JPH02278641A - Cooling system for electron lens - Google Patents

Cooling system for electron lens

Info

Publication number
JPH02278641A
JPH02278641A JP10098889A JP10098889A JPH02278641A JP H02278641 A JPH02278641 A JP H02278641A JP 10098889 A JP10098889 A JP 10098889A JP 10098889 A JP10098889 A JP 10098889A JP H02278641 A JPH02278641 A JP H02278641A
Authority
JP
Japan
Prior art keywords
cooling
coil
cooling pipe
winding part
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10098889A
Other languages
Japanese (ja)
Other versions
JP2617349B2 (en
Inventor
Takeo Tanaka
武雄 田中
Takehiko Yanagida
柳田 武彦
Masahiro Tomita
正弘 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1100988A priority Critical patent/JP2617349B2/en
Publication of JPH02278641A publication Critical patent/JPH02278641A/en
Application granted granted Critical
Publication of JP2617349B2 publication Critical patent/JP2617349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To restrict drift by installing cooling pipes circularly in parallel in contact with the outer surface of a plurality of side plates. CONSTITUTION:A coil 1 has a cylindrical coil part 2, an inner cylinder 3 disposed on the inner circumferential surface of the coil part 2, and side plates 5a, 5b formed like flanges at both ends of the inner cylinder 3 for covering the side surface of the coil part 2. A cooling system is composed of cooling pipes 6a, 6b for cooling the coil 1, and a yoke 17 for covering the coil 1 and the cooling pipes 6a, 6b. The cooling pipes 6a, 6b are installed in parallel circularly in contact with the outer surface of the side plates 5a, 5b. The water permeation sectional area of the cooling pipes is thus made large, and the water quantity of cooling water can be increased, while heat radiation from the coil is facilitated because of a large water side heat transmission area. The coil attains a steady temperature in a short time, thereby waiting time by drift becomes short.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子顕微鏡、電子線描画装置、電子線マイクロ
アナライザ等に用いられる電子レンズの冷却系に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling system for an electron lens used in an electron microscope, an electron beam drawing device, an electron beam microanalyzer, and the like.

〔従来の技術〕[Conventional technology]

従来の技術について、本発明の主用途である電子顕微鏡
の電子レンズに例をとって説明する。従来の電子レンズ
の構造は実開昭57−89256号公報に示すようなも
のがある。この電子レンズは概して円筒状の巻線コイル
とそのコイルを覆う部材とそのコイルを冷却する冷却手
段と、さらにそれらコイル、コイルを覆う部材および冷
却手段をまとめて覆うヨークとから構成されており、ド
ーナツ状のヨークの中心穴が電子線の通路となっている
。電子顕微鏡は、上記の電子レンズを多段に重ね、各コ
イルに通電し中心軸を通る電子線を収束又は拡大させ、
試料を高倍率で観察できるようにしたものである。コイ
ルに通電するとコイルのジュール熱でその近辺の装置部
品が加熱され変形する等で画像が乱れるので、それを防
止するため、コイルを冷却する。冷却手段は、主として
コイルから除去すべき放熱量によって決定されるが、放
熱量が数十W程度の電子顕微鏡では水冷によるものが主
流である。水冷手段は、コイルを覆う冷却板に冷却パイ
プを取付けるパイプ方式や、冷却板そのものを加工し通
水路を設けるジャケット方式がある。いずれ方式もコイ
ルで発生したジュール熱は、冷却板を介して冷却水に伝
えられることで、冷却が行われる。パイプ方式は、ジャ
ケラ1へ方式に比べ、冷却水量、水側伝熱面積が大きく
取れないので、放熱量を大きくするのに不利であるが、
構造が簡単で加工が容易であることが長所で、多用され
ている。電子顕微鏡の利用分野の広がりと共に装置の低
価格化が望まれている。これに伴いパイプ方式の長所を
進め低価格化を図る特許が見られるようになった。−例
として特開昭5314、551号公報では、板金加工の
内筒、側板を用いそれらの接合面はかしめで行う等によ
り、機械加工を大幅に減らす方法を可能にしている。
The conventional technology will be explained using an example of an electron lens for an electron microscope, which is the main application of the present invention. A conventional electronic lens structure is shown in Japanese Utility Model Application Laid-Open No. 57-89256. This electronic lens generally consists of a cylindrical winding coil, a member that covers the coil, a cooling means that cools the coil, and a yoke that collectively covers the coil, the member that covers the coil, and the cooling means. The center hole of the donut-shaped yoke serves as a passage for the electron beam. An electron microscope stacks the above-mentioned electron lenses in multiple stages, energizes each coil to converge or expand the electron beam passing through the central axis, and
This allows samples to be observed at high magnification. When the coil is energized, the Joule heat of the coil heats and deforms the nearby parts of the device, distorting the image, so to prevent this, the coil is cooled. The cooling means is mainly determined by the amount of heat to be removed from the coil, and for electron microscopes with a heat radiation amount of about several tens of watts, water cooling is the mainstream. Water cooling means include a pipe method in which a cooling pipe is attached to a cooling plate that covers the coil, and a jacket method in which the cooling plate itself is processed to provide water passages. In either method, the Joule heat generated in the coil is transferred to the cooling water via a cooling plate, thereby performing cooling. Compared to the Jackera 1 method, the pipe method cannot provide a large amount of cooling water and a large heat transfer area on the water side, so it is disadvantageous in increasing the amount of heat dissipation.
Its advantages are that it has a simple structure and is easy to process, so it is widely used. As the field of use of electron microscopes expands, there is a desire for lower costs of the equipment. Along with this, patents have appeared that promote the advantages of the pipe method and reduce the cost. - For example, Japanese Patent Application Laid-open No. 5314/1983 discloses a method that greatly reduces machining by using sheet metal-processed inner cylinders and side plates, and caulking their joint surfaces.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年、高分解能の電子顕微鏡の開発が望まれており、そ
のために電子レンズのコイル電流が増大する傾向にある
が、上記従来技術では、コイル電流の増大に伴うコイル
からの放熱量の増大に対しては、必ずしも十分に配慮が
なされていない。
In recent years, there has been a desire for the development of high-resolution electron microscopes, and as a result, the coil current of the electron lens tends to increase.However, in the conventional technology described above, the amount of heat dissipated from the coil increases due to the increase in coil current. However, sufficient consideration has not always been given to this.

特に高倍率で試料を観察する際、電子顕微鏡では、以下
に説明するドリフト及び像の脈動等の画像の揺らぎが問
題化する可能性がある。
In particular, when observing a sample at high magnification, image fluctuations such as drift and image pulsation, which will be described below, may become a problem in electron microscopes.

ドリフ1−は、コイル、ヨーク等のレンズ部材の温度が
時間的に変化しレンズ部材の熱変形によって電子線経路
が移動し画像が安定しない現象であり、電子顕微鏡なる
装置の温度が安定すればドリフトは消滅する。しかし装
置の温度が定常になるまで長い時間を要し、1−リフト
は好ましくない現象である。像の脈動は、装置外部から
冷却水を供給するため冷却水により伝播する外部からの
水圧変動と、装置内の冷却水の流路が縮流拡大する部分
で発生する渦とによって、装置が振動するために生じる
と考えられる。コイルの温度上昇を抑え、ドリフトを小
さくするには必然的に冷却水量を増すことになる。その
ために冷却水元弁をさらに大きく開くと、外部配管から
伝播する水圧変動がさらに大きくなり、装置が加振され
、像の振動が生じ易くなる。従来、その外部配管から伝
播する水圧変動を減衰する点に配慮がなされていなかっ
た。
Drift 1- is a phenomenon in which the temperature of lens members such as coils and yokes changes over time, and the electron beam path moves due to thermal deformation of the lens members, making the image unstable. Drift disappears. However, it takes a long time for the temperature of the device to become steady, and a 1-lift is an undesirable phenomenon. Image pulsation is caused by fluctuations in water pressure from the outside propagated by the cooling water because cooling water is supplied from outside the device, and by vortices that occur in the part where the cooling water flow path inside the device contracts and expands. It is thought that this occurs because of In order to suppress the rise in coil temperature and reduce drift, the amount of cooling water must be increased. For this reason, if the cooling water main valve is opened further, the water pressure fluctuations propagating from the external piping will become even larger, causing the apparatus to vibrate and making the image more likely to vibrate. Conventionally, no consideration was given to attenuating water pressure fluctuations propagating from the external piping.

また装置内の流路形状も局部的な渦の発生に対する配慮
がなされておらず、冷却水量を増やすと渦による流体振
動で像が脈動し易くなる。
Furthermore, the shape of the flow channels within the device does not take into account the occurrence of local vortices, and when the amount of cooling water is increased, the image tends to pulsate due to fluid vibrations caused by the vortices.

本発明の目的は、第1に電子レンズにおいてコイル電流
を大きくしてもコイルを十分冷却することにより、ドリ
フトを少く抑えられる冷却系を提供する、第2に冷却水
の水圧変動を防止することにより像の脈動を抑えられる
冷却系を提供することにあり、ひいては電子レンズの小
形化及び軽量化を進めるに有効な電子レンズの冷却系を
提供することを目的とする。
The objects of the present invention are, firstly, to provide a cooling system that can suppress drift to a minimum by sufficiently cooling the coil even when the coil current is increased in an electronic lens; and secondly, to prevent fluctuations in the water pressure of the cooling water. It is an object of the present invention to provide a cooling system that can suppress image pulsation, and furthermore, to provide a cooling system for an electronic lens that is effective in reducing the size and weight of the electronic lens.

〔課題を解決するための手段〕[Means to solve the problem]

上記第1の目的は、円筒状の巻線部と該巻線部の内周面
に配設した内筒と該内筒の各端でつば状に形成され前記
巻線部の側面を覆う側板とを有するコイルと、該コイル
を冷却する冷却パイプと、前記コイルと冷却パイプを覆
うヨークとから構成された電子レンズの冷却系において
、前記冷却パイプを複数前記側板の外面に接して並列的
に環状に取り付けたことを特徴とする電子レンズの冷却
系により達成される。
The first purpose is to provide a cylindrical winding part, an inner cylinder disposed on the inner peripheral surface of the winding part, and a side plate formed in a brim shape at each end of the inner cylinder and covering the side surface of the winding part. In the cooling system for an electronic lens, the cooling pipe is configured to include a coil having a coil, a cooling pipe that cools the coil, and a yoke that covers the coil and the cooling pipe, in which a plurality of the cooling pipes are arranged in parallel in contact with the outer surface of the side plate. This is achieved by a cooling system for the electron lens, which is characterized by being attached in an annular manner.

