JPH02277794A - Organic solvent electroplating solution for plating film of r2t14b intermetallic compound permanent magnet - Google Patents
Organic solvent electroplating solution for plating film of r2t14b intermetallic compound permanent magnetInfo
- Publication number
- JPH02277794A JPH02277794A JP1101421A JP10142189A JPH02277794A JP H02277794 A JPH02277794 A JP H02277794A JP 1101421 A JP1101421 A JP 1101421A JP 10142189 A JP10142189 A JP 10142189A JP H02277794 A JPH02277794 A JP H02277794A
- Authority
- JP
- Japan
- Prior art keywords
- organic solvent
- plating
- salt
- electroplating solution
- intermetallic compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007747 plating Methods 0.000 title claims abstract description 118
- 238000009713 electroplating Methods 0.000 title claims abstract description 94
- 239000003960 organic solvent Substances 0.000 title claims description 96
- 229910000765 intermetallic Inorganic materials 0.000 title claims description 41
- 150000003839 salts Chemical class 0.000 claims abstract description 79
- 239000000463 material Substances 0.000 claims abstract description 29
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 26
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 21
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 21
- 239000002904 solvent Substances 0.000 claims abstract description 17
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 12
- 150000003624 transition metals Chemical group 0.000 claims abstract description 12
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 5
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 3
- 125000005843 halogen group Chemical group 0.000 claims abstract description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims abstract 4
- 239000004327 boric acid Substances 0.000 claims abstract 3
- 238000000034 method Methods 0.000 claims description 50
- 229910052751 metal Inorganic materials 0.000 claims description 43
- 239000002184 metal Substances 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 34
- 239000002633 crown compound Substances 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 10
- 150000001450 anions Chemical class 0.000 claims description 9
- -1 boric acid compound Chemical class 0.000 claims description 9
- 125000005207 tetraalkylammonium group Chemical group 0.000 claims description 9
- 239000003381 stabilizer Substances 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 150000001768 cations Chemical class 0.000 claims description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 claims description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 3
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 claims description 2
- KBLZDCFTQSIIOH-UHFFFAOYSA-M tetrabutylazanium;perchlorate Chemical compound [O-]Cl(=O)(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC KBLZDCFTQSIIOH-UHFFFAOYSA-M 0.000 claims description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 claims 2
- 230000003647 oxidation Effects 0.000 abstract description 18
- 238000007254 oxidation reaction Methods 0.000 abstract description 18
- 239000011248 coating agent Substances 0.000 abstract description 4
- 238000000576 coating method Methods 0.000 abstract description 4
- 102100035236 Coiled-coil domain-containing protein 146 Human genes 0.000 abstract description 2
- 101000737221 Homo sapiens Coiled-coil domain-containing protein 146 Proteins 0.000 abstract description 2
- 150000005621 tetraalkylammonium salts Chemical class 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 41
- 230000007797 corrosion Effects 0.000 description 28
- 238000005260 corrosion Methods 0.000 description 28
- 150000002910 rare earth metals Chemical class 0.000 description 15
- 238000004070 electrodeposition Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 229910001172 neodymium magnet Inorganic materials 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000004663 powder metallurgy Methods 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229910000521 B alloy Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 239000002932 luster Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- TXIPVVLKTCCGPA-UHFFFAOYSA-N 2-[3-[2-[[1-(cyclopropanecarbonyl)piperidin-3-yl]amino]pyrimidin-4-yl]-2-quinolin-2-ylimidazol-4-yl]acetonitrile Chemical compound C1(CC1)C(=O)N1CC(CCC1)NC1=NC=CC(=N1)N1C(=NC=C1CC#N)C1=NC2=CC=CC=C2C=C1 TXIPVVLKTCCGPA-UHFFFAOYSA-N 0.000 description 2
- HSQWCQQAYCHINS-UHFFFAOYSA-N BPC Chemical compound BPC HSQWCQQAYCHINS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000002659 electrodeposit Substances 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- NLMDJJTUQPXZFG-UHFFFAOYSA-N 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane Chemical compound C1COCCOCCNCCOCCOCCN1 NLMDJJTUQPXZFG-UHFFFAOYSA-N 0.000 description 1
- WWILHZQYNPQALT-UHFFFAOYSA-N 2-methyl-2-morpholin-4-ylpropanal Chemical compound O=CC(C)(C)N1CCOCC1 WWILHZQYNPQALT-UHFFFAOYSA-N 0.000 description 1
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910017495 Nd—F Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- JIDMEYQIXXJQCC-UHFFFAOYSA-L copper;2,2,2-trifluoroacetate Chemical compound [Cu+2].[O-]C(=O)C(F)(F)F.[O-]C(=O)C(F)(F)F JIDMEYQIXXJQCC-UHFFFAOYSA-L 0.000 description 1
- 239000002739 cryptand Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- VBLNFWKVZVKXPH-UHFFFAOYSA-L nickel(2+);2,2,2-trifluoroacetate Chemical compound [Ni+2].[O-]C(=O)C(F)(F)F.[O-]C(=O)C(F)(F)F VBLNFWKVZVKXPH-UHFFFAOYSA-L 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/026—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は有機電解メッキ法に基づくメッキ被膜によるR
2T14B金属間化合物系永久磁石(ここで、RはYを
含む希土類元素、Tは遷移金属を示す。)の耐酸化性の
改善に関し、特にR2T14B金属間化合物系永久磁石
を被膜するメッキ膜を形成用の有機溶媒電解メッキ液に
関する。[Detailed description of the invention] [Industrial field of application]
Regarding the improvement of oxidation resistance of 2T14B intermetallic compound permanent magnets (here, R is a rare earth element including Y, and T is a transition metal), in particular, forming a plating film that coats R2T14B intermetallic compound permanent magnets. The present invention relates to an organic solvent electrolytic plating solution for use in organic solvent electrolytic plating.
