JPH02278085A - Multistage pressure reducing device - Google Patents

Multistage pressure reducing device

Info

Publication number
JPH02278085A
JPH02278085A JP9760889A JP9760889A JPH02278085A JP H02278085 A JPH02278085 A JP H02278085A JP 9760889 A JP9760889 A JP 9760889A JP 9760889 A JP9760889 A JP 9760889A JP H02278085 A JPH02278085 A JP H02278085A
Authority
JP
Japan
Prior art keywords
valve
plates
fixing plate
valve plates
fixed plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9760889A
Other languages
Japanese (ja)
Inventor
Takeshi Yamazaki
猛 山崎
Yoshiyuki Okutsu
奥津 良之
Susumu Sakata
進 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP9760889A priority Critical patent/JPH02278085A/en
Publication of JPH02278085A publication Critical patent/JPH02278085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Valves (AREA)

Abstract

PURPOSE:To prevent the occurrence of cavitation and erosion by a method wherein fluid pass holes opened and closed through expansion and contraction of a spring resiliently mounted between adjoining two plates of valve plates and a fixing plate are formed in the valve plates and the fixing plate. CONSTITUTION:A fixing plate 16 is located to a staged part 13c of a valve body 11 to close a flow passage 13b. Valve plates 17 and 18 are laminated forward and backward movably in the axial direction of the fixing plate 16. Springs 22 and 23 resiliently mounted between adjoining two plates of the valve plates 17 and 18 and the fixing plate 16 are provided. Fluid pass holes 19 - 21 opened and closed through expansion and contraction of the spring 22 and 23 are formed in the valve plates 17 and 18 and the fixing plate 16. The constitution reliably prevents the occurrence of cavitation and erosion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポンプ給水系で使用して好適な多段減圧装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multistage pressure reducing device suitable for use in a pump water supply system.

〔従来の技術〕[Conventional technology]

一般に、多くの工場用原動所で見られる給水系統として
は、給水ポンプによってタンクからボイラに給水するも
のが知られている。
Generally, water supply systems found in many industrial power stations are known to supply water from a tank to a boiler using a water supply pump.

従来、この種の給水系統においては、第4図に示すよう
に給水ポンプlのボイラ送り出し側に過熱防止弁2が接
続されており、これにより給水の一部をタンク3内に戻
して始動時の給水ポンプlの過熱を防止することが行わ
れている。
Conventionally, in this type of water supply system, as shown in Fig. 4, an overheating prevention valve 2 is connected to the boiler delivery side of the water supply pump 1, which returns a portion of the supplied water to the tank 3 and prevents the water from flowing during startup. Efforts are being made to prevent overheating of water pumps l.

ところで、この種の弁には、給水ポンプ1の昇圧分に相
当する差圧が作用して絞り部にキャビテーションが発生
する。このため、従来の給水系統には、過熱防止弁2に
複数の固定オリフィス4を接続してなる多段減圧装置5
が備えられている。
By the way, a differential pressure corresponding to the pressure increase of the water supply pump 1 acts on this type of valve, causing cavitation to occur in the throttle portion. For this reason, in the conventional water supply system, a multistage pressure reducing device 5 consisting of a plurality of fixed orifices 4 connected to an overheating prevention valve 2 is used.
is provided.

(発明が解決しようとする課題〕 しかるに、従来の多段減圧装置における固定オリフィス
4としては、過熱防止弁2を通過する所定の流体量に対
して適正に機能するように設計されており、このため通
過流体量が変化すると、過熱防止弁2の上流側と固定オ
リフィス4の下流側との間で発生する差圧がこれら両部
材2.4に対して均等に分散して作用せず、いずれか一
方の部材(過熱防止弁2あるいは固定オリフィス4)に
キャビテーションやエロージョンが発生し易くなるとい
う問題があった。すなわち、固定オリフィス4に作用す
る差圧が小さいと過熱防止弁2に作用する差圧が大きく
なり、過熱防止弁2に作用する差圧が小さいと固定オリ
フィス4に作用する差圧が大きくなるのである。
(Problem to be Solved by the Invention) However, the fixed orifice 4 in the conventional multistage pressure reducing device is designed to function properly for a predetermined amount of fluid passing through the superheat prevention valve 2; When the amount of passing fluid changes, the differential pressure generated between the upstream side of the desuperheating valve 2 and the downstream side of the fixed orifice 4 does not act on both members 2.4 in an evenly distributed manner, and either There was a problem in that cavitation and erosion were likely to occur in one of the members (overheat prevention valve 2 or fixed orifice 4).In other words, if the differential pressure acting on the fixed orifice 4 was small, the differential pressure acting on the overheat prevention valve 2 If the differential pressure acting on the overheat prevention valve 2 is small, the differential pressure acting on the fixed orifice 4 becomes large.