そして、前記冷却パイプの中の冷却水は該冷却パイプに
隣接する冷却パイプの中の冷却水と逆向きに流すのがよ
く、また前記内筒と側板とが一枚の板から折り曲げ加工
により一体に製作することが好ましい。
It is preferable that the cooling water in the cooling pipe flows in the opposite direction to the cooling water in the cooling pipe adjacent to the cooling pipe, and the inner cylinder and the side plate are integrated by bending a single plate. It is preferable to manufacture it.

また上記第1の目的は、円筒状の巻線部と該巻線部の内
周面に配設した内筒と該内筒の各端でつば状に形成され
前記巻線部の側面を覆う側板と該側板に接合され前記コ
イルの外周面を覆う外筒とを有するコイルと、該コイル
を冷却する冷却パイプと、前記コイルと冷却パイプを覆
うヨークとから構成された電子レンズにおいて、前記冷
却パイプを複数並列に前記外筒に巻き付けたことを特徴
とする電子レンズの冷却系により達成される。
The first purpose is to provide a cylindrical winding part, an inner cylinder disposed on the inner circumferential surface of the winding part, and a brim-like shape formed at each end of the inner cylinder to cover the side surface of the winding part. In the electronic lens, the electron lens includes a coil having a side plate and an outer cylinder joined to the side plate and covering an outer peripheral surface of the coil, a cooling pipe that cools the coil, and a yoke that covers the coil and the cooling pipe. This is achieved by a cooling system for an electron lens characterized in that a plurality of pipes are wound in parallel around the outer cylinder.

そして、前記冷却パイプの中の冷却水はその冷却パイプ
に隣接する冷却パイプの中の冷却水と逆向きに流すのが
よく、また前記側板と外筒とはがしめにより接合するか
ろう付けにより接合してもよい。
The cooling water in the cooling pipe preferably flows in the opposite direction to the cooling water in the cooling pipe adjacent to the cooling pipe, and the side plate and the outer cylinder are joined by peeling or brazing. May be joined.

その他、上記第1の目的は、円筒状の巻線部と該巻線部
の内周面に配設した内筒と該内筒の各端でつば状に形成
され前記巻線部の側面を覆う側板とを有するコイルと、
該コイルを冷却する冷却パイプと、前記コイルと冷却パ
イプを覆うヨークとから構成された電子レンズの冷却系
において、前記冷却パイプを一方の前記側板の外面に取
り付け、該冷却パイプの外面に熱伝導板を取り付け、該
熱伝導板を防振部材を介して前記ヨーク天井面に、他方
の側板と前記ヨーク底面との間に設けたスプリングによ
り押し付けたことを特徴とする電子レンズの冷却系によ
り、達成される。
In addition, the above-mentioned first object includes a cylindrical winding part, an inner cylinder disposed on the inner peripheral surface of the winding part, and a collar-like shape formed at each end of the inner cylinder to cover the side surface of the winding part. a coil having a covering side plate;
In the cooling system for an electron lens, which is composed of a cooling pipe that cools the coil, and a yoke that covers the coil and the cooling pipe, the cooling pipe is attached to the outer surface of one of the side plates, and heat conduction is conducted to the outer surface of the cooling pipe. An electronic lens cooling system characterized in that a plate is attached and the heat conductive plate is pressed against the ceiling surface of the yoke via a vibration isolating member by a spring provided between the other side plate and the bottom surface of the yoke, achieved.

そしてヨークから冷却パイプに熱伝導させるためには、
前記冷却パイプを一方の前記側板の外面に取り付け、該
冷却パイプの外面に熱伝導板を取り付け、該熱伝導板を
防振部材を介して前記ヨーク底面に前記コイルの自重で
押し付けてもよい。
In order to conduct heat from the yoke to the cooling pipe,
The cooling pipe may be attached to the outer surface of one of the side plates, a heat conduction plate may be attached to the outer surface of the cooling pipe, and the heat conduction plate may be pressed against the bottom surface of the yoke via a vibration isolating member by the weight of the coil.

コイルの製作方法としては、大小2個のコイルを同心円
的に嵌め込んでつくることも一方法である。
One method of manufacturing the coil is to fit two large and small coils concentrically.

上記小型化の目的は1円筒状の巻線部と該巻線部の内面
に配設した内筒と該内筒の各端でつば状に形成され前記
巻線部の側面を覆う側板とを有するコイルと、該コイル
を冷却する冷却パイプと、前記コイルと冷却パイプを覆
うヨークとから構成された電子レンズの冷却系において
、前記側板外面に、前記冷却パイプを環状に取り付けか
つ該冷却パイプに給排水するための継手を接近した2カ
所に取り付けたことを特徴とする電子レンズの冷却系に
よっても達成される。
The purpose of the above-mentioned miniaturization is to combine a cylindrical winding part, an inner cylinder disposed on the inner surface of the winding part, and a side plate formed in a brim shape at each end of the inner cylinder and covering the side surface of the winding part. In the cooling system for an electronic lens, the cooling pipe is installed in an annular shape on the outer surface of the side plate, and the cooling pipe is attached to the outer surface of the side plate. This can also be achieved by an electronic lens cooling system characterized by having joints for water supply and drainage installed in two places close to each other.

そして前記コイルと結線する通電端子を、2カ所に設け
た前記継手間の空間または該空間の延長空間内でかつ前
記側板外面上に設けるのがよい。
It is preferable that a current-carrying terminal connected to the coil be provided in a space between the joints provided at two locations or an extension space of the space, and on the outer surface of the side plate.

上記第2の目的は、円筒状の巻線部と該巻線部の内面に
配設した内筒と該内筒の各端でつば状に形成され前記巻
線部の側面を覆う側板とを有するコイルと、該コイルを
冷却する冷却パイプと、前記コイルと冷却パイプを覆う
ヨークとから構成された電子レンズの冷却系において、
前記側板外面に、前記冷却パイプを環状に取り付けかつ
該冷却パイプに給排水するための継手の接近した2カ所
に取り付け、少なくとも給水側の継手と前記冷却パイプ
の間を該冷却パイプより細い滑らかに曲がった連絡管で
滑らかに接続したことを特徴とする電子レンズの冷却系
により、達成される。
The second object is to provide a cylindrical winding section, an inner cylinder disposed on the inner surface of the winding section, and a side plate formed in a brim shape at each end of the inner cylinder and covering the side surface of the winding section. In the cooling system for an electronic lens, the cooling system includes a coil, a cooling pipe that cools the coil, and a yoke that covers the coil and the cooling pipe,
The cooling pipe is attached to the outer surface of the side plate in an annular manner, and the joint for supplying and draining water to the cooling pipe is attached to two adjacent places, and a smoothly curved pipe that is thinner than the cooling pipe is attached at least between the joint on the water supply side and the cooling pipe. This is achieved by an electron lens cooling system characterized by smooth connection with a connecting tube.

また上記第2目的は、円筒状の巻線部と該巻線部の内面
に配設した内筒と該内筒の各端でつば状に形成され前記
巻線部の側面を覆う側板とを有するコイルと、該コイル
を冷却する冷却パイプと、前記コイルと冷却パイプを覆
うヨークとから構成された電子レンズの冷却系において
、前記側板外面に、前記冷却パイプ2本を環状に取り付
けかつ該2本の冷却パイプに給排水を行う継手を2カ所
に取り付け、少なくとも給水用継手内に水室を設け、該
水室内に曲がり管なる連絡管を挿入し、該連絡管の一端
を前記水室の冷却水の導入口に対向させ他端を前記冷却
パイプに接続したことを特徴とする電子レンズの冷却系
によっても、達成される。
The second object is to provide a cylindrical winding part, an inner cylinder disposed on the inner surface of the winding part, and a side plate formed in a brim shape at each end of the inner cylinder and covering the side surface of the winding part. In the cooling system for an electronic lens, the two cooling pipes are attached to the outer surface of the side plate in an annular shape, and the two cooling pipes are annularly attached to the outer surface of the side plate. Attach joints for water supply and drainage to the main cooling pipe at two locations, provide a water chamber at least in the water supply joint, insert a connecting pipe in the form of a bent pipe into the water chamber, and connect one end of the connecting pipe to the water chamber for cooling. This can also be achieved by a cooling system for an electron lens, which is characterized by having its other end facing the water inlet and connected to the cooling pipe.

そして前記連絡管は、先端で径が細く前記冷却パイプの
つなぎ部で該冷却パイプ径となるテーパ管である方がよ
い。
It is preferable that the connecting pipe is a tapered pipe whose diameter is narrow at the tip and reaches the diameter of the cooling pipe at the connecting portion of the cooling pipe.

もし前記側板外面に、前記冷却パイプを3本以上環状に
取り付けている場合には、少なくとも給水用継手内の水
室に前記3本以上の冷却パイプの端部を均等にまとめて
束ね管として挿入し、該束ね管の芯部を尖らせ前記水室
の冷却水の導入口に対向させておくのがよい。
If three or more of the cooling pipes are installed in a ring shape on the outer surface of the side plate, the ends of the three or more cooling pipes are evenly bundled and inserted into at least the water chamber in the water supply joint as a bundled pipe. However, it is preferable that the core of the bundled tube be sharpened so as to face the cooling water inlet of the water chamber.

また、上記第2の目的は、円筒状の巻線部と該巻線部の
内周面に配設した内筒と該内筒の各端でつば状に形成さ
れ前記巻線部の側面を覆う側板とを有するコイルと、該
コイルを冷却する冷却パイプと、前記コイルと冷却パイ
プを覆うヨークとがら構成された電子レンズの冷却系と
、該電子レンズの冷却系の上流側の給水系と、下流側の
排水系とを組み合わせてなる電子レンズの冷却系におい
て、前記上流側に空気タンクを有するアブソーバを備え
、該アブソーバで前記給水系で発生する冷却水の急激な
水圧変動を吸収することを特徴とする電子レンズの冷却
系により、達成される。
The second object is to provide a cylindrical winding part, an inner cylinder disposed on the inner circumferential surface of the winding part, and a rib-like shape formed at each end of the inner cylinder to cover the side surface of the winding part. A cooling system for an electronic lens, which includes a coil having a side plate for covering the coil, a cooling pipe for cooling the coil, a yoke for covering the coil and the cooling pipe, and a water supply system upstream of the cooling system for the electronic lens; In the cooling system for an electronic lens which is combined with a drainage system on the downstream side, an absorber having an air tank is provided on the upstream side, and the absorber absorbs sudden water pressure fluctuations of the cooling water occurring in the water supply system. This is achieved by the characteristic cooling system of the electron lens.