[従来の技術]
一般に、Nd−Fe−B系磁石に代表されるR2T、4
B希土類永久磁石は、Sm−Co系希土類永久磁石に比
べて優れた磁石特性を有することが知られている。しか
も、価格的な面でも、資源的に豊富なNd、Feを主成
分としているため、Sm−Co系に比べて、より低価格
で供給できるという利点もあり、その使用範囲が広がり
つつある。[Prior art] In general, R2T,4 represented by Nd-Fe-B magnets
B rare earth permanent magnets are known to have superior magnetic properties compared to Sm--Co rare earth permanent magnets. In addition, in terms of price, since Nd and Fe, which are abundant in resources, are the main components, it has the advantage that it can be supplied at a lower price than the Sm-Co type, and its range of use is expanding.
ところが、その反面、R−Fe−B系希土類永久磁石は
、その合金の金属組織中に、大気中で極めて酸化しゃす
いR−Fe固溶体相を含有するという特殊な内的酸化要
因を包含しているため、磁石表面に酸化皮膜が析出形成
され、磁石特性の劣化及びそのバラツキが生じ、また、
磁気回路等の部品として使用した場合には、係る酸化皮
膜の飛散等により、周辺機器への汚染を引き起こすとい
う問題があった。However, on the other hand, R-Fe-B rare earth permanent magnets contain a special internal oxidation factor in that the metal structure of their alloy contains an R-Fe solid solution phase that is extremely susceptible to oxidation in the atmosphere. As a result, an oxide film is deposited and formed on the magnet surface, causing deterioration and variation in magnetic properties.
When used as a component for a magnetic circuit or the like, there is a problem in that the oxide film scatters and causes contamination of peripheral equipment.
そこで、従来は、特開昭80−54406号公報又は特
開昭60−83903号公報に記載されるように、水溶
液系メッキ液により、磁石体表面にメッキや化成皮膜等
の耐酸化性被膜を形成する方法が採られていた。Therefore, conventionally, as described in JP-A-80-54406 or JP-A-60-83903, an oxidation-resistant coating such as plating or chemical conversion coating was applied to the surface of the magnet using an aqueous plating solution. A method of forming was adopted.
[発明が解決しようとする譚通]
しかしながら、上述した従来のメッキや化成皮膜等の耐
酸化性被膜を形成する方法では、メッキ工程に用いるメ
ッキ液において、多量の水や水溶液を使用するという外
的酸化要因を有しているため、処理工程中にR−Fe固
溶体相が優先的に酸化されてしうまう欠点がある。その
結果、メッキ工程において重要な前処理効果は喪失し、
磁石体表面でのメッキ膜の生成及び成長が妨げられて、
密着性不良及び粉末状の電着物となる問題が生じる。[Target to be Solved by the Invention] However, in the conventional methods of forming oxidation-resistant films such as plating and chemical conversion films described above, a large amount of water or aqueous solution is used in the plating solution used in the plating process. Since it has a specific oxidation factor, it has the disadvantage that the R-Fe solid solution phase is preferentially oxidized during the treatment process. As a result, the important pretreatment effect in the plating process is lost,
The formation and growth of the plating film on the surface of the magnet is hindered,
Problems arise such as poor adhesion and powdery electrodeposit.