本発明はこのような事情に鑑みてなされたもので、流路
の上下流側間で発生する差圧を弁板の個数に応じて均等
に分散させることができ、もってキャビテーションやエ
ロージョンの発生を確実に防止することができる多段減
圧装置を提供するものである。
The present invention was made in view of these circumstances, and it is possible to evenly disperse the differential pressure generated between the upstream and downstream sides of the flow path according to the number of valve plates, thereby preventing the occurrence of cavitation and erosion. The purpose of the present invention is to provide a multistage depressurization device that can reliably prevent such problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る多段減圧装置は、弁本体内に流路を閉塞す
るように設けられた固定板と、この固定板の軸線方向に
進退自在に積層された複数の弁板と、これら弁板および
固定板のうち互いに隣り合う2つの板間に弾装されたス
プリングとを備え、これらスプリングの伸縮によって開
閉する流体通過孔を弁板および固定板に設けたものであ
る。
The multi-stage pressure reducing device according to the present invention includes a fixed plate provided in a valve body so as to close a flow path, a plurality of valve plates laminated so as to be movable forward and backward in the axial direction of the fixed plate, and these valve plates and The valve plate and the fixed plate are provided with a spring elastically loaded between two adjacent plates of the fixed plate, and fluid passage holes that are opened and closed by the expansion and contraction of these springs are provided in the valve plate and the fixed plate.

〔作 用〕[For production]

本発明においては、スプリングの弾撥力によって複数の
弁板を同時に流路の軸線に沿って移動させ、流体通過孔
の上流側から下流側に流体を通過させることができる。
In the present invention, the plurality of valve plates can be simultaneously moved along the axis of the flow path by the elastic force of the spring, and the fluid can be passed from the upstream side to the downstream side of the fluid passage hole.

〔実施例〕〔Example〕

以下、本発明の構成等を図に示す実施例によって詳細に
説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the structure etc. of this invention will be explained in detail by the Example shown in the figure.

第1図は本発明に係る多段減圧装置の全体を示す断面図
である。同図において、符号11で示す弁本体内には、
各々が互いに直交する2つの流路12゜13が設けられ
ている。これら両流路12.13は、各kが水平方向と
鉛直方向に延在する軸線をもつ断″面円形状の波路によ
って形成されている。このうち流路13は、各口径が互
いに大小異なる2つの流路13a、 13bからなり、
これら両流路13a、13b間には環状の偏平な面から
なる段部13cが設けられている。また、この流路13
は軸線に沿って上方に開口されている。14は前記両流
路12.1.3の上方開口周縁に対接するフランジ14
aを有する蓋体で、前記弁本体11に対して固定されて
おり、中央部には軸線方向に開口する挿通孔15が設け
られている。
FIG. 1 is a sectional view showing the entire multistage pressure reducing device according to the present invention. In the same figure, inside the valve body indicated by reference numeral 11,
Two channels 12 and 13 are provided, each of which is orthogonal to each other. Both channels 12 and 13 are formed by wave channels each having a circular cross-section and an axis extending in the horizontal and vertical directions. Consists of two channels 13a and 13b,
A stepped portion 13c consisting of an annular flat surface is provided between these flow paths 13a and 13b. In addition, this flow path 13
is open upward along the axis. 14 is a flange 14 that is in contact with the upper opening periphery of both flow paths 12.1.3.
The lid is fixed to the valve body 11, and has an insertion hole 15 opening in the axial direction in the center.