そして、前記アブソーバは、空気を貯めたタンクと、該
タンクの下に設けられた冷却水の入り口と複数の出口を
有し該冷却水を前記電子レンズに配水する分配器と、前
記タンクと分配器の頭部とを連通ずる連通路とから構成
するのがよい。
The absorber includes a tank that stores air, a distributor provided under the tank that has a cooling water inlet and a plurality of outlets, and that distributes the cooling water to the electron lens. It is preferable to include a communication path that communicates with the head of the container.

〔作用〕[Effect]

コイルの側板または外筒に複数の冷却パイプを取り付け
た電子レンズにおいては、冷却パイプの通水断面を大き
くしたので、冷却水の水量を増すことが可能になり、ま
た水側伝熱面積が太きくなリコイルからの放熱を容易に
することができる。
In electronic lenses that have multiple cooling pipes attached to the side plate or outer cylinder of the coil, the water flow cross section of the cooling pipes has been increased, making it possible to increase the amount of cooling water and increasing the heat transfer area on the water side. Heat dissipation from strong recoil can be facilitated.

そして隣接する冷却パイプの中の冷却水は互いに逆方向
に流せば、冷たい水と温められた水が接する形となり、
コイルの周方向温度分布は均一になる。
If the cooling water in adjacent cooling pipes flows in opposite directions, cold water and warm water will come into contact with each other.
The circumferential temperature distribution of the coil becomes uniform.

コイルの巻線部を覆う内筒、側板にさらに外筒を設けた
電子レンズにおいて、コイルから外筒側板を介して冷却
パイプへの放熱経路が形成され、また冷却パイプから離
れた方の側板から外筒、冷却パイプ側の側板を介して冷
却パイプへの放熱経路が形成され、コイルは均一に冷却
される。
In an electronic lens that has an inner cylinder that covers the winding part of the coil and an outer cylinder on the side plate, a heat radiation path is formed from the coil to the cooling pipe via the side plate of the outer cylinder, and from the side plate away from the cooling pipe. A heat radiation path to the cooling pipe is formed through the outer cylinder and the side plate on the side of the cooling pipe, and the coil is uniformly cooled.

また、スプリングまたは自重により冷却パイプを熱伝導
板、防振部材を介してヨーク内壁に押し付けた電子レン
ズにおいて、冷却パイプとヨークの間には熱伝導の経路
ができ、ヨークが冷却される。
Further, in an electronic lens in which a cooling pipe is pressed against the inner wall of the yoke via a heat conduction plate and a vibration isolating member by a spring or its own weight, a heat conduction path is created between the cooling pipe and the yoke, and the yoke is cooled.

またコイルとして大小2個のコイルを嵌め込んで形成し
たものを用いた電子レンズでは放熱経路が増加し、コイ
ルの温度分布が均一化する。
In addition, in an electronic lens using a coil formed by fitting two large and small coils into each other, the number of heat dissipation paths increases, and the temperature distribution of the coil becomes uniform.

その他、コイルに通電する通電端子を側板外面に取り付
けた電子レンズでは、通電端子をコイル外周に設ける場
合よりもコイルの外径は小さくなる。
In addition, in an electronic lens in which an energizing terminal for energizing the coil is attached to the outer surface of the side plate, the outer diameter of the coil is smaller than when the energizing terminal is provided on the outer periphery of the coil.

冷却パイプに給排水するための継手の中に水室を設け、
その水室中に細く滑らかに曲がった連絡管を挿入し、そ
の連絡管の一端を冷却水の入り口に対向させ、他端を冷
却パイプにつないだ電子レンズにおいては、冷却水がそ
の継手内の流路壁に衝突するのが少なくなり、継手の振
動が小さくなる。
A water chamber is provided in the joint for supplying and draining water to the cooling pipe.
In an electronic lens, a thin, smoothly curved connecting pipe is inserted into the water chamber, one end of the connecting pipe faces the cooling water inlet, and the other end is connected to the cooling pipe. There are fewer collisions with the channel walls, and the vibration of the joint is reduced.

また、電子レンズの冷却系とその冷却水の上流側の給水
系と下流側の排水系との組み合わせからなる電子レンズ
の冷却系において、上流側に空気タンクを有するアブソ
ーバを設けたことにより、給水系で発生する冷却水の急
激な圧力変動を吸収し、電子レンズの冷却系へ圧力変動
が伝播するのを防止する。
In addition, in the electronic lens cooling system, which consists of a combination of an electronic lens cooling system, an upstream water supply system for the cooling water, and a downstream drainage system, by providing an absorber with an air tank on the upstream side, the water supply It absorbs sudden pressure fluctuations in the cooling water that occur in the system and prevents pressure fluctuations from propagating to the electron lens cooling system.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図〜第21図を参照して説
明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 21.

第1図、第2図は、本発明による電子レンズの冷却系の
第1実施例を示す構造図である。第1図は電子レンズの
コイルを、そのコイルを冷却する冷却パイプの流路に沿
った断面で見た横断面図(第2図のI−I断面)であり
、第2図は第1図に示すコイルの■−■断面図である。
1 and 2 are structural diagrams showing a first embodiment of an electron lens cooling system according to the present invention. Figure 1 is a cross-sectional view of the coil of the electron lens taken along the flow path of the cooling pipe that cools the coil (II cross section in Figure 2). It is a sectional view taken along ■-■ of the coil shown in FIG.

コイル1は、巻線部2と、その巻線部2の内面を覆う内
筒3、外面を覆う外筒4、両側面を覆う側板5a、5b
、一方の側板5aの外面にろう付は等で面全体に広がっ
て環状に固定した冷却バイブロa、6bと、冷却バイブ
ロa、6bに冷却水を導入する継手7a、7b、継手7
a、7b間に配され巻線部2に通電するための通電端子
11、通電端子11を側板5a外面」二に固定する樹脂
8で構成した。巻線部2は巻線間の熱伝導を良くするた
め樹脂で固められ、また内筒3、外筒4及び両側板5a
、5bは熱伝導性の良い材質のものを用いそれぞれコイ
ル1に接している。
The coil 1 includes a winding part 2, an inner cylinder 3 that covers the inner surface of the winding part 2, an outer cylinder 4 that covers the outer surface, and side plates 5a and 5b that cover both sides.
, cooling vibros a and 6b are fixed in an annular manner over the entire surface by brazing on the outer surface of one side plate 5a, joints 7a and 7b for introducing cooling water into the cooling vibros a and 6b, and joints 7.
It consists of a current-carrying terminal 11 disposed between a and 7b for energizing the winding portion 2, and a resin 8 for fixing the current-carrying terminal 11 to the outer surface of the side plate 5a. The winding part 2 is hardened with resin to improve heat conduction between the windings, and is also made of an inner cylinder 3, an outer cylinder 4, and side plates 5a.
, 5b are made of a material with good thermal conductivity, and are in contact with the coil 1, respectively.

コイル1はその内周面、外周面及び側面がドーナツ状の
ヨーク17により囲まれており、そのド一ナツ状のヨー
ク17の中心穴は電子線の通る通路となる。なお第1図
ではコイルの構造をより明瞭に見えるように、ヨークの
図示を省略した。
The coil 1 is surrounded by a donut-shaped yoke 17 on its inner circumferential surface, outer circumferential surface, and side surfaces, and the center hole of the donut-shaped yoke 17 serves as a passage through which the electron beam passes. Note that in FIG. 1, the illustration of the yoke is omitted so that the structure of the coil can be seen more clearly.

第1実施例は、ドリフトの低減に関するもので、複数の
冷却バイブロa、6b (第1図では2本のみ図示して
いるが3本以上でも良い)を、冷却水の給排水の継手7
a、7bでそれぞれ分岐または合流させ、さらに分岐ま
たは合流する付近で部分的に交差させ、少なくとも1本
の冷却パイプ内の流れ方向が他の冷却パイプと逆向き回
りになるようにし、それらの冷却パイプを側板5に同心
円状に固定している。
The first embodiment is related to drift reduction, and a plurality of cooling vibros a and 6b (only two are shown in FIG. 1, but three or more may be used) are connected to a joint 7 for supplying and discharging cooling water.
a, 7b, respectively, and partially intersect near the branching or merging points, so that the flow direction in at least one cooling pipe is opposite to that of the other cooling pipes, and cooling them. The pipes are fixed concentrically to the side plate 5.

巻線部で発生したジュール熱は、熱伝導性の良い内筒、
外筒及び側板を経て冷却水に放熱される。
The Joule heat generated in the winding section is transferred to the inner cylinder, which has good thermal conductivity.
Heat is radiated to the cooling water through the outer cylinder and side plate.

水温の上昇で局部的に放熱量が異なり、入口側冷却パイ
プ付近の側板の温度は低く出口側冷却パイプ付近の側板
の温度は高いという温度分布を生じ、ドリフトの原因に
なる。本実施例では、冷却バイブロa、6b内の流れを
互に、逆向き回りにしているので入口側の冷たいパイプ
と、出口側の暖かいパイプが側板の周方向に沿って絶え
ず接している。このため冷却パイプの寸法諸元を適切に
選べば、側板の温度分布は小さくできる。
As the water temperature increases, the amount of heat dissipated varies locally, resulting in a temperature distribution in which the temperature of the side plate near the inlet side cooling pipe is low and the temperature of the side plate near the outlet side cooling pipe is high, which causes drift. In this embodiment, the flows in the cooling vibros a and 6b are rotated in opposite directions, so that the cold pipe on the inlet side and the warm pipe on the outlet side are constantly in contact along the circumferential direction of the side plate. Therefore, if the dimensions of the cooling pipe are appropriately selected, the temperature distribution on the side plate can be made small.

通電端子11は、独立した2個の給排水用の継手7a、
7b間の空間、またはその空間の延長上で側板5aの面
上に樹脂8で固定されている。そして通電端子11には
、第3図に示すように側板5aに設けられた貫通穴を通
って巻線部2からくるリード線が接続されている。
The energizing terminal 11 includes two independent water supply and drainage joints 7a,
It is fixed with resin 8 on the surface of side plate 5a in the space between 7b or an extension of the space. A lead wire coming from the winding portion 2 is connected to the current-carrying terminal 11 through a through hole provided in the side plate 5a, as shown in FIG.