また、たとえ、磁石体表面にメッキ膜若しくは化性波膜
等の耐酸化性被膜を形成することができたとしても、磁
石体表面と被膜との間に存在する酸化被膜や被膜内に残
存する吸着水分子等により内部酸化が進行し、膜のフク
レ及び膜の剥離等の密着側不良の原因を残すことになる
。Furthermore, even if it is possible to form an oxidation-resistant film such as a plating film or a chemical wave film on the surface of the magnet, the oxide film existing between the surface of the magnet and the film may remain in the film. Internal oxidation progresses due to adsorbed water molecules, etc., resulting in defects on the adhesion side such as blistering of the film and peeling of the film.
また、イオンブレーティング等によるPVD法による表
面処理法においても、膜組織が樹脂状析出となり、緻密
性に欠ける。Furthermore, even in a surface treatment method using a PVD method such as ion blasting, the film structure becomes a resin-like precipitation and lacks density.
すなわち、これら従来の表面処理法では、いずれも耐食
性の向上を図ることが困難であった。That is, with these conventional surface treatment methods, it is difficult to improve corrosion resistance.
一方、特開昭63−9108号公報1と記載されるよう
に、非水溶液系メッキ液である有機溶媒を電解浴(テト
ラヒドロフラン系浴等)として用いる有機電解メッキ法
により、希土類永久磁石の表面を被覆する方法も知られ
てはいる。しかし、非水溶液系メッキ液であっても、そ
の有機溶媒自体が極性溶媒であることから、却って、水
分を含み易く、しかも、有機溶媒は塩類の溶解度が小さ
いため、導電率すらも低下させてしまうという有機電解
特有の欠点を有している。On the other hand, as described in JP-A No. 63-9108, the surface of rare earth permanent magnets is coated using an organic electrolytic plating method that uses an organic solvent, which is a non-aqueous plating solution, as an electrolytic bath (such as a tetrahydrofuran bath). Methods of coating are also known. However, even with non-aqueous plating solutions, since the organic solvent itself is a polar solvent, it tends to contain water, and since organic solvents have low solubility for salts, they can even reduce conductivity. It has the disadvantage of being stored away, which is unique to organic electrolytes.
さらに、係る有機溶媒の欠点を補うためには、従来の有
機電解メッキに用いられる単なる支持塩では、酸化の著
しいR−Fe固溶体相を有するというR2T14B希土
類永久磁石材料特をの内的酸化要因に対処し得す、この
ため、光沢性がなく、密着性も低いメッキ膜しか形成し
得ないというのが現状であった。Furthermore, in order to compensate for the drawbacks of organic solvents, it is necessary to use the internal oxidation factor of the R2T14B rare earth permanent magnet material, which has a R-Fe solid solution phase that is highly oxidized, with a simple supporting salt used in conventional organic electrolytic plating. However, the current situation is that only plating films that lack gloss and have low adhesion can be formed.
そこで、本発明の第1の技術的課題は、上記欠点に鑑み
、メッキ工程中において多量の水や水溶液を必要としな
い有機電解メッキ法における光沢性(外観性)及び密着
性を向上させた耐酸化性被膜を形成するR2T、B金属
間化合物永久磁石のメッキ膜用有機溶媒電解メッキ液を
提供することである。In view of the above drawbacks, the first technical problem of the present invention is to provide an acid-resistant plating method that improves gloss (appearance) and adhesion in an organic electrolytic plating method that does not require a large amount of water or aqueous solution during the plating process. An object of the present invention is to provide an organic solvent electrolytic plating solution for plating films of R2T, B intermetallic compound permanent magnets forming a chemically resistant film.
また、本発明の第2の技術的課題は、R2T14B金属
間化合物永久磁石の包含する特殊な内的酸化要因に対応
し、種々の有機溶媒に使用し得る汎用性の高い支持塩を
用いたメッキ膜用有機溶媒電解メッキ液を提供すること
である。In addition, the second technical problem of the present invention is to respond to the special internal oxidation factors included in R2T14B intermetallic compound permanent magnets, and to develop plating using a highly versatile supporting salt that can be used in various organic solvents. An object of the present invention is to provide an organic solvent electrolytic plating solution for membranes.
更に、本発明の第3の技術的課題は、有機溶媒への溶解
度を高め、且つ、本発明に係わる支持塩の導電率をも高
めたメッキ膜用有機溶媒電解メッキ液を提供することで
ある。Furthermore, a third technical object of the present invention is to provide an organic solvent electrolytic plating solution for plating films that has increased solubility in organic solvents and also has increased conductivity of the supporting salt according to the present invention. .