16は平面視円形状の固定板で、前記弁本体ll内の段
部13cに前記流路13bを閉塞するように設けられて
いる。17および18は平面視円形状の弁板で、前記固
定板16の軸線方向に進退自在に積層され、かつ前記流
路13内に設けられている。これら両弁板1.7.1.
8および前記固定板16には、各々軸線方向に開目する
多数の流体通過孔19〜21が設けられている。そして
、これら流体通過孔19〜21は、後述するスプリング
の伸縮によって開閉するように構成されている。また、
これら流体通過孔19〜21の個数は、上流側から下流
側に向かって漸次多くなるように設定されている。すな
わち、最下方の流体通過孔19は最小の個数となり、最
上方の流体通過孔21は最大の個数となるのである。2
2および23は圧縮用のスプリングで、前記弁板17.
18および前記固定板16のうち各々が互いに隣り合う
2つの板間に弾装されている。24は前記弁体17.1
8のうち弁板18を駆動する弁軸で、前記挿通孔15に
パツキン25を介して進退自在に挿通されており、外部
露呈端部には電動駆動部(図示せず)に接続するねじ部
26が設けられている。なお、27は平面視円形状のパ
ツキン押えで、前記蓋体14の上端面に固定されており
、中央部には前記弁軸24が挿通する挿通孔28が設け
られている。
Reference numeral 16 denotes a fixing plate having a circular shape in a plan view, and is provided in the stepped portion 13c in the valve body 11 so as to close the flow path 13b. Valve plates 17 and 18 are circular in plan view, and are stacked so as to be movable forward and backward in the axial direction of the fixed plate 16, and are provided in the flow path 13. Both valve plates 1.7.1.
8 and the fixed plate 16 are provided with a large number of fluid passage holes 19 to 21, each of which opens in the axial direction. These fluid passage holes 19 to 21 are configured to be opened and closed by expansion and contraction of a spring, which will be described later. Also,
The number of these fluid passage holes 19 to 21 is set to gradually increase from the upstream side to the downstream side. That is, the number of fluid passage holes 19 at the bottom is the minimum, and the number of fluid passage holes 21 at the top is the maximum. 2
2 and 23 are compression springs, which are connected to the valve plate 17.
18 and the fixed plate 16 are each mounted between two adjacent plates. 24 is the valve body 17.1
8 is a valve shaft that drives the valve plate 18, and is inserted into the insertion hole 15 via the packing 25 so as to be freely forward and backward, and has a threaded portion connected to an electric drive unit (not shown) at the externally exposed end. 26 are provided. Note that 27 is a seal retainer having a circular shape in plan view, and is fixed to the upper end surface of the lid 14, and an insertion hole 28 through which the valve shaft 24 is inserted is provided in the center.

このように構成された多段減圧装置においては、弁軸2
4が上方に駆動すると、スプリング22.23の弾18
力によって弁板17.18が同時に流路13の軸線に沿
って移動することから、流体通過孔19〜21の上流側
から下流側に流体を通過させることができる。この場合
、弁体17.1Bは、第2図(a)に示す弁閉状態から
同図(blに示す弁開状態になると、固定板16と弁体
17間の寸法d、および弁体17と弁体18間の寸法d
2はdで略等しく  (dt#dz=dとする)なり、
通過流体量が変化しても流路13の上下両流間で発生す
る差圧PI−P!を3部位で均等に分散させることがで
きる。ここで、固定板16に対する弁板■7の移動量と
弁板17に対する弁板L8の移動量が同一(d+=at
)であるから、各部位における圧力降下比は一定である
In the multi-stage pressure reducing device configured in this way, the valve shaft 2
4 is driven upward, the bullet 18 of the spring 22.23
Since the force simultaneously moves the valve plates 17, 18 along the axis of the flow path 13, the fluid can pass from the upstream side to the downstream side of the fluid passage holes 19-21. In this case, when the valve body 17.1B changes from the valve closed state shown in FIG. 2(a) to the valve open state shown in FIG. and the dimension d between the valve body 18
2 is approximately equal to d (dt#dz=d),
Even if the amount of passing fluid changes, the differential pressure PI-P that occurs between the upper and lower flows of the flow path 13! can be evenly distributed in three parts. Here, the amount of movement of the valve plate 7 with respect to the fixed plate 16 and the amount of movement of the valve plate L8 with respect to the valve plate 17 are the same (d+=at
), the pressure drop ratio at each location is constant.