内筒3、外筒4、側板5a、5bは、かしめ等の機械的
な方法で、または底融点金属でろう付けする方法で接合
されている。従来は通電端子を巻線部の外周面に゛設け
ていたものもあり、その場合外周面は樹脂層で固められ
ていた。本実施例では、従来の樹脂層の代わりに熱伝導
性のよい材質の外筒としたことにより、巻線部2外周か
ら外筒4さらに側板5aを経て冷却バイブロa、6b中
の冷却水に達する放熱経路が形成される。また、冷却バ
イブロから最も離れ従来は高温になり易かった側板5b
の外周付近から外筒4、冷却側の側板5aを経て冷却水
に達する放熱経路が形成される。
The inner tube 3, the outer tube 4, and the side plates 5a and 5b are joined by a mechanical method such as caulking or by brazing with a bottom melting point metal. Conventionally, there have been some devices in which current-carrying terminals have been provided on the outer circumferential surface of the winding portion, and in that case, the outer circumferential surface has been hardened with a resin layer. In this embodiment, by using an outer cylinder made of a material with good thermal conductivity instead of the conventional resin layer, the cooling water in the cooling vibros a and 6b flows from the outer periphery of the winding part 2 to the outer cylinder 4 and through the side plate 5a. A heat dissipation path is formed. In addition, the side plate 5b, which is farthest from the cooling vibro and has traditionally been prone to high temperatures.
A heat radiation path is formed from near the outer periphery of the cooling water via the outer cylinder 4 and the side plate 5a on the cooling side to reach the cooling water.

上記のように外筒を設けることより巻線部2の外周温度
を下げることが可能になる。
By providing the outer cylinder as described above, it becomes possible to lower the outer peripheral temperature of the winding portion 2.

第4図は、本発明の第2実施例に関して冷却コイルの部
分を示す平面図であり、第5図は第4図の■−■矢視図
である。第2実施例はドリフトを減少させるものであっ
て、図に示すように、側板5a外面に同心円的に2本の
冷却バイブロa。
FIG. 4 is a plan view showing a portion of the cooling coil in accordance with the second embodiment of the present invention, and FIG. 5 is a view taken along arrows 1--2 in FIG. The second embodiment is for reducing drift, and as shown in the figure, two cooling vibros a are installed concentrically on the outer surface of the side plate 5a.

6bが接合され、冷却バイブロa、6bそれぞれの各端
に給排水用の継手7a、7bと7c、7dが取り付けら
れている。第2実施例では、第1図に示すような冷却パ
イプの交差部がないが、冷却バイブロa、6bには冷却
水が逆向き回りに流れるように、例えば継手7a、7d
から給水し、継手7b、7cから排水すれば、第1実施
例と同様に側板5aの温度のばらつきを小さくできる。
6b are joined, and joints 7a, 7b and 7c, 7d for water supply and drainage are attached to each end of the cooling vibros a and 6b, respectively. In the second embodiment, there is no intersection of the cooling pipes as shown in FIG.
By supplying water from the joints 7b and 7c and discharging water from the joints 7b and 7c, variations in the temperature of the side plate 5a can be reduced as in the first embodiment.

なお、第2実施例の電子レンズの構成は、上記説明した
冷却パイプの部分を除いて第1実施例と同じであるので
、ここでは説明を省略した。
The configuration of the electron lens of the second embodiment is the same as that of the first embodiment except for the cooling pipe described above, so the explanation is omitted here.

第6図は本発明の第3実施例に関するコイルの冷却パイ
プを示す図である。本実施例はドリフトを抑制するもの
であり、その電子レンズの構成は、冷却パイプとそれに
附属する継手を除いて、第1実施例と同じである。重複
をさけるためにその構成の説明は省略する。第6図にお
いて、コイル1の外筒4に冷却バイブロを2本並列に接
合しており、それら冷却バイブロにそれぞれ継手25を
取り付け、すなわち一つの継手7は給水用として連絡管
25を介して2本の冷却バイブロそれぞれの一端に、他
方の継手7は排水用として他の連絡管25を介して2本
の冷却パイプそれぞれの他端に、各冷却パイプ中の冷却
水は互いに逆方自回りに流れるように接続されている。
FIG. 6 is a diagram showing a coil cooling pipe according to a third embodiment of the present invention. This embodiment suppresses drift, and the configuration of the electron lens is the same as that of the first embodiment except for the cooling pipe and the joint attached thereto. To avoid duplication, a description of its configuration will be omitted. In FIG. 6, two cooling vibros are connected in parallel to the outer cylinder 4 of the coil 1, and a joint 25 is attached to each of the cooling vibros. In other words, one joint 7 is used for water supply through a connecting pipe 25, and two cooling vibros are connected in parallel. At one end of each of the two cooling vibros, the other joint 7 is connected to the other end of each of the two cooling pipes via another connecting pipe 25 for drainage, so that the cooling water in each cooling pipe flows in opposite directions to each other. Flowingly connected.

このように冷却水を逆方向に流すことにより、ドリフト
を抑制することができる。
By flowing the cooling water in the opposite direction in this manner, drift can be suppressed.

第7図は本発明による電子レンズの冷却系の第4実施例
を示す縦断面図である。コイルをとり囲む内筒、側板を
一体として板金加工し、内筒と側板の接合部の熱抵抗を
無視できるようにしたことが特徴である。その他は第1
実施例の電子レンズと同じ構成である。従ってその構成
の説明は省略する。第7図において、内筒と側板と一体
にしたボビン12は、−枚の薄板をコの字状に加工後、
さらにロール仕上げを行い両端っは何円筒にしたもので
ある。但し2枚の円板と筒を用いそれらの接合面を溶融
金属等で完全に接合して製作してもよい。このつば何円
筒のつば部に冷却バイブロを取付後、内筒部にコイルを
巻線し、外筒4を接合する。さらに巻線部2に樹脂8を
含浸させ、最終的に仕上げる。なおロール仕上げを行う
際に両側板に相当するつば部12aは伸延され変形し易
く、つばの幅は加工上の制限を受ける。この場合は第6
図のように大小2個以上のコイル内蔵っは何円筒を上記
の製作方法で冷却パイプ取付を除外した方法で製作し、
各コイル内蔵つば何円筒を互に差し込み一体に仮り組み
する。次にあらかじめ第1図に示すように継手7と冷却
パイプ部のみをろう付した部材を製作しておき、第5図
に示すように側板5a上に置き低融点半田で固定後、巻
線部2に樹脂8を含浸する。従来の技術ではジャケット
形式のものは鋳物で一体構造としていたが、パイプ形式
で金属板の冷間加工を主体として内筒と両側板を一体化
することは無かった。コイル径が大きく上記つば部の製
作が難しかったことによる。
FIG. 7 is a longitudinal sectional view showing a fourth embodiment of the cooling system for an electron lens according to the present invention. A unique feature is that the inner cylinder surrounding the coil and the side plate are integrally machined from sheet metal, making it possible to ignore the thermal resistance at the joint between the inner cylinder and the side plate. Others are 1st
It has the same configuration as the electronic lens of the example. Therefore, the explanation of its configuration will be omitted. In FIG. 7, the bobbin 12, which is made up of an inner cylinder and a side plate, is formed by processing two thin plates into a U-shape.
Furthermore, it was rolled and finished into cylinders at both ends. However, it may also be manufactured by using two discs and a cylinder and completely joining their joining surfaces with molten metal or the like. After a cooling vibro is attached to the brim of this cylindrical cylinder, a coil is wound around the inner cylinder, and the outer cylinder 4 is joined. Furthermore, the winding portion 2 is impregnated with resin 8 for final finishing. Note that when performing roll finishing, the flange portions 12a corresponding to both side plates are easily stretched and deformed, and the width of the flange is subject to processing limitations. In this case, the sixth
As shown in the figure, a cylinder containing two or more large and small coils is manufactured using the above manufacturing method, excluding the cooling pipe installation.
Insert the cylinders with built-in coils into each other and temporarily assemble them together. Next, as shown in Fig. 1, a member in which only the joint 7 and the cooling pipe part are brazed is manufactured in advance, and as shown in Fig. 5, the member is placed on the side plate 5a and fixed with low melting point solder. 2 is impregnated with resin 8. In conventional technology, the jacket type has an integral structure made of cast metal, but the pipe type mainly involves cold working of metal plates, and the inner cylinder and both side plates have not been integrated. This is because the diameter of the coil was large, making it difficult to manufacture the flange.

しかし本実施例では冷却効果の向上によりコイル電流を
大きくすることで、コイル径の小形化を図りっばの幅が
小さくなるので上記の製作方法を可能にしている。
However, in this embodiment, by increasing the coil current due to the improvement of the cooling effect, the coil diameter is reduced and the width of the ribs is reduced, making the above manufacturing method possible.

第8図は、本発明による第5実施例を示す図であり、コ
イルのみならずヨークも直接冷却水で冷そうとするもの
である。コイル1は、第1図に示したのと同様な構造で
あるが冷却バイブロのヨーク側板17a側に熱伝導性の
良い側板5cをろう付等で接合している。このコイル1
は振動吸収のための弾性体22を介して、スプリング2
3によりヨーク側板17aの下面に均一に押し付けられ
ている。上記の構造によりヨーク側板17aとコイル1
の側板5a間は、熱的に連絡され、ヨーク側板17aは
冷却バイブロで冷せる。ヨーク側板17aと側板5a間
の熱抵抗は、スプリング23の押す力、弾性体22の厚
さ、伝熱面積及び熱伝導率で決まるが、伝熱面積は側板
全面が使え広いため、余り問題にはならない。
FIG. 8 is a diagram showing a fifth embodiment of the present invention, in which not only the coil but also the yoke are directly cooled with cooling water. The coil 1 has a structure similar to that shown in FIG. 1, but a side plate 5c having good thermal conductivity is joined to the yoke side plate 17a of the cooling vibro by brazing or the like. This coil 1
is the spring 2 via the elastic body 22 for vibration absorption.
3 is uniformly pressed against the lower surface of the yoke side plate 17a. With the above structure, the yoke side plate 17a and the coil 1
The side plates 5a of the yoke are thermally connected, and the yoke side plates 17a can be cooled by a cooling vibro. The thermal resistance between the yoke side plate 17a and the side plate 5a is determined by the pushing force of the spring 23, the thickness of the elastic body 22, the heat transfer area, and the thermal conductivity, but since the heat transfer area is large and can use the entire surface of the side plate, it is not a problem. Must not be.