更に、本発明の第4の技術的課題は、有機電解メッキ工
程中における外的酸化要因を除いたメッキ膜用有機溶媒
電解メッキ液を提供することである。Furthermore, a fourth technical object of the present invention is to provide an organic solvent electrolytic plating solution for plating films that eliminates external oxidation factors during the organic electrolytic plating process.
[課題を解決するための手段]
本発明によれば、金属元素の1種以上を含有する金属塩
と、支持塩と、残部を有機溶媒とする有機溶媒電解メッ
キ液を用いる有機電解メッキ方法により、R,Fe、B
を主成分とするR2T、4B金属間化合物永久磁石材料
(ここで、RはYを含む希土類元素、Tは遷移金属を示
す。)の表面に、メッキ膜を形成する有機電解メッキ工
程において用いられるメッキ膜用有機溶媒電気メッキ液
において、
前記支持塩として、
■R’ 、BO,(R″はH又はアルキル基を表す。)
、MBO2(MはH又はアルカリ金属を表す。)、M’
BO,(M’ はアルカリ金属を表す。[Means for Solving the Problems] According to the present invention, an organic electrolytic plating method using an organic solvent electrolytic plating solution containing a metal salt containing one or more metal elements, a supporting salt, and the remainder being an organic solvent. , R, Fe, B
Used in the organic electrolytic plating process to form a plating film on the surface of R2T, 4B intermetallic compound permanent magnet material (here, R is a rare earth element containing Y, and T is a transition metal) whose main component is In the organic solvent electroplating solution for plating film, the supporting salts include: (R', BO, (R'' represents H or an alkyl group).
, MBO2 (M represents H or an alkali metal), M'
BO, (M' represents an alkali metal.
) + M’ 28 x 0.3x+2)y□(xは2
以上の偶数である。)を少なくとも一以上含むほう酸系
化合物と、
■M’ XO4及びR’ 4 NXO4(Xはハロゲン
を表す。)の少なくともどちらか一方を含むアルカリ金
属又はテトラアルキルアンモニウムのXO4−塩と、
■M’ BX4又はR’ NBX4の少なくともどちら
か一方を含むアルカリ金属及びテトラアルキルアンモニ
ウムのBX、−塩と、
■M’ PI3及びR’ NPX6の少なくともどち
らか一方を含むアルカリ金属及びテトラアルキルアンモ
ニウムのPI3−塩と、
■M’ CX 3 S 03及びR’ 4 N CX
3 S O3の少なくともどちらか一方を含むアルカリ
金属及びテトラアルキルアンモニウムのcx、so3塩
と、
OR’ C00M’ を含むアルカリ金属のR’ C
oo−塩と
からなるグループより選択された少なくとも一種以上を
含有することを特徴とするR2T、、B金属間化合物永
久磁石のメッキ膜用有機溶媒電気メッキ液が得られる。) + M' 28 x 0.3x+2)y□(x is 2
is an even number greater than or equal to ); ■ an alkali metal or tetraalkylammonium XO4- salt containing at least one of M' XO4 and R' 4 NXO4 (X represents a halogen); ■ M' BX,-salt of an alkali metal and tetraalkylammonium containing at least one of BX4 or R' NBX4, and PI3-salt of an alkali metal and tetraalkylammonium containing at least one of M' PI3 and R' NPX6. and ■M' CX 3 S 03 and R' 4 N CX
alkali metal and tetraalkylammonium cx, so3 salts containing at least either one of 3S O3 and an alkali metal R' C containing OR'C00M'
An organic solvent electroplating solution for plating films of R2T, B intermetallic compound permanent magnets is obtained, which is characterized by containing at least one selected from the group consisting of salts.
本発明によれば、前記支持塩は、
前記はう酸系化合物として、
はう酸(H3BO3)を、
前記テトラアルキルアンモニウムのXO4−塩として、
過塩素酸テトラブチルアンモニウム1 [CHs (C
H2) 3] 4 NCN O4)を含をすることを特
徴とするR2T14B金属間化合物永久磁石のメッキ膜
用有機溶媒電気メッキ液が得られる。According to the present invention, the supporting salt comprises: oxalic acid (H3BO3) as the halonic acid-based compound, and oxalic acid (H3BO3) as the tetraalkylammonium
Tetrabutylammonium perchlorate 1 [CHs (C
An organic solvent electroplating solution for a plating film of an R2T14B intermetallic compound permanent magnet is obtained, which is characterized by containing H2) 3] 4 NCN O4).