また、本実施例においては、流体通過孔19〜21の個
数を流路13の上流側から下流側に向かって漸次増加さ
せたから、流体通過孔19〜21の開放時に流路工3の
開口面積が上流側より下流側で大きくなり、上流側より
下流側に作用する差圧を小さくしてキャビテーションの
発生を防止するに必要な弁板17.18の個数を減少さ
せることができる。
In addition, in this embodiment, since the number of fluid passing holes 19 to 21 is gradually increased from the upstream side to the downstream side of the channel 13, the opening area of the channel structure 3 when the fluid passing holes 19 to 21 are opened is is larger on the downstream side than on the upstream side, and the number of valve plates 17 and 18 required to prevent the occurrence of cavitation can be reduced by reducing the differential pressure acting on the downstream side from the upstream side.

さらに、本実施例においては、単純な形状で弁として機
能させることができると共に、固定板16と弁板17.
18のピッチ合わせが不要になるから、装置の製作を而
単に行うことができる。
Furthermore, in this embodiment, it is possible to function as a valve with a simple shape, and the fixing plate 16 and the valve plate 17.
Since the pitch adjustment of 18 is no longer necessary, the device can be manufactured simply.

なお、本実施例においては、弁軸24を電動駆動部(図
示せず)によって駆動する例を示したが、本発明はこれ
に限定されるものではなく、手動によって駆動してもよ
く、その駆動手段は適宜変更することができる。
Although this embodiment shows an example in which the valve stem 24 is driven by an electric drive unit (not shown), the present invention is not limited to this, and may be driven manually. The driving means can be changed as appropriate.