巻線部2の熱は、内筒3.外筒4等から側板5aに伝わ
り冷却バイブロに達する以外に、少量は放射、対流等で
ヨークにも達し、ヨーク17を温度上昇させる。特にヨ
ーク側板17c付近は、冷却バイブロから離れた側にあ
り、温度が高くなり易い。本実施例によれば、ヨーク側
板17aと冷却バイブロが熱的に連絡されているので、
ヨーク側板17c、ヨーク側板17b及びヨーク側板1
7aという熱の流れが形成され、コイルからの熱漏えい
によるヨークの温度上昇を防ぐことが可能になる。
The heat of the winding part 2 is transferred to the inner cylinder 3. In addition to being transmitted from the outer cylinder 4 etc. to the side plate 5a and reaching the cooling vibro, a small amount also reaches the yoke by radiation, convection, etc., raising the temperature of the yoke 17. In particular, the vicinity of the yoke side plate 17c is located on the side away from the cooling vibro, and the temperature tends to become high. According to this embodiment, since the yoke side plate 17a and the cooling vibro are thermally connected,
Yoke side plate 17c, yoke side plate 17b, and yoke side plate 1
A heat flow 7a is formed, making it possible to prevent the temperature of the yoke from rising due to heat leakage from the coil.

第9図は、本発明の第6実施例で、第5実施例のモディ
ファイ型を示す。コイル1は第8図に示したものと同じ
構造であるが、冷却バイブロ及び弾性体22をヨーク1
7底部のヨーク側板17cに接して置き、コイル1の自
重で弾性体22を押し付け、側板5aとヨーク側板17
c間を熱的につないでいる。
FIG. 9 is a sixth embodiment of the present invention, showing a modified type of the fifth embodiment. The coil 1 has the same structure as shown in FIG. 8, but the cooling vibro and the elastic body 22 are connected to the yoke 1.
Place it in contact with the yoke side plate 17c at the bottom of the coil 1, press the elastic body 22 with the weight of the coil 1, and press the elastic body 22 between the side plate 5a and the yoke side plate 17.
C is thermally connected.

次に冷却水に起因する振動を取り除き画像の脈動を防止
する構造を有する電子レンズの冷却系の第7実施例を説
明する。第7実施例は、第1実施例とは、冷却パイプ及
びその継手の構造が相違するが、他は全く同様である。
Next, a seventh embodiment of an electronic lens cooling system having a structure for removing vibrations caused by cooling water and preventing image pulsation will be described. The seventh embodiment differs from the first embodiment in the structure of the cooling pipe and its joint, but is completely the same in other respects.

従って冷却パイプと継手についてのみ説明する。Therefore, only the cooling pipes and fittings will be described.

第10図は第7実施例の冷却バイブロの中心軸横断面図
(第11図のX−X断面図)であり、第11図は第10
図のXI−X[断面図である。2本の冷却バイブロが接
続された継手7内に、冷却水を導入または排水する導水
管9の内径より大きい寸法を有する水室24を設け、そ
の水室24には、一方の端が冷却バイブロaに滑らかに
連結し他方の端が細く曲がった連絡管25が挿入されて
いる。
FIG. 10 is a cross-sectional view of the central axis of the cooling vibro of the seventh embodiment (X-X cross-sectional view of FIG. 11), and FIG.
This is a sectional view taken along line XI-X in the figure. A water chamber 24 having a dimension larger than the inner diameter of the water conduit pipe 9 through which cooling water is introduced or drained is provided in the joint 7 to which the two cooling vibros are connected, and one end of the water chamber 24 is connected to the cooling vibro. A connecting pipe 25 is inserted, which is smoothly connected to a and whose other end is narrowly bent.

なお水室24内で、連絡管25の先端と導水管24の先
端は対向し、それらの先端間に適度なギャップ26を設
けている。
Note that within the water chamber 24, the distal end of the communication pipe 25 and the distal end of the water guide pipe 24 are opposed to each other, and a suitable gap 26 is provided between the distal ends.

各冷却バイブロa、6bに流れる水量は、ギャップ26
及び連絡管25に部分的に開けた調節穴27等の大きさ
で調節する。また連絡管25の曲げ半径は、導水管9か
ら連絡管25内に入った噴流が連絡管25内壁に衝突し
ないように徐々に方向を変え、冷却バイブロa直前の冷
却水の流れ方向が冷却パイプ中心軸とほぼ一致するよう
にする。
The amount of water flowing into each cooling vibro a, 6b is the gap 26
The size of the adjustment hole 27 partially opened in the communication pipe 25 is used to adjust the size. In addition, the bending radius of the communication pipe 25 is such that the direction of the jet flowing into the communication pipe 25 from the water conduit pipe 9 is gradually changed so that it does not collide with the inner wall of the communication pipe 25, so that the flow direction of the cooling water immediately before the cooling vibro a is set in the cooling pipe 25. Make it approximately coincide with the central axis.

従来の継手は、連絡管のないほぼ第1図のようなものが
用いられていた。従って導水管9から冷却バイブロaま
での流路は、直角に曲がり、かつ縮流拡大部が混在して
いる。可視実験によれば、従来継手では第21図に示す
ように、導水管9からの噴流Aが継手内壁7cに衝突し
て発生した循環流Bが再び主流Cと混合する際に激しい
渦を誘起しており、この渦が水圧変動さらに画像が脈動
する原因となることがわかった。本発明では、噴流が継
手内壁に衝突するのを回避することが画像の脈動を抑え
るのに有効であるとの判断に基づき上記の連絡管を考案
したものである。
Conventional joints are similar to those shown in Figure 1, without connecting pipes. Therefore, the flow path from the water conduit 9 to the cooling vibro a is curved at right angles, and includes a mixture of contraction and expansion portions. According to visual experiments, in the conventional joint, as shown in Fig. 21, when the jet flow A from the water conduit 9 collides with the joint inner wall 7c and the circulating flow B generated, mixes with the main flow C again, a violent vortex is induced. It was found that these vortices cause water pressure fluctuations and pulsating images. In the present invention, the above-mentioned communication pipe was devised based on the judgment that avoiding the jet flow from colliding with the inner wall of the joint is effective in suppressing image pulsation.

次に上記のごとく曲った連絡管を1木の冷却パイプに適
用した第8実施例を示す。本実施例では、第12図の冷
却パイプ横断面図に示すように継手7の出口(または入
口)と冷却バイブロの先端までの間にテーパ管28を入
れている。
Next, an eighth embodiment will be shown in which the curved connecting pipe as described above is applied to a single wooden cooling pipe. In this embodiment, as shown in the cross-sectional view of the cooling pipe in FIG. 12, a tapered pipe 28 is inserted between the outlet (or inlet) of the joint 7 and the tip of the cooling vibro.

また第13図に示す第9実施例では、継手7と冷却バイ
ブロの間に細い曲った連絡管28を用いている。実開昭
57−89256号公報等の従来発明ではテーパ管は用
いず、冷却パイプを大きい曲げ半径で直角方向に曲げて
いる。本発明による第7〜9実施例と従来例とも継手入
口からの噴流を滑かに曲げることは変りはない。しかし
本実施例では、細い曲がり管,テーパ管を用いているの
で曲げ半径を小さく取れかつ水流の急拡大を防止してお
り、コイル径が小さい場合に所定の寸法内に全体を納め
られる利点がある。
Further, in the ninth embodiment shown in FIG. 13, a thin and curved connecting pipe 28 is used between the joint 7 and the cooling vibro. In conventional inventions such as Japanese Utility Model Application Publication No. 57-89256, a tapered pipe is not used, but the cooling pipe is bent at right angles with a large bending radius. There is no difference between the seventh to ninth embodiments according to the present invention and the conventional example in that the jet flow from the joint inlet is smoothly bent. However, in this example, since a thin bent pipe and a tapered pipe are used, the bending radius can be made small and the rapid expansion of the water flow can be prevented.This has the advantage that when the coil diameter is small, the whole can be kept within the specified dimensions. be.

第14図は、電子レンズのコイル1に継手を通して3本
の冷却パイプを適用した第10実施例を示す平面図であ
る。電子レンズの構造は、継手と冷却パイプの部分を除
いて第1実施例と同じである。第14図において、各冷
却バイブロは分岐合流部で一束に集め一体化した連絡管
体29をなす。
FIG. 14 is a plan view showing a tenth embodiment in which three cooling pipes are applied to the coil 1 of an electronic lens through a joint. The structure of the electron lens is the same as the first embodiment except for the joint and cooling pipe. In FIG. 14, each cooling vibro is assembled into a bundle at a branching and merging section to form an integrated communication pipe body 29.

また第15図の継手部縦断面図のように継手7内に導水
管9の内径より大きい寸法の水室24を設け、冷却水を
分岐または合流しており、先端が鋭角でなる連絡管体2
9の中心を導水管9の中心軸上に配置している。上記の
構造により、導水管9からの冷却水噴流は、連絡管体2
9に達し、各冷却パイプにスムーズに入り、噴流が衝突
するのは連絡管体29を仕切る壁29aのみと最小限に
抑えられ、流体振動を小さくできる。
In addition, as shown in the vertical cross-sectional view of the joint part in Fig. 15, a water chamber 24 larger than the inner diameter of the water conduit pipe 9 is provided in the joint 7, and the cooling water is branched or merged into a connecting pipe body with an acute angle at the tip. 2
The center of the pipe 9 is placed on the central axis of the water pipe 9. With the above structure, the cooling water jet from the water conduit 9 is directed to the connecting pipe body 2.
9 and enters each cooling pipe smoothly, the jets collide with only the wall 29a that partitions the communication pipe body 29, which is minimized, and fluid vibration can be reduced.

次に、本発明による第11実施例、すなわち外部の冷却
水の水圧変動を吸収する機器を設けた電子レンズの冷却
系について説明する。
Next, a description will be given of an eleventh embodiment of the present invention, that is, a cooling system for an electronic lens provided with a device for absorbing fluctuations in water pressure of external cooling water.