本発明によれば、前記R2T14B金属間化合物永久磁
石のメッキ膜用有機溶媒電気メッキ液において、
前記支持塩と共に添加される化合物として収速性クラウ
ン化合物を含有し、これにより、前記有機溶媒中にアニ
オン錯体を形成して金属カチオンを活性化することを特
徴とするR2T、4B金属間化合物永久磁石のメッキ膜
用有機溶媒電気メッキ液が得られる。According to the present invention, the organic solvent electroplating solution for the plating film of the R2T14B intermetallic compound permanent magnet contains an accelerating crown compound as a compound added together with the supporting salt, whereby the organic solvent contains An organic solvent electroplating solution for plating films of R2T, 4B intermetallic compound permanent magnets is obtained, which is characterized by forming an anion complex and activating metal cations.
本発明によれば、金属元素の1種以上を含有する金属塩
と、支持塩と、残部を有機溶媒とする有機溶媒電解メッ
キ液を用いる有機電解メッキ方法により、R,Fe、B
を主成分とするR2T、4B金属間化合物永久磁石材料
(ここで、RはYを含む希土類元素、Tは遷移金属を示
す。)の表面に、メッキ膜を形成する有機電解メッキ工
程において用いられるメッキ膜用有機溶媒電気メッキ液
において、
前記金属塩として、
トリフルオロ酢酸塩、酢酸塩、過塩素酸塩のうちの少く
とも11]iを含有し、
当該塩として、Al、Pb、Sn、Cr、Ni。According to the present invention, R, Fe, B,
Used in the organic electrolytic plating process to form a plating film on the surface of R2T, 4B intermetallic compound permanent magnet material (here, R is a rare earth element containing Y, and T is a transition metal) whose main component is The organic solvent electroplating solution for plating film contains at least 11]i of trifluoroacetate, acetate, and perchlorate as the metal salt, and the salt includes Al, Pb, Sn, and Cr. , Ni.
Cu、Znの少なくとも1種を含有することを特徴とす
るR2T14B金属間化合物永久磁石のメッキ膜用有機
溶媒電気メッキ液が得られる。An organic solvent electroplating solution for plating films of R2T14B intermetallic compound permanent magnets, which is characterized by containing at least one of Cu and Zn, is obtained.
本発明によれば、金属元素の1種以上を含有する金属塩
と、支持塩と、残部を有機溶媒とする有機溶媒電解メッ
キ液を用いる有機電解メッキ方法こより、R,Fe、B
を主成分とするR 2 T I4B4B金属合物永久磁
石材料(ここで、RはYを含む希土類元素、Tは遷移金
属を示す。)の表面に、メッキ膜を形成する有機電解メ
ッキ工程において用いられるメッキ膜用有機溶媒電気メ
ッキ液において、
前記有機溶媒として、
プロトン性両性溶媒及びプロトン受容性溶媒のうち少く
とも1種を含有することを特徴とするR2T14B金属
間化合物永久磁石のメッキ膜用有機溶媒電気メッキ液が
得られる。According to the present invention, R, Fe, B,
Used in an organic electrolytic plating process to form a plating film on the surface of an R2T I4B4B metal compound permanent magnet material (here, R is a rare earth element containing Y, and T is a transition metal) whose main component is An organic solvent electroplating solution for plating films of R2T14B intermetallic compound permanent magnets, characterized in that the organic solvent contains at least one of a protic amphoteric solvent and a proton-accepting solvent. A solvent electroplating solution is obtained.
本発明によれば、前記有機溶媒において、前記プロトン
性両性溶媒としては、メタノール(CH,OH)、エタ
ノール(C2H50H)の少なくとも18を含有し、
前記プロトン受容性溶媒としてホルムアミド(ICON
H2)。According to the present invention, the organic solvent contains at least 18 of methanol (CH,OH) and ethanol (C2H50H) as the protic amphoteric solvent, and formamide (ICON) as the proton-accepting solvent.
H2).
ジメチルホルムアミド(ICON (CH3)21アセ
トアミド(CH3CONH2)の少なくとも1種を含有
することを特徴とするR2T14B金属間化合物永久磁
石のメッキ膜用有機溶媒電気メッキ液が得られる。An organic solvent electroplating solution for plating films of R2T14B intermetallic compound permanent magnets is obtained, which is characterized by containing at least one type of dimethylformamide (ICON (CH3)21acetamide (CH3CONH2)).
本発明によれば、前記のいづれかのR2T 14B金属
間化合物永久磁石のメッキ膜用有機溶媒電気メッキ液に
おいて、
前記支持塩と共に添加される安定剤として、次亜リン酸
塩MH2PO2及びスルファミン酸(C7R5NO3S
)の少なくともどちらか一方を含有することを特徴とす
るR2T14B金属間化合物永久磁石のメッキ膜用有機
溶媒電気メッキ液が得られる。According to the present invention, in the organic solvent electroplating solution for plating films of any of the R2T 14B intermetallic compound permanent magnets, hypophosphite MH2PO2 and sulfamic acid (C7R5NO3S) are added as stabilizers together with the supporting salt.