また、本発明における弁本体11の内部形状や弁板17
.、18の個数等も、前述した実施例に限定されるもの
でないことは勿論である。
Further, the internal shape of the valve body 11 and the valve plate 17 in the present invention are
.. , 18, etc., are, of course, not limited to the above-mentioned embodiments.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、弁本体内に流路を
閉塞するように設けられた固定板と、この固定板の軸線
方向に進退自在に積層された複数の弁板と、これら弁板
および固定板のうち互いに隣り合う2つの板間に弾装さ
れたスプリングとを備え、これらスプリングの伸縮によ
って開閉する流体通過孔を弁板と固定板に設けたので、
スプリングの弾1a力により複数の弁板を同時に流路の
軸線に沿って移動させ、流体通過孔のに流側から下流側
に流体を通過させることができる。したがって、流路の
上下流側間で発生する差圧を弁板の個数に応じて均等に
分散させることができるから、キャビテーションやエロ
ージョンの発生を[実に防止することができる。
As explained above, according to the present invention, there is provided a fixed plate provided in a valve body so as to close a flow path, a plurality of valve plates laminated so as to be movable back and forth in the axial direction of the fixed plate, and these valve plates. The valve plate and the fixed plate are equipped with a spring elastically loaded between two adjacent plates, and the valve plate and the fixed plate are provided with a fluid passage hole that opens and closes by the expansion and contraction of these springs.
The plurality of valve plates can be simultaneously moved along the axis of the flow path by the elastic force of the spring 1a, and the fluid can be passed from the flow side to the downstream side of the fluid passage hole. Therefore, the differential pressure generated between the upstream and downstream sides of the flow path can be evenly distributed according to the number of valve plates, so that cavitation and erosion can be effectively prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る多段減圧装置の全体を示す断面図
、第2図(alおよび(blは同じく多段減圧装置の弁
閉状態と弁開状態を示す断面図、第3図は弁開状態にお
ける流路内に発生する各差圧を示す図、第4図は従来の
多段減圧装置を給水系統に使用した例を示す図である。 11・・・・弁本体、12.13・・・・流路、16・
・・・固定板、17.18・・・・弁板、19〜21・
・・・流体通過孔、22.23・・・・スプリング、2
4・・・・弁軸。 菓1図 特許出願人 山武ハネウェル株式会社
FIG. 1 is a sectional view showing the entire multistage pressure reducing device according to the present invention, FIG. 2 (al and (bl) are sectional views showing the valve closed state and valve open state of the multistage pressure reducing device, and FIG. Fig. 4 is a diagram showing an example of using a conventional multistage pressure reducing device in a water supply system. 11...Valve body, 12.13...・Flow path, 16・
... Fixed plate, 17.18... Valve plate, 19-21.
...Fluid passage hole, 22.23...Spring, 2
4...Valve shaft. Patent applicant: Yamatake Honeywell Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 弁本体内に流路を閉塞するように設けられた固定板と、
この固定板の軸線方向に進退自在に積層された複数の弁
板と、これら弁板および前記固定板のうち互いに隣り合
う2つの板間に弾装されたスプリングとを備え、これら
スプリングの伸縮によって開閉する流体通過孔を前記弁
板および前記固定板に設けたことを特徴とする多段減圧
装置。
a fixing plate provided in the valve body so as to close the flow path;
A plurality of valve plates are stacked so as to be movable in the axial direction of the fixed plate, and a spring is elastically loaded between two adjacent plates of these valve plates and the fixed plate. A multi-stage pressure reducing device characterized in that a fluid passage hole that opens and closes is provided in the valve plate and the fixed plate.
JP9760889A 1989-04-19 1989-04-19 Multistage pressure reducing device Pending JPH02278085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9760889A JPH02278085A (en) 1989-04-19 1989-04-19 Multistage pressure reducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9760889A JPH02278085A (en) 1989-04-19 1989-04-19 Multistage pressure reducing device

Publications (1)

Publication Number Publication Date
JPH02278085A true JPH02278085A (en) 1990-11-14

Family

ID=14196935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9760889A Pending JPH02278085A (en) 1989-04-19 1989-04-19 Multistage pressure reducing device

Country Status (1)

Country Link
JP (1) JPH02278085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067426A (en) * 2020-09-27 2020-12-11 兰州理工大学 Visual measuring device for erosion of separated valve port and using method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067426A (en) * 2020-09-27 2020-12-11 兰州理工大学 Visual measuring device for erosion of separated valve port and using method
CN112067426B (en) * 2020-09-27 2023-08-04 兰州理工大学 Visual measuring device for erosion of separated valve port and use method

Similar Documents

Publication Publication Date Title
US7152628B2 (en) Anti-cavitation valve assembly
EP2798247B1 (en) Anti-cavitation valve seat
JP3793899B2 (en) Fluid control valve with attenuator and dynamic seal
CN109306926B (en) Valve assembly and check valve for fluid pump
US5172716A (en) Recirculation valve
AU624842B2 (en) One way flow valve
KR970021875A (en) valve
SU1582992A3 (en) Compressor valve
DE59303865D1 (en) Ball valve
WO1995006834A1 (en) Automatic constant pressure lift valve device
US5411054A (en) Positive displacement compressor
JPH07109181B2 (en) Fuel injection device for internal combustion engine
JPH02278085A (en) Multistage pressure reducing device
AU690536B2 (en) Automatic recirculation valve
KR19980701621A (en) Improved automatic recirculation valve
JP2020511608A (en) Valve arrangement for fuel injection system and fuel injection system
JP5790786B2 (en) Valve, fuel cell system
JP2699027B2 (en) Cage valve
AU2011265458A1 (en) Anti-cavitation Valve Assembly
KR960008600Y1 (en) Checking valve
KR19980047162A (en) Pressure compensated two way valve
JPS6170280A (en) Valve
GB2285672A (en) Fluid flow control valve
ES2123651T3 (en) CLOSING VALVE.
GB2547944A (en) Diaphragm pump