第16図は、本実施例を透過形電子顕微鏡に適用した例
を示す図である。この電子レンズの冷却系は、冷却水の
給水弁13、給水弁13からの冷却水を分配して電子顕
微鏡の各電子レンズ36に供給する分配器30、分配器
30と一体に組み込まれ冷却水の水圧変動を吸収するア
ブソーバ14、電子レンズ36から出た冷却水をまとめ
て排出する排水弁16およびこれらの部品を継ぐチュー
ブ15により構成されている。コイル電流を大きくした
場合、コイル温度を一定にしてドリフトを抑えるには、
必然的に冷却水量を増す必要があり、給水弁13の開度
は大きくなる。これに伴い電子顕微鏡なる装置外部から
冷却水により電子レンズ36に伝わる水圧変動成分が大
きくなり、電子レンズ36が振動し、画像が脈動し易く
なる。本実施例では、装置内に入る水圧変動をアブソー
バ14で吸収し、電子レンズ36には伝わらないようし
ている。具体的には、第16図の各電子レンズ36と給
水弁13の間に、第17図及び第18図に示すような空
気タンク18を設はアブソーバ14を構成するか、第1
9図のように各電子レンズへの分岐部31より上流の配
管に空気貯めを有する立上り管32でアブソーバ14を
構成しても良い。
FIG. 16 is a diagram showing an example in which this embodiment is applied to a transmission electron microscope. This electron lens cooling system is integrated with a cooling water supply valve 13, a distributor 30 that distributes the cooling water from the water supply valve 13 and supplies it to each electron lens 36 of the electron microscope, and a cooling water supply valve 13. It is comprised of an absorber 14 that absorbs water pressure fluctuations, a drain valve 16 that collectively discharges the cooling water discharged from the electron lens 36, and a tube 15 that connects these parts. When increasing the coil current, to keep the coil temperature constant and suppress drift,
Inevitably, it is necessary to increase the amount of cooling water, and the opening degree of the water supply valve 13 increases. As a result, a water pressure fluctuation component transmitted to the electron lens 36 by cooling water from outside the electron microscope device increases, causing the electron lens 36 to vibrate and making the image more likely to pulsate. In this embodiment, the absorber 14 absorbs fluctuations in water pressure entering the apparatus, and prevents the fluctuations from being transmitted to the electronic lens 36. Specifically, an air tank 18 as shown in FIGS. 17 and 18 is installed between each electronic lens 36 and the water supply valve 13 in FIG.
As shown in FIG. 9, the absorber 14 may be constituted by a riser pipe 32 having an air reservoir in the piping upstream from the branch section 31 to each electron lens.

第17図では、アブソーバ14は、給水弁13から冷却
水を受は入れる一つの入口ノズル20およびその冷却水
を各電子レンズ36にそれぞれ供給する出口ノズルを多
数側面に有する分配器30と、分配器30の天井30a
の上に置かれた空気タンク18と、分配器30と空気タ
ンク18を連通する連通管19とから構成されている。
In FIG. 17, the absorber 14 includes a distributor 30 having one inlet nozzle 20 for receiving cooling water from the water supply valve 13 and a plurality of outlet nozzles on one side for supplying the cooling water to each electron lens 36, and a distributor 30 for distributing the cooling water. Ceiling 30a of vessel 30
It consists of an air tank 18 placed on top of the air tank 18, and a communication pipe 19 that communicates the distributor 30 and the air tank 18.

第18図は分配器30と空気タンク18を一体化した例
を示す図で、円筒状のタンクを隔壁で二分し、上部を空
気タンク18に、下部を分配器30としたもので、隔壁
には小さな穴をあけて上下を連通させている。
FIG. 18 is a diagram showing an example in which the distributor 30 and the air tank 18 are integrated. A cylindrical tank is divided into two by a partition wall, the upper part serves as the air tank 18, and the lower part serves as the distributor 30. A small hole is made to connect the top and bottom.

高分解能の画像を得るためには、一般に第20図のよう
にチラーユニラット33と電子顕微鏡34を循環する閉
ループを作り、外部からの水圧変動が直接伝わらないよ
うにしている。上記のアブソーバ14は、特に閉ループ
の循環ポンプ35で生じる特定波長の水圧変動の吸収に
有効である。
In order to obtain high-resolution images, generally a closed loop is created that circulates between the chiller unit rat 33 and the electron microscope 34, as shown in FIG. 20, so that external water pressure fluctuations are not directly transmitted. The above absorber 14 is particularly effective in absorbing water pressure fluctuations of a specific wavelength that occur in the closed loop circulation pump 35.

しかし水道に装置を直接継ぐ場合でも、アブソーバを取
付けることにより大幅な効果が認められる。
However, even when the device is connected directly to the water supply, a significant effect can be seen by installing an absorber.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように構成されているので以下に
記載されるような効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

巻線部とそれを覆う内筒と側板を有するコイルと、コイ
ルの冷却パイプと、ヨークとから構成された電子レンズ
の冷却系において、複数の冷却パイプを側板に取り付は
冷却水の通路断面積を大きくしたので、冷却水を多量に
流せ、コイルの放熱が良好になり、短時間でコイルを定
常温度にでき、ドリフトによる待ち時間を少なくできる
。また隣り合う冷却パイプ中の冷却水を互いに逆向きに
流し、均一な冷却を行うことができるので、コイルの局
部的な熱変形が小さく、準定常温度に達すれば、ドリフ
トの小さい画像が得られる。
In an electronic lens cooling system that consists of a coil that has a winding section, an inner cylinder that covers it, and a side plate, a cooling pipe for the coil, and a yoke, attaching multiple cooling pipes to the side plate may cause a break in the cooling water passage. The large area allows a large amount of cooling water to flow, improves heat dissipation from the coil, allows the coil to reach a steady temperature in a short time, and reduces waiting time due to drift. In addition, since the cooling water in adjacent cooling pipes flows in opposite directions to achieve uniform cooling, local thermal deformation of the coil is small, and images with small drift can be obtained once the quasi-steady temperature is reached. .

また巻線部とそれを覆う内筒と側板とさらに外筒を有す
るコイルと、コイルの冷却パイプと、ヨークとから構成
された電子レンズの冷却系において、複数の冷却パイプ
を外筒に取り付けた場合も、上記のように冷却パイプを
側板に取り付けた場合と同様にドリフトの待ち時間を少
なくでき、ドリフトの小さい画像が得られる。そして外
筒を設ければ、内筒、側板、外筒間の熱伝導回路ができ
コイルから冷却パイプへの放熱が良好になり、ドリフト
を小さくできる。
In addition, in the cooling system of an electronic lens, which is composed of a coil having a winding part, an inner cylinder covering it, a side plate, an outer cylinder, a cooling pipe for the coil, and a yoke, a plurality of cooling pipes are attached to the outer cylinder. In this case, as in the case where the cooling pipe is attached to the side plate as described above, the waiting time for drift can be reduced, and an image with small drift can be obtained. If an outer cylinder is provided, a heat conduction circuit is created between the inner cylinder, side plate, and outer cylinder, which improves heat radiation from the coil to the cooling pipe and reduces drift.

巻線部とそれを覆う内筒と側板を有するコイルと、コイ
ルの冷却パイプと、ヨークとから構成された電子レンズ
の冷却系において、側板に取り付けた冷却パイプを熱伝
導板を介してヨーク内面に押し付ける構造にすれば、ヨ
ークの温度を一定に保ち易く、ドリフトを低減できる。
In the cooling system for an electronic lens, which consists of a coil having a winding section, an inner cylinder covering it, and a side plate, a cooling pipe for the coil, and a yoke, the cooling pipe attached to the side plate is connected to the inner surface of the yoke through a heat conduction plate. If the structure is such that the yoke is pressed against the yoke, it is easier to keep the temperature of the yoke constant and drift can be reduced.

さらに、巻線部とそれを覆う内筒と側板を有するコイル
と、コイルの冷却パイプと、ヨークとから構成された電
子レンズの冷却系において、側板に取り付けた冷却パイ
プの継手に水室を設け、その水室内に細く滑らかに曲が
った連絡管を挿入し、その連絡管を介して冷却パイプに
冷却水を流すので、冷却水が継手内の流路壁に衝突する
のが少なくなり、それにより画像の脈動を防止できる。
Furthermore, in the cooling system of an electronic lens, which is composed of a coil having a winding part, an inner cylinder covering the winding part, and a side plate, a cooling pipe for the coil, and a yoke, a water chamber is provided at the joint of the cooling pipe attached to the side plate. A thin, smoothly curved connecting pipe is inserted into the water chamber, and the cooling water is passed through the connecting pipe to the cooling pipe, which reduces the chance of the cooling water colliding with the channel wall inside the joint. Image pulsation can be prevented.

また上記の電子レンズの冷却系の上流にアブソーバを設
け、そのアブソーバにより装置外部から伝播される冷却
水の急激な水圧変動を減衰させるので、画像の脈動を防
止できる。
Further, an absorber is provided upstream of the cooling system of the electronic lens, and the absorber attenuates rapid fluctuations in water pressure of the cooling water propagated from outside the apparatus, thereby preventing image pulsation.

以上説明した画像のドリフトを小さくする構造と画像の
脈動を防止する構造を併用することにより、電子レンズ
の画像を鮮明にすることができる。
By using the above-described structure for reducing image drift and the structure for preventing image pulsation together, it is possible to make the image of the electron lens clear.