) An organic solvent electroplating solution for plating films of R2T14B intermetallic compound permanent magnets is obtained, which is characterized by containing at least one of the following.
本発明によれば、前記のいづれかのR’x T 14B
金属間化合物永久磁石のメッキ膜用有機溶媒電気メッキ
液において、実質的に、前記金属塩の添加量は0,1〜
2.0moI/1 、前記支持塩及び前記安定剤の添加
量は0.005mol/R以上、残部が前記有機溶媒か
らなることを特徴とするR2T、4B金属間化合物永久
磁石のメッキ膜用有機溶媒電気メッキ液が得られる。According to the invention, any of the above R'x T 14B
In the organic solvent electroplating solution for plating films of intermetallic compound permanent magnets, the amount of the metal salt added is substantially 0.1 to 1.
2.0 mol/1, the amount of the supporting salt and the stabilizer added is 0.005 mol/R or more, and the remainder is the organic solvent for plating films of R2T, 4B intermetallic compound permanent magnets. An electroplating solution is obtained.
本発明によれば、前記のいづれかのR2T、4B金属間
化合物永久磁石のメッキ膜用有機溶媒電気メッキ液に含
有される水の含有量は、実質的に3000ppm以下で
あることを特徴とするR2T4B金属間化合物永久磁石
のメッキ膜用有機溶媒電気メッキ液が得られる。According to the present invention, the R2T4B characterized in that the water content contained in the organic solvent electroplating solution for plating film of any of the R2T, 4B intermetallic compound permanent magnets is substantially 3000 ppm or less. An organic solvent electroplating solution for plating films of intermetallic compound permanent magnets is obtained.
本発明の有機電界メッキ液は、有機溶媒中へメッキ層と
なる金属塩及び支持塩を溶かし込んだ溶液を電界液とし
て使用するメッキ方法であると言える。The organic electrolytic plating solution of the present invention can be said to be a plating method in which a solution in which a metal salt and a supporting salt to form a plating layer are dissolved in an organic solvent is used as an electrolytic solution.
一本発明の支持塩(第1及び第2請求項)ここで、支持
塩は、溶液中はイオンに分離した状態(E、NH,Cg
−NH,” +、Cfi −)で存在し、溶液に導電性
をもたせることは知られているが、本発明者らは、斯る
支持塩の性状の選択によっては、R2T、、B希土類磁
石材料に対して、導電性を向上させるだけでなく、メッ
キ膜の性状(密着性、光沢性等)、結晶粒の形状、耐食
性に多大な影響を及ぼすことを見い出し、本発明に至っ
たものである。A supporting salt of the present invention (first and second claims) Here, the supporting salt is in a state separated into ions (E, NH, Cg
-NH,"+,Cfi-), and is known to impart conductivity to the solution. However, the present inventors believe that depending on the selection of the properties of the supporting salt, R2T, , B rare earth magnets It was discovered that this method not only improves the conductivity of the material, but also has a significant effect on the properties of the plating film (adhesion, gloss, etc.), crystal grain shape, and corrosion resistance, leading to the present invention. be.
そこで、本発明者らは、種々の実験を行なった結果、特
許請求の範囲の第1請求項に記載のとおり、メッキ浴の
導電性を向上させるだけでなく、メッキ膜の耐食性、密
着性および外観性(光沢性)を向上させ、しかも、R2
T、4B希土類永久磁石材料の特質に合致した支持塩を
得た。Therefore, as a result of various experiments, the present inventors have found that they not only improve the conductivity of the plating bath, but also improve the corrosion resistance, adhesion, and Improves appearance (gloss) and also improves R2
A supporting salt matching the characteristics of T, 4B rare earth permanent magnet material was obtained.
これら本発明に係る支持塩をX+Y″の形で表わすとX
1Y−はそれぞれ
X+・・・・・・H”M”(アルカリ金属)、NR”(
R:Hまたはアルキル基)
Y−・・・・・・はう酸系陰イオン、XO。When these supporting salts according to the present invention are expressed in the form of X+Y'',
1Y- is X+...H"M" (alkali metal), NR"(
R: H or alkyl group) Y-...Hallic acid anion, XO.
BI3− 、PI3− 、CXI 5O3RC00−N
Oi −S O4’−、etc cx : ”ロゲン
R’ Hまたはアルキル基)のイオンで表わされるがR
2T14B希土類永久磁石材料の特質に合致したx+、
y−の組合せがポイントとなる。BI3-, PI3-, CXI 5O3RC00-N
Oi -S O4'-, etc cx: "Rogen
R'H or alkyl group) ion, but R
x+, which meets the characteristics of 2T14B rare earth permanent magnet material;
The key point is the combination of y-.
