JPH0227920Y2 - - Google Patents

Info

Publication number
JPH0227920Y2
JPH0227920Y2 JP1985000421U JP42185U JPH0227920Y2 JP H0227920 Y2 JPH0227920 Y2 JP H0227920Y2 JP 1985000421 U JP1985000421 U JP 1985000421U JP 42185 U JP42185 U JP 42185U JP H0227920 Y2 JPH0227920 Y2 JP H0227920Y2
Authority
JP
Japan
Prior art keywords
reaction
reaction liquid
liquid
cooling water
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985000421U
Other languages
Japanese (ja)
Other versions
JPS61118696U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985000421U priority Critical patent/JPH0227920Y2/ja
Publication of JPS61118696U publication Critical patent/JPS61118696U/ja
Application granted granted Critical
Publication of JPH0227920Y2 publication Critical patent/JPH0227920Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は汚水処理装置において無希釈の原水と
返送汚泥の混合液を空気の供給下で生物反応を行
わせる反応槽内の反応液を冷却する装置に関す
る。
[Detailed description of the invention] [Industrial application field] This invention is used in a sewage treatment equipment to cool the reaction liquid in a reaction tank in which a mixed liquid of undiluted raw water and returned sludge undergoes a biological reaction under the supply of air. related to a device for

〔従来の技術) 汚水処理の酸化反応として、無希釈の原水と返
送汚泥の混合液を空気の供給下で密閉反応槽内で
反応させる方法があるが、この場合は反応熱によ
る温度上昇が著しくなり反応に寄与する微生物を
死滅させてしまうおそれがあるから反応液を冷却
する必要が生じる。
[Prior art] As an oxidation reaction for sewage treatment, there is a method in which a mixed solution of undiluted raw water and returned sludge is reacted in a closed reaction tank under the supply of air, but in this case, the temperature rise due to the heat of reaction is significant. Since there is a risk that microorganisms contributing to the reaction may be killed, it becomes necessary to cool the reaction liquid.

従来この種の酸化反応槽の反応液の冷却手段は
第4図に示すような装置がある。
Conventionally, there is a device as shown in FIG. 4 as a cooling means for the reaction liquid in this type of oxidation reaction tank.

この装置は反応槽1の底部から導出し無希釈の
原水流入管2と汚泥返送管3とが連通された循環
路4が、途中に液循環ポンプ5を介して反応槽1
の上方に高く突出した液落下管6の上端に連通さ
れ、液落下管6は上端に空気吸入管7が連通され
下端はノズル状に形成されて反応槽1内の液面の
上方で開口している。そして循環路4の途中に冷
却ジヤケツト8が被嵌されこの冷却ジヤケツト8
に冷凍装置9の蒸発器が組込まれて冷却ジヤケツ
ト8位置を通過する反応液を冷却するようになつ
ている。10は冷凍装置9のクーリングタワーで
ある。
In this device, a circulation path 4 which is led out from the bottom of a reaction tank 1 and is connected to an undiluted raw water inflow pipe 2 and a sludge return pipe 3 is connected to the reaction tank 1 via a liquid circulation pump 5 on the way.
The liquid drop tube 6 is connected to the upper end of a liquid drop tube 6 that protrudes high upward, and the liquid drop tube 6 has an air suction tube 7 connected to its upper end, and a lower end formed in a nozzle shape and opened above the liquid level in the reaction tank 1. ing. A cooling jacket 8 is fitted in the middle of the circulation path 4.
An evaporator of a refrigeration device 9 is incorporated in the refrigeration system 9 to cool the reaction liquid passing through the cooling jacket 8 position. 10 is a cooling tower of the refrigeration device 9.

このような冷却手段によるときは反応液が冷却
ジヤケツト8を通過するとき循環路4の外側から
冷却されるのみであるから熱交換効率が悪くまた
冷凍装置9を運転するための動力を必要するとい
う問題がある。
When such a cooling means is used, the reaction liquid is only cooled from the outside of the circulation path 4 when it passes through the cooling jacket 8, resulting in poor heat exchange efficiency and the need for power to operate the refrigeration device 9. There's a problem.