また冷却パイプの通路断面積を大きくし、コイルの放熱
を良くしてする構造により、電子レンズの小型化軽量化
を図ることができる。
Further, by increasing the cross-sectional area of the cooling pipe and improving the heat dissipation of the coil, the electronic lens can be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電子レンズの冷却系の第1実施例
の横断面図、第2図は第1図のn−m断面図、第3図は
コイル巻線部と通電端子の結線を示す図、第4図は本発
明の第2実施例(冷却パイプ並列)の平面図、第5図は
第4図のV−V矢視図、第6図は本発明の第3実施例(
外筒に冷却パイプ)を示す図、第7図は本発明の第4実
施例(大小コイル)の縦断面図、第8図は本発明の第5
実施例(ヨーク冷却)の縦断面図、第9図は本発明の第
6実施例(ヨーク冷却)の縦断面図、第10図は本発明
の第7実施例(連結管)の横断面図、第11図は第10
図のXI−M断面図、第12図は本発明の第8実施例(
テーパ連絡管)の横断面図、第13図は本発明の第9実
施例(曲がり連絡管)の横断面図、第14図は第10実
施例(3本冷却パイプ)の平面図、第15図は第14図
のxv−xv断面図、第16図は電子レンズの冷却系を
電子顕微鏡に適用した例を示す図、第17゜18.19
図はアブソーバの断面図、第20図は電子顕微鏡の冷却
系の閉ループを示す図、第21図は従来継手中における
冷却水の渦発生を示す模式図である。 ■・・・コイル、2・・巻線部、3・・内筒、4・・・
外筒、5・・側板、6・・冷却パイプ、7・・・継手、
14・アブソーバ、17・ヨーク、18・・空気タンク
、19 連絡孔、22・・・弾性体、23・・スプリン
グ、24 水室、36・電子レンズ。
FIG. 1 is a cross-sectional view of the first embodiment of the cooling system for an electron lens according to the present invention, FIG. 2 is a cross-sectional view taken along the nm line in FIG. 1, and FIG. 4 is a plan view of the second embodiment of the present invention (cooling pipes in parallel), FIG. 5 is a view taken along the line V-V in FIG. 4, and FIG.
FIG. 7 is a vertical cross-sectional view of the fourth embodiment (large and small coils) of the present invention, and FIG. 8 is a diagram showing the fifth embodiment of the present invention
FIG. 9 is a vertical cross-sectional view of the embodiment (yoke cooling), FIG. 9 is a vertical cross-sectional view of the sixth embodiment (yoke cooling) of the present invention, and FIG. 10 is a cross-sectional view of the seventh embodiment (connecting pipe) of the present invention. , Figure 11 is the 10th
The XI-M sectional view in the figure and FIG. 12 are the eighth embodiment of the present invention (
FIG. 13 is a cross-sectional view of the ninth embodiment (bent connecting pipe) of the present invention, FIG. 14 is a plan view of the tenth embodiment (three cooling pipes), and FIG. The figure is an xv-xv cross-sectional view of Fig. 14, Fig. 16 is a diagram showing an example in which the electron lens cooling system is applied to an electron microscope, and Fig. 17゜18.19
20 is a diagram showing a closed loop of a cooling system of an electron microscope, and FIG. 21 is a schematic diagram showing vortex generation of cooling water in a conventional joint. ■... Coil, 2... Winding section, 3... Inner cylinder, 4...
Outer cylinder, 5... side plate, 6... cooling pipe, 7... joint,
14. Absorber, 17. Yoke, 18. Air tank, 19. Communication hole, 22.. Elastic body, 23.. Spring, 24. Water chamber, 36. Electronic lens.

Claims (1)

【特許請求の範囲】 1、円筒状の巻線部と該巻線部の内周面に配設した内筒
と該内筒の各端でつば状に形成され前記巻線部の側面を
覆う側板とを有するコイルと、該コイルを冷却する冷却
パイプと、前記コイルと冷却パイプを覆うヨークとから
構成された電子レンズの冷却系において、前記冷却パイ
プを複数前記側板の外面に接して並列的に環状に取り付
けたことを特徴とする電子レンズの冷却系。 2、前記冷却パイプの中の冷却水は該冷却パイプに隣接
する冷却パイプの中の冷却水と逆向きに流れていること
を特徴とする請求項1記載の電子レンズの冷却系。 3、前記内筒と側板とが一枚の板から折り曲げ加工によ
り一体に製作したことを特徴とする請求項1記載の電子
レンズの冷却系。 4、円筒状の巻線部と該巻線部の内周面に配設した内筒
と該内筒の各端でつば状に形成され前記巻線部の側面を
覆う側板と該側板に接合され前記コイルの外周面を覆う
外筒とを有するコイルと、該コイルを冷却する冷却パイ
プと、前記コイルと冷却パイプを覆うヨークとから構成
された電子レンズにおいて、前記冷却パイプを複数並列
に前記外筒に巻き付けたことを特徴とする電子レンズの
冷却系。 5、前記冷却パイプの中の冷却水は該冷却パイプに隣接
する冷却パイプの中の冷却水と逆向きに流れていること
を特徴とする請求項4記載の電子レンズの冷却系。 6、前記側板と外筒とはかしめにより接合されているこ
とを特徴とする請求項4記載の電子レンズの冷却系。 7、前記側板と外筒とはろう付けにより接合されている
ことを特徴とする請求項4記載の電子レンズの冷却系。 8、円筒状の巻線部と該巻線部の内周面に配設した内筒
と該内筒の各端でつば状に形成され前記巻線部の側面を
覆う側板とを有するコイルと、該コイルを冷却する冷却
パイプと、前記コイルと冷却パイプを覆うヨークとから
構成された電子レンズの冷却系において、前記冷却パイ
プを一方の前記側板の外面に取り付け、該冷却パイプの
外面に熱伝導板を取り付け、該熱伝導板を防振部材を介
して前記ヨーク天井面に、他方の側板と前記ヨーク底面
との間に設けたスプリングにより押し付けたことを特徴
とする電子レンズの冷却系。 9、円筒状の巻線部と該巻線部の内周面に配設した内筒
と該内筒の各端でつば状に形成され前記巻線部の側面を
覆う側板とを有するコイルと、該コイルを冷却する冷却
パイプと、前記コイルと冷却パイプを覆うヨークとから
構成された電子レンズの冷却系において、前記冷却パイ
プを一方の前記側板の外面に取り付け、該冷却パイプの
外面に熱伝導板を取り付け、該熱伝導板を防振部材を介
して前記ヨーク底面に前記コイルの自重で押し付けたこ
とを特徴とする電子レンズの冷却系。 10、円筒状の巻線部と該巻線部の内周面に配設した内
筒と該内筒の各端でつば状に形成され前記巻線部の側面
を覆う側板とを有するコイルと、該コイルを冷却する冷
却パイプと、前記コイルと冷却パイプを覆うヨークとか
ら構成された電子レンズの冷却系において、前記コイル
は大小2個のコイルを同心円的に嵌め込んで形成したこ
とを特徴とする電子レンズの冷却系。 11、円筒状の巻線部と該巻線部の内面に配設した内筒
と該内筒の各端でつば状に形成され前記巻線部の側面を
覆う側板とを有するコイルと、該コイルを冷却する冷却
パイプと、前記コイルと冷却パイプを覆うヨークとから
構成された電子レンズの冷却系において、前記側板外面
に、前記冷却パイプを環状に取り付けかつ該冷却パイプ
に給排水するための継手を互いに接近した2ヵ所に取り
付けたことを特徴とする電子レンズの冷却系。 12、前記コイルと結線する通電端子を、2ヵ所に設け
た前記継手間の空間または該空間の延長空間内でかつ前
記側板外面上に設けたことを特徴とする請求項11記載
の電子レンズの冷却系。 13、円筒状の巻線部と該巻線部の内面に配設した内筒
と該内筒の各端でつば状に形成され前記巻線部の側面を
覆う側板とを有するコイルと、該コイルを冷却する冷却
パイプと、前記コイルと冷却パイプを覆うヨークとから
構成された電子レンズの冷却系において、前記側板外面
に、前記冷却パイプを環状に取り付けかつ該冷却パイプ
に給排水するための継手を接近した2ヵ所に取り付け、
少なくとも給水側の継手と前記冷却パイプの間を該冷却
パイプより細い滑らかに曲がった連絡管で滑らかに接続
したことを特徴とする電子レンズの冷却系。 14、円筒状の巻線部と該巻線部の内面に配設した内筒
と該内筒の各端でつば状に形成され前記巻線部の側面を
覆う側板とを有するコイルと、該コイルを冷却する冷却
パイプと、前記コイルと冷却パイプを覆うヨークとから
構成された電子レンズの冷却系において、前記側板外面
に、前記冷却パイプ2本を環状に取り付けかつ該2本の
冷却パイプに給排水を行う継手を2ヵ所に取り付け、少
なくとも給水用継手内に水室を設け、該水室内に曲がり
管なる連絡管を挿入し、該連絡管の一端を前記水室の冷
却水の導入口に対向させ他端を前記冷却パイプに接続し
たことを特徴とする電子レンズの冷却系。 15、前記連絡管は、先端で径が細く前記冷却パイプと
のつなぎ部で該冷却パイプ径となるテーパ管なることを
特徴とする請求項13または14記載の電子レンズの冷
却系。 16、円筒状の巻線部と該巻線部の内面に配設した内筒
と該内筒の各端でつば状に形成され前記巻線部の側面を
覆う側板とを有するコイルと、該コイルを冷却する冷却
パイプと、前記コイルと冷却パイプを覆うヨークとから
構成された電子レンズの冷却系において、前記側板外面
に、前記冷却パイプを3本以上環状に取り付けかつ該3
本の冷却パイプに給排水を行う継手を2ヵ所に取り付け
、少なくとも給水用継手内に水室を設け、該水室に前記
3本以上の冷却パイプの端部を均等にまとめて束ね管と
して挿入し、該束ね管の芯部を尖らせ前記水室の冷却水
の導入口に対向させたことを特徴とする電子レンズの冷
却系。 17、円筒状の巻線部と該巻線部の内周面に配設した内
筒と該内筒の各端でつば状に形成され前記巻線部の側面
を覆う側板とを有するコイルと、該コイルを冷却する冷
却パイプと、前記コイルと冷却パイプを覆うヨークとか
ら構成された電子レンズの冷却系と、該電子レンズの冷
却系の上流側の給水系と、下流側の排水系とを組み合わ
せてなる電子レンズの冷却系において、前記上流側に空
気タンクを有するアブソーバを備え、該アブソーバで前
記給水系で発生する冷却水の急激な水圧変動を吸収する
ことを特徴とする電子レンズの冷却系。 18、前記アブソーバは、空気を貯めたタンクと、該タ
ンクの下に設けられ冷却水の入り口と複数の出口を有し
該冷却水を前記電子レンズに配水する分配器と、前記タ
ンクと分配器の頭部とを連通する連通路とからなること
を特徴とする請求項17記載の電子レンズの冷却系。
[Claims] 1. A cylindrical winding part, an inner cylinder disposed on the inner circumferential surface of the winding part, and a collar formed at each end of the inner cylinder to cover the side surface of the winding part. In the cooling system for an electronic lens, the cooling system includes a coil having a side plate, a cooling pipe that cools the coil, and a yoke that covers the coil and the cooling pipe. A cooling system for an electronic lens, which is characterized by being attached in a ring shape. 2. The cooling system for an electron lens according to claim 1, wherein the cooling water in the cooling pipe flows in the opposite direction to the cooling water in the cooling pipe adjacent to the cooling pipe. 3. The cooling system for an electronic lens according to claim 1, wherein the inner cylinder and the side plate are integrally manufactured from a single plate by bending. 4. A cylindrical winding part, an inner cylinder disposed on the inner circumferential surface of the winding part, a side plate formed in a brim shape at each end of the inner cylinder and covering a side surface of the winding part, and joined to the side plate. In the electron lens, a plurality of the cooling pipes are arranged in parallel, and includes a coil having an outer cylinder that covers the outer peripheral surface of the coil, a cooling pipe that cools the coil, and a yoke that covers the coil and the cooling pipe. An electronic lens cooling system characterized by being wrapped around an outer cylinder. 5. The cooling system for an electron lens according to claim 4, wherein the cooling water in the cooling pipe flows in the opposite direction to the cooling water in the cooling pipe adjacent to the cooling pipe. 6. The cooling system for an electronic lens according to claim 4, wherein the side plate and the outer cylinder are joined by caulking. 7. The cooling system for an electronic lens according to claim 4, wherein the side plate and the outer cylinder are joined by brazing. 8. A coil having a cylindrical winding part, an inner cylinder disposed on the inner peripheral surface of the winding part, and a side plate formed in a brim shape at each end of the inner cylinder and covering a side surface of the winding part. , in an electronic lens cooling system composed of a cooling pipe that cools the coil, and a yoke that covers the coil and the cooling pipe, the cooling pipe is attached to the outer surface of one of the side plates, and heat is applied to the outer surface of the cooling pipe. 1. A cooling system for an electronic lens, characterized in that a conductive plate is attached, and the heat conductive plate is pressed against the ceiling surface of the yoke via a vibration isolating member by a spring provided between the other side plate and the bottom surface of the yoke. 9. A coil having a cylindrical winding part, an inner cylinder disposed on the inner peripheral surface of the winding part, and a side plate formed in a brim shape at each end of the inner cylinder and covering a side surface of the winding part. , in an electronic lens cooling system composed of a cooling pipe that cools the coil, and a yoke that covers the coil and the cooling pipe, the cooling pipe is attached to the outer surface of one of the side plates, and heat is applied to the outer surface of the cooling pipe. 1. A cooling system for an electron lens, characterized in that a conductive plate is attached, and the heat conductive plate is pressed against the bottom surface of the yoke by the weight of the coil via a vibration isolating member. 10. A coil having a cylindrical winding part, an inner cylinder disposed on the inner peripheral surface of the winding part, and a side plate formed in a brim shape at each end of the inner cylinder and covering a side surface of the winding part. , an electronic lens cooling system comprising a cooling pipe that cools the coil, and a yoke that covers the coil and the cooling pipe, characterized in that the coil is formed by fitting two large and small coils concentrically. A cooling system for an electronic lens. 11. A coil having a cylindrical winding part, an inner cylinder disposed on the inner surface of the winding part, and a side plate formed in a brim shape at each end of the inner cylinder and covering a side surface of the winding part; In an electronic lens cooling system composed of a cooling pipe that cools a coil, and a yoke that covers the coil and the cooling pipe, a joint for attaching the cooling pipe in an annular shape to the outer surface of the side plate and for supplying and draining water to the cooling pipe. A cooling system for an electronic lens, characterized in that the lenses are mounted in two places close to each other. 12. The electronic lens according to claim 11, wherein a current-carrying terminal connected to the coil is provided in a space between the joints provided at two locations or an extension space of the space and on the outer surface of the side plate. cooling system. 13. A coil having a cylindrical winding part, an inner cylinder disposed on the inner surface of the winding part, and a side plate formed in a brim shape at each end of the inner cylinder and covering a side surface of the winding part; In an electronic lens cooling system composed of a cooling pipe that cools a coil, and a yoke that covers the coil and the cooling pipe, a joint for attaching the cooling pipe in an annular shape to the outer surface of the side plate and for supplying and draining water to the cooling pipe. Attach it to two places close to each other,
A cooling system for an electronic lens, characterized in that at least a joint on the water supply side and the cooling pipe are smoothly connected by a smoothly curved connecting pipe that is thinner than the cooling pipe. 14. A coil having a cylindrical winding part, an inner cylinder disposed on the inner surface of the winding part, and a side plate formed in a brim shape at each end of the inner cylinder and covering a side surface of the winding part; In an electronic lens cooling system comprising a cooling pipe that cools a coil, and a yoke that covers the coil and the cooling pipe, the two cooling pipes are attached to the outer surface of the side plate in an annular shape, and the two cooling pipes are connected to the cooling pipe. Attach joints for water supply and drainage at two locations, provide a water chamber at least in the water supply joint, insert a connecting pipe in the form of a bent pipe into the water chamber, and connect one end of the connecting pipe to the cooling water inlet of the water chamber. A cooling system for an electronic lens, characterized in that the opposite ends thereof are connected to the cooling pipe. 15. The cooling system for an electron lens according to claim 13 or 14, wherein the communication pipe is a tapered pipe whose diameter is narrow at a tip and becomes the diameter of the cooling pipe at a joint with the cooling pipe. 16. A coil having a cylindrical winding part, an inner cylinder disposed on the inner surface of the winding part, and a side plate formed in a brim shape at each end of the inner cylinder and covering a side surface of the winding part; In the cooling system for an electronic lens, the system includes a cooling pipe that cools a coil, and a yoke that covers the coil and the cooling pipe.
Attach fittings for water supply and drainage to the main cooling pipe in two places, provide a water chamber at least in the water supply fitting, and insert the ends of the three or more cooling pipes into the water chamber evenly together as a bundled pipe. A cooling system for an electronic lens, characterized in that the core of the bundled tube is sharpened and faces the cooling water inlet of the water chamber. 17. A coil having a cylindrical winding part, an inner cylinder disposed on the inner peripheral surface of the winding part, and a side plate formed in a brim shape at each end of the inner cylinder and covering a side surface of the winding part. , a cooling system for an electronic lens including a cooling pipe that cools the coil, a yoke that covers the coil and the cooling pipe, a water supply system on the upstream side of the cooling system for the electronic lens, and a drainage system on the downstream side. A cooling system for an electronic lens comprising: an absorber having an air tank on the upstream side; the absorber absorbs rapid water pressure fluctuations of the cooling water occurring in the water supply system; cooling system. 18. The absorber includes a tank storing air, a distributor provided under the tank and having a cooling water inlet and a plurality of outlets and distributing the cooling water to the electron lens, and the tank and the distributor. 18. The cooling system for an electronic lens according to claim 17, further comprising a communication path communicating with the head of the electronic lens.
JP1100988A 1989-04-20 1989-04-20 Electronic lens cooling system Expired - Fee Related JP2617349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1100988A JP2617349B2 (en) 1989-04-20 1989-04-20 Electronic lens cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100988A JP2617349B2 (en) 1989-04-20 1989-04-20 Electronic lens cooling system