換言すれば1、上述の中でX+としてH+M+ および
NR4+のようなカチオンを用いても、Y−がN01−
、S04 ’−のようなアニオンである通常の組合わ
せでは、メッキ膜に光沢もなく、更にメッキ膜とR2T
、4B希土類永久磁石材料との密着性が悪く、優れた耐
食性をもったR2T、4B希土類磁石材料は得られず、
これは、アニオンY−の放電反応が電極表面上で起こり
、これらの生成物やアニオンにより、電界液中の酸化力
が増加し、電界液中でR,T、、B希土類永久磁石材料
の表面を侵してしまうからである。その結果、メッキ膜
の密着性等の劣化を及ぼすことになる。In other words, 1. Even if cations such as H+M+ and NR4+ are used as X+ in the above, Y- is N01-
, S04'-, an anion, the plating film has no luster, and the plating film and R2T
, 4B rare earth permanent magnet material has poor adhesion, and R2T, 4B rare earth magnet material with excellent corrosion resistance cannot be obtained.
This is because a discharge reaction of the anion Y- occurs on the electrode surface, and these products and anions increase the oxidizing power in the electrolyte, and the surface of the R, T, B rare earth permanent magnet material in the electrolyte increases. This is because it violates the As a result, the adhesion of the plating film will deteriorate.
ここに、本発明による支持塩を用いることにより、メッ
キ可能な金属は、通常の水溶液を用いる電解メッキと同
様、Ni、Cr、Cu、Sn。Here, by using the supporting salt according to the present invention, the metals that can be plated include Ni, Cr, Cu, and Sn, as in the case of electrolytic plating using a normal aqueous solution.
Co等の金属が可能であり、その用途により多くの選択
ができる。また、用いる有機溶媒も、エタノール、メタ
ノール等のアルコール類、ベンゼン等の芳香族、アミド
類、BPC,ヘキサン、キンレン等の多種様々な有機溶
媒を用いることができる。尚、誘電率が高く、粘性の低
いもの、さらに公害等を考慮し蒸気圧が低く、危険性、
毒性の低いものをを選択するのが好ましい。Metals such as Co can be used, and there are many choices depending on the application. Furthermore, various organic solvents can be used, such as alcohols such as ethanol and methanol, aromatics such as benzene, amides, BPC, hexane, and quinolene. In addition, materials with a high dielectric constant and low viscosity, as well as materials with low vapor pressure and danger due to pollution, etc.
It is preferable to select one with low toxicity.
しかも、本発明に係る支持塩は、通常の水溶液を用いた
電解メッキで使用される支持塩とは異なるものの、その
手法等は比較的容易であり、コスト的にも安価であり、
従来の耐食性向上の手段として用いられている樹脂コー
ティング、スノく・ツタ等の乾式メッキ比べ、低コスト
で製造でき、工業上極めて有効であると言える
一双環性クラウン化合物(第3請求項)次に、上述した
本発明に係わる支持塩と共に使用することにより、有機
溶媒のメ・ツキ金属に対する溶解度を高め、且つ、支持
塩の導電性を高める双環性クラウン化合物について、説
明する。Moreover, although the supporting salt according to the present invention is different from the supporting salt used in electrolytic plating using a normal aqueous solution, the method thereof is relatively easy and the cost is low.
A monobicyclic crown compound that can be produced at a lower cost and can be said to be extremely effective industrially than the resin coating used as a conventional means of improving corrosion resistance or the dry plating of swine, ivy, etc. (Claim 3): Next, a bicyclic crown compound that increases the solubility of the metal in an organic solvent and increases the conductivity of the supporting salt when used with the supporting salt according to the present invention described above will be described.
一般に、有機溶媒は、水溶液の場合に比較して、塩類の
溶解度が小さいため、結果的に反応速度も小となり、導
電率も低くなることは避けられない。In general, organic solvents have a lower solubility of salts than aqueous solutions, which inevitably results in lower reaction rates and lower electrical conductivity.
本発明者らは、この問題点を改善するため、電離したイ
オンと錯体を形成し、有機溶媒への溶解度を増加し、本
発明に係る支持塩と共働し得るが化合物を種々検討した
。その結果、本発明の目的にかなう化合物として、アニ
オンを包接し得る収速性クラウン化合物を見い出゛した
。In order to improve this problem, the present inventors have investigated various compounds that can form complexes with ionized ions, increase solubility in organic solvents, and work together with the supporting salt according to the present invention. As a result, a yielding crown compound capable of clathrating anions was discovered as a compound that satisfies the purpose of the present invention.