また従来スパイラル状の隔壁を介して互に熱交
換される流体を向流により流通させるスパイラル
型熱交換器があるが流通路に間隔保持のために多
数のピンを打設したため汚水を流通させるには汚
水中の夾雑物がピンに絡まつて流通路を閉塞する
ため不適当であつた。
In addition, there is a spiral heat exchanger that circulates fluids that exchange heat with each other in countercurrent flow through a spiral partition wall, but because a large number of pins are installed in the flow passages to maintain spacing, it is difficult to circulate wastewater. This was unsuitable because contaminants in the wastewater got entangled with the pins and blocked the flow path.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

本考案は上述の問題に鑑み、反応液との熱交換
効率が良く冷凍装置を使用せずにスパイラル型の
熱交換器を使用して反応液を効率良く冷却しよう
とするものである。
In view of the above-mentioned problems, the present invention attempts to cool the reaction liquid efficiently by using a spiral heat exchanger which has good heat exchange efficiency with the reaction liquid without using a refrigeration device.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は無希釈の汚水を空気を供給しつつ微生
物反応をさせる酸化反応槽の反応液の循環させて
冷却するスパイラル型熱交換器において、反応液
と冷却水が隔壁を介して熱交換する反応液流通路
と冷却水流通路に夫々流通方向と平行に複数のス
パイラル状の間隔保持体の形成し、反応槽内の反
応液をスパイラル型熱交換器によつて直接冷却水
と熱交換させ冷却効率を向上させ、かつスパイラ
ル型熱交換器の流通路を流通方向と平行の間隔保
持体で保持させることにより反応液中の夾雑物に
よつて流通路が閉塞しないようにしたものであ
る。
This invention is based on a spiral heat exchanger that circulates and cools the reaction liquid in an oxidation reaction tank in which undiluted wastewater undergoes a microbial reaction while supplying air, and the reaction liquid and cooling water exchange heat through a partition wall. A plurality of spiral spacing bodies are formed in parallel to the flow direction in each of the liquid flow path and the cooling water flow path, and the reaction liquid in the reaction tank is directly exchanged heat with the cooling water using a spiral heat exchanger to improve cooling efficiency. In addition, by holding the flow passages of the spiral heat exchanger with a spacer parallel to the flow direction, the flow passages are prevented from being blocked by contaminants in the reaction liquid.

〔作用〕[Effect]

本考案は、酸化反応槽の反応液をスパイラル型
熱交換器で冷却することにより冷却効果が高くな
り、またスパイラル型熱交換器の流通路は流通方
向と平行に複数のスパイラル状の間隔保持体で保
持される流通間隔を保持されるとともに反応液中
の夾雑物が絡まることがない。
The present invention improves the cooling effect by cooling the reaction liquid in the oxidation reaction tank with a spiral heat exchanger, and the flow path of the spiral heat exchanger has a plurality of spiral spacers arranged parallel to the flow direction. The flow interval maintained by the flow rate is maintained, and impurities in the reaction solution are not entangled.

〔実施例〕〔Example〕

本考案の実施例を第1図ないし第3図について
説明する。
An embodiment of the present invention will be described with reference to FIGS. 1 to 3.

11はスパイラル式熱交換器であり、2枚の金
属板をスパイラル状に捲回したスパイラル状の隔
壁12,13を介して反応液流通路14と冷却水
流通路15とが形成されている。隔壁12,13
の両端は端面板16,17に形成されたスパイラ
ル状の溝18,19に嵌着された端面を密閉する
とともに流通路14,15の間隔を保持してい
る。さらに、流通路14,15には流通方向と平
行にスパイラル状の間隔保持体20,21が軸方
向に適当間隔で複数設けられている。
Reference numeral 11 denotes a spiral heat exchanger, in which a reaction liquid flow passage 14 and a cooling water flow passage 15 are formed via spiral partition walls 12 and 13 formed by spirally winding two metal plates. Partition walls 12, 13
Both ends hermetically seal the end faces fitted into spiral grooves 18 and 19 formed in the end plates 16 and 17, while maintaining the distance between the flow passages 14 and 15. Furthermore, a plurality of spiral spacing members 20 and 21 are provided in the flow passages 14 and 15 at appropriate intervals in the axial direction in parallel to the flow direction.

さらに、反応液流通路14の内端には一端に反
応液導入口27を開口した導入管23が軸方向に
挿通され周面に開口した多数の通孔22が反応液
流通路14と連通されるように開口され、反応液
流通路14の外端には反応液返送口24が開口さ
れている。
Furthermore, an introduction pipe 23 having a reaction liquid inlet 27 opened at one end is inserted into the inner end of the reaction liquid flow passage 14 in the axial direction, and a large number of through holes 22 opened on the circumferential surface are communicated with the reaction liquid flow passage 14. A reaction liquid return port 24 is opened at the outer end of the reaction liquid flow passage 14 .

さらに、冷却水流通路15の外端には冷却水導
入口25が開口され内端は一方の端面板17に開
口した冷却水返送口26に連通されている。
Furthermore, a cooling water inlet 25 is opened at the outer end of the cooling water flow passage 15, and the inner end is communicated with a cooling water return port 26 opened at one end plate 17.

また流通路14,15の外端部、内端部は何れ
も反応液、冷却水の軸方向の流通が可能となるよ
うに間隔保持体20,21を設けない部分を残し
ておく。
In addition, at both the outer and inner ends of the flow passages 14 and 15, portions where the spacing members 20 and 21 are not provided are left so that the reaction liquid and the cooling water can flow in the axial direction.

次に28は反応槽で、周囲に流通路を残した仕
切板29で上下が仕切られ、底部に無希釈のし尿
原水が導入される原水導入管30が連通され、さ
らに途中に液循環ポンプ31を有する循環路32
が底部より導出され、この循環路32が上方に高
く突出した液流下管33の上端に連通されてい
る。液流下管33は下方に向つてノズル状に狭小
されて下端は反応槽28内の液面の上方で開口さ
れるとともに上端に空気吸入管34が連通されて
いる。
Next, reference numeral 28 denotes a reaction tank, which is partitioned from top to bottom by a partition plate 29 that leaves a flow path around it, and a raw water introduction pipe 30 into which undiluted raw human waste water is introduced is connected to the bottom, and a liquid circulation pump 31 is connected in the middle. A circulation path 32 having
is led out from the bottom, and this circulation path 32 is communicated with the upper end of a liquid flow down pipe 33 that projects high upward. The liquid flow down pipe 33 narrows downward in the shape of a nozzle, and its lower end is opened above the liquid level in the reaction tank 28, and its upper end is communicated with an air suction pipe 34.

また循環路32の途中には汚泥返送管35が連
通されている。
Further, a sludge return pipe 35 is communicated in the middle of the circulation path 32.

そして反応槽28の液中から導出された反応液
導入管36が途中に液ポンプ37を介して前記ス
パイラル型熱交換器11の液導入口27に連通さ
れ、この熱交換器11の反応液返送口24より導
出した反応液返送管38が反応槽28に連通され
ている。
A reaction liquid inlet pipe 36 led out from the liquid in the reaction tank 28 is communicated with the liquid inlet 27 of the spiral heat exchanger 11 via a liquid pump 37 on the way, and the reaction liquid of this heat exchanger 11 is returned. A reaction liquid return pipe 38 led out from the port 24 is communicated with the reaction tank 28 .

またスパイラル型熱交換器11の冷却水導入口
25と冷却水返送口26は夫々冷却水送出管3
9、冷却水返送管40を介してクーリングタワー
41に連結されて冷却水が循環されるようになつ
ている。
Further, the cooling water inlet 25 and the cooling water return port 26 of the spiral heat exchanger 11 are connected to the cooling water delivery pipe 3, respectively.
9. It is connected to a cooling tower 41 via a cooling water return pipe 40 so that cooling water can be circulated.

次に上述の実施例の作用を説明する。 Next, the operation of the above embodiment will be explained.

反応槽28内では、無希釈のし尿原水と返送汚
泥の混合液よりなる反応液が空気を吸入しながら
強制循環され仕切板の上方は硝化部、下部は脱窒
部と区分されて上方から落下する循環流によつて
上部が撹拌され上部でBOD除去と酸化下部で脱
窒反応が進行する。このとき反応の進行によつて
液温が上昇するが液の一部は導出されスパイラル
型熱交換器11に導入され、クーリングタワー4
1で冷却された冷却水によつて冷却されて再び反
応槽28に返送されているから、反応槽28内の
昇温が防止される。
Inside the reaction tank 28, a reaction liquid consisting of a mixture of undiluted raw human waste water and returned sludge is forcibly circulated while sucking air, and the upper part of the partition plate is divided into a nitrification part and the lower part is a denitrification part, and the liquid is dropped from above. The upper part is stirred by the circulating flow, and BOD removal occurs in the upper part and the denitrification reaction progresses in the oxidation part. At this time, the temperature of the liquid increases as the reaction progresses, but a part of the liquid is drawn out and introduced into the spiral heat exchanger 11, and the cooling tower 4
Since the water is cooled by the cooling water cooled in step 1 and returned to the reaction tank 28, the temperature inside the reaction tank 28 is prevented from rising.

また流通路14,15の間隔は流通方向と平行
の間隔保持体20,21によつて保持されている
から、流通する反応液中の夾雑物の間隔保持体2
0,21に絡まるようなことがなく円滑な流通が
なされる。
Further, since the interval between the flow paths 14 and 15 is maintained by the interval holders 20 and 21 parallel to the flow direction, the interval holders 20 and 21 for contaminants in the flowing reaction liquid are maintained.
0 and 21, and smooth distribution is achieved.

〔考案の効果〕[Effect of idea]

本考案によれば無希釈の汚水を空気を供給しつ
つ微生物反応をさせる酸化反応槽の反応液を循環
させて冷却するスパイラル型熱交換器において、
反応液と冷却水が隔壁を介して熱交換する反応液
流通路と冷却水流通路に夫々流通方向と平行に複
数のスパイラル状の間隔保持体を形成したから、
反応槽内の反応液はスパイラル型熱交換器で冷却
水と向流により直接熱交換されるから効率の良い
冷却をすることができ、冷熱源として冷凍装置を
用いることなく冷却水はクーリングタワーによる
冷却だけで充分であり。冷凍設備が不要になり、
また冷凍機運転の動力費も不要となる。さらに、
スパイラル型熱交換器の反応液流通路と冷却水流
通路には流通方向と平行なスパイラル状間隔保持
体で間隔を保持されているから従来のピンによつ
て間隔を保持した構造に比べて反応液中の夾雑物
が絡まるようなおそれがなく流通路の閉塞が防止
される。
According to the present invention, in a spiral heat exchanger that cools undiluted wastewater by circulating a reaction liquid in an oxidation reaction tank in which a microbial reaction is caused while supplying air,
Since a plurality of spiral spacers are formed in parallel to the flow direction in the reaction liquid flow passage and the cooling water flow passage in which the reaction liquid and the cooling water exchange heat through the partition wall,
The reaction liquid in the reaction tank exchanges heat directly with the cooling water in a spiral heat exchanger in countercurrent flow, allowing for efficient cooling.The cooling water can be cooled by a cooling tower without using a refrigeration device as a cold heat source. That alone is enough. No need for refrigeration equipment,
Furthermore, the power cost for operating the refrigerator becomes unnecessary. moreover,
The distance between the reaction liquid flow path and the cooling water flow path of a spiral heat exchanger is maintained by a spiral spacer that is parallel to the flow direction, so the reaction liquid flow path is maintained in a space between the reaction liquid flow path and the cooling water flow path. There is no risk of foreign objects getting tangled, and clogging of the flow path is prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す反応液冷却装
置の縦断斜視図、第2図は同上縦断側面図、第3
図は同上装置を用いた本考案のフローシート、第
4図は従来例を示すフローシートである。 11……スパイラル型熱交換器、14……反応
液流通路、5……冷却水流通路、20,21……
間隔保持体、28……反応槽。
FIG. 1 is a longitudinal sectional perspective view of a reaction liquid cooling device showing an embodiment of the present invention, FIG. 2 is a longitudinal sectional side view of the same, and 3.
The figure is a flow sheet of the present invention using the same device as above, and FIG. 4 is a flow sheet showing a conventional example. 11... Spiral type heat exchanger, 14... Reaction liquid flow path, 5... Cooling water flow path, 20, 21...
Spacer, 28...reaction tank.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 無希釈の汚水を空気を供給しつつ微生物反応を
させる酸化反応槽の反応液を循環させて冷却する
スパイラル型熱交換器において、反応液と冷却水
が隔壁を介して熱交換する反応液流通路と冷却水
流通路に夫々流通方向と平行に複数のスパイラル
状の間隔保持体を形成したことを特徴とする汚水
酸化反応槽の反応液冷却装置。
In a spiral heat exchanger that circulates and cools the reaction liquid in an oxidation reaction tank where undiluted wastewater is supplied with air and subjected to a microbial reaction, the reaction liquid flow path where the reaction liquid and cooling water exchange heat through a partition wall. A reaction liquid cooling device for a waste water oxidation reaction tank, characterized in that a plurality of spiral spacers are formed in parallel to the flow direction in each of the cooling water flow passages.
JP1985000421U 1985-01-07 1985-01-07 Expired JPH0227920Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985000421U JPH0227920Y2 (en) 1985-01-07 1985-01-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985000421U JPH0227920Y2 (en) 1985-01-07 1985-01-07

Publications (2)

Publication Number Publication Date
JPS61118696U JPS61118696U (en) 1986-07-26
JPH0227920Y2 true JPH0227920Y2 (en) 1990-07-26

Family

ID=30472246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985000421U Expired JPH0227920Y2 (en) 1985-01-07 1985-01-07

Country Status (1)

Country Link
JP (1) JPH0227920Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE530767C2 (en) * 2006-10-03 2008-09-09 Alfa Laval Corp Ab Heat exchanger reactor with mixing zones and use of the heat exchanger reactor

Also Published As

Publication number Publication date
JPS61118696U (en) 1986-07-26

Similar Documents

Publication Publication Date Title
US6206091B1 (en) Process and apparatus for treating waste
US4073696A (en) Apparatus for combined cooling and aeration of biochemical-action vessels
JPH0227920Y2 (en)
JPH01179684A (en) Culture tank
CN114121429B (en) High intelligent oil-immersed power transformer
KR101094728B1 (en) a fountain with be quick temperature control
JPS5820680B2 (en) Fluidized bed sewage treatment equipment
KR20190118322A (en) Heat exchanger for refrigerating machine
CN210602081U (en) Water diversion system of evaporative water-cooling fan
JP2923153B2 (en) Underwater aeration equipment
CN218380066U (en) Circulating cooling water cooling device of ozone machine
US5099657A (en) Structure of cooling tank for water cooler
KR20020028169A (en) Heat exchanging system between waste-warm water and water
CN207330632U (en) A kind of integrated form biofilter
CN218179646U (en) Cooling device of sintering furnace
JPH0249509Y2 (en)
KR200374162Y1 (en) Apparatus of cooling air used in wastewater treatment system
SU1644838A1 (en) Milk cooling tank
CN219920855U (en) Cooling device and drinking water equipment
KR200253502Y1 (en) a heating Apparatus take advantage of hot waste Water
CN208413848U (en) A kind of cooling cooling water special system of ozone
CN216106478U (en) A water purification system for grape wine is made
CN218034563U (en) Heat exchanger suitable for multimedium, multiple temperature
CN113788548B (en) Oxygen deficiency deep well aeration equipment that town sewage was experimental used
CN216106191U (en) Heat dissipation formula sewage treatment device room