Publications (2)

Publication Number Publication Date
JPH02278641A true JPH02278641A (en) 1990-11-14
JP2617349B2 JP2617349B2 (en) 1997-06-04

Family

ID=14288699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100988A Expired - Fee Related JP2617349B2 (en) 1989-04-20 1989-04-20 Electronic lens cooling system

Country Status (1)

Country Link
JP (1) JP2617349B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1441381A2 (en) * 2003-01-24 2004-07-28 Leica Microsystems Lithography Ltd. Cooling of a device for influencing an electron beam
EP1943658A2 (en) * 2005-09-30 2008-07-16 Applied Materials, Inc. Cooling module for charged particle beam column elements
JP2009123555A (en) * 2007-11-15 2009-06-04 Institute Of Physical & Chemical Research Cooler in charged particle beam device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112262A (en) * 1975-03-28 1976-10-04 Hitachi Ltd Electronic lens
JPS54170766U (en) * 1978-05-22 1979-12-03
JPS57140169U (en) * 1981-02-27 1982-09-02
JPS61269839A (en) * 1985-03-25 1986-11-29 スムスコエ プロイズボドストベンノエ オビエデイネニエ “エレクトロン” Electromagnetic lens and electronic microscope using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112262A (en) * 1975-03-28 1976-10-04 Hitachi Ltd Electronic lens
JPS54170766U (en) * 1978-05-22 1979-12-03
JPS57140169U (en) * 1981-02-27 1982-09-02
JPS61269839A (en) * 1985-03-25 1986-11-29 スムスコエ プロイズボドストベンノエ オビエデイネニエ “エレクトロン” Electromagnetic lens and electronic microscope using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1441381A2 (en) * 2003-01-24 2004-07-28 Leica Microsystems Lithography Ltd. Cooling of a device for influencing an electron beam
EP1441381A3 (en) * 2003-01-24 2009-07-08 Leica Microsystems Lithography Ltd. Cooling of a device for influencing an electron beam
EP1943658A2 (en) * 2005-09-30 2008-07-16 Applied Materials, Inc. Cooling module for charged particle beam column elements
EP1943658A4 (en) * 2005-09-30 2010-06-16 Applied Materials Inc Cooling module for charged particle beam column elements
JP2009123555A (en) * 2007-11-15 2009-06-04 Institute Of Physical & Chemical Research Cooler in charged particle beam device

Also Published As

Publication number Publication date
JP2617349B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
CA2392224C (en) Pipe structure of branch pipe line
KR101376382B1 (en) Ultrasonic liquid delivery device
JP2008231929A (en) Cooling water inlet structure of heat exchanger for egr cooler
JP2010038330A (en) Hot water bath type vaporizer
JPH02278641A (en) Cooling system for electron lens
JPH08327050A (en) Enclosure cooled by transpiration and manufacture of said enclosure
WO1992001198A1 (en) Liquid cooled cooling device
KR20010102981A (en) EGR cooler
JP5128908B2 (en) EGR cooler
JP2920390B2 (en) Electronic lens cooling system
JP2008232451A (en) Cooling water inlet structure of heat exchanger
KR101969380B1 (en) Dual pipe structure with stainless steel harmless to human body of directly draining type water purifier
CN209998109U (en) cooling pipes
JP2695174B2 (en) Overheat reducer
JPH05231793A (en) Parallel flow type heat exchanger
JP2011041964A (en) Slab guiding device in continuous casting apparatus
LU102301B1 (en) Heat exchanger for a vehicle
JP2513647Y2 (en) Vertical evaporator
US20230375289A1 (en) Heat exchanger
JPH10249428A (en) Device for cooling steel sheet
KR102148416B1 (en) Exhaust gas cooler
JP2764174B2 (en) Falling liquid film evaporator
JPH02122174A (en) Refrigerant flow controller for multi-circuit evaporator coil
JPH038352Y2 (en)
JPH01193595A (en) Heat transfer tube filled with flame spray coating metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees