 1984-04-09 Permeable mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2385684A JPH0227925B2 (en) 1984-02-10 1984-02-10 TSUKISEITAIKYUGATA

Publications (2)

Publication Number Publication Date
JPS60166405A JPS60166405A (en) 1985-08-29
JPH0227925B2 true JPH0227925B2 (en) 1990-06-20

Family

ID=12122071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2385684A Expired - Lifetime JPH0227925B2 (en) 1983-04-09 1984-02-10 TSUKISEITAIKYUGATA

Country Status (1)

Country Link
JP (1) JPH0227925B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356578A (en) * 1988-08-08 1994-10-18 Kawasaki Steel Corporation Mold for slip casting and method of slip casting

Also Published As

Publication number Publication date
JPS60166405A (en) 1985-08-29

Similar Documents

Publication Publication Date Title
US4531705A (en) Composite and durable forming model with permeability
KR910000953B1 (en) Composite and durable forming model with permability
US4236568A (en) Method of casting steel and iron alloys with precision cristobalite cores
JPH0677924B2 (en) Mold and method for molding ceramics using the same
CN101269411B (en) Method for manufacturing porous ceramic/steel group composite material
CN1041178C (en) Method of preparing a durable air-permeable mold
JP2007514629A5 (en)
CN1562522A (en) Manufacturing technique for precision investment casting die body made from magnesium alloy
JPH0227925B2 (en) TSUKISEITAIKYUGATA
JPH0824996B2 (en) Water-soluble core and method for producing the same
CN111113638B (en) Preparation method of low-cost long-service-life slab continuous casting tundish turbulator
JPH0663684A (en) Production of ceramic core for casting
JPH0371973B2 (en)
JPS63140740A (en) Mold for casting active metal of high melting point
EP3135399B1 (en) Method of manufactruring precision cast parts for vehicle exhaust systems
TWI377099B (en)
JPH0323253B2 (en)
JPH0223321B2 (en)
JPH0636954B2 (en) Composition for easily disintegrating mold
JPH0478681B2 (en)
CN112264575B (en) Hollow ceramic core adopting die swinging method and preparation method thereof
JPS60253505A (en) Manufacture of ceramics product
JP2654999B2 (en) Precision suction mold
JPS606242A (en) Durable composite casting mold and its production
JPS60206609A (en) Gas-permeable mold