クリプタンドが効果があったことは、この化合物がアニ
オンを包接して有機溶媒中に可溶化するとともに、通常
、電解質は、溶液中でイオン対で存在し溶液全体は電気
的に中性であるが、アニオンが包接されることによって
、あたかも溶液中にカチオンだけが存在するような状態
となったためと解される。Cryptand was effective because this compound included anions and solubilized them in organic solvents, and although electrolytes normally exist in ion pairs in solutions and the solution as a whole is electrically neutral, This is understood to be due to the inclusion of the anion, making it appear as if only the cation existed in the solution.
一本発明の金属塩(第4請求項)
更に、本発明では、種々の金属塩が溶質として使用し得
る。しかも、本発明の電解メ・ツキ液の安定な電位範囲
が広いことから、活性水素を持たない溶媒を使用した場
合に、金属電析時の同時発生がなくなるため、水溶液か
らの電析が通常は困難であるアルミニウムやチタンの塩
が使用できることも本発明の特徴である。Metal Salt of the Present Invention (Fourth Claim) Furthermore, in the present invention, various metal salts can be used as solutes. Moreover, since the electrolytic plating solution of the present invention has a wide stable potential range, when a solvent without active hydrogen is used, there will be no simultaneous metal deposition, so electrodeposition from an aqueous solution is usually possible. Another feature of the present invention is that aluminum and titanium salts, which are difficult to use, can be used.
具体的には、トリエチルアルミニウム(i(C2H5)
3)2.)リフルオロ酢酸二・ソケル(N i (C
F3 Coo)2 )、 トリフルオロ酢酸銅(Cu
(CF3 Coo)2 ) 、過塩素酸塩等が挙げら
れるが、特にこれらに限定されるものではない。Specifically, triethylaluminum (i(C2H5)
3)2. ) Lifluoroacetic acid di-soquer (N i (C
F3 Coo)2), copper trifluoroacetate (Cu
(CF3Coo)2), perchlorate, etc., but are not particularly limited to these.
一本発明の有機溶媒(第5及び第6請求項)まず、有機
電界メッキ工程中における外的酸化要因を除く方法にお
いて、その有機溶媒について説明する。Organic Solvent of the Present Invention (Fifth and Sixth Claims) First, the organic solvent will be described in a method for removing external oxidation factors during an organic electroplating process.
一般に希土類金属(R)の化合物は3価のイオン性化合
物が主である。金属は陽性で反応性に富み、冷水と徐々
に次のように反応する。Generally, rare earth metal (R) compounds are mainly trivalent ionic compounds. The metal is positive and highly reactive and gradually reacts with cold water as follows.
R+3H20→R+ (OH)3 +3/2H2さらに
反応が進行すると、ここで生成した水酸化物が酸化物と
なることは容易に推定される。このことからも、R2T
、4B系合金に耐酸化性皮膜を付与する際には、水との
接触を極力避ける必要があることが分かる。R+3H20→R+ (OH)3 +3/2H2 It is easily assumed that as the reaction progresses further, the hydroxide produced here becomes an oxide. From this, R2T
It can be seen that when applying an oxidation-resistant film to a 4B alloy, it is necessary to avoid contact with water as much as possible.
そこで、溶媒としての水の代替として、有機溶媒が使用
されるものである。Therefore, an organic solvent is used as a substitute for water as a solvent.
本発明に使用する有機溶媒として各種有機溶媒が使用可
能であるが、有機電解メッキ浴の溶媒としては一般に次
のような性質をもった溶媒を選択するのが好ましい。Although various organic solvents can be used as the organic solvent for use in the present invention, it is generally preferable to select a solvent having the following properties as the solvent for the organic electrolytic plating bath.
1)毒性、危険性が少ない。1) Low toxicity and risk.
2)粘度が低く、導電性がよい。2) Low viscosity and good conductivity.
3)誘電率が高く、溶質の溶解と解離を容易にする。3) It has a high dielectric constant and facilitates solute dissolution and dissociation.
また、本発明による有機電解メッキ法によりメッキ可能
な金属は、通常の水溶液を用いる電解メッキ同様、Ni
、Cr、Cu、Sn、Co等の金属か可能であり、その
用途により多くの選択ができる。In addition, metals that can be plated by the organic electrolytic plating method according to the present invention include Ni
, Cr, Cu, Sn, Co, and other metals, and many choices can be made depending on the application.
また、用いる有機溶媒も先に述べたようにアルコール類
、芳香族、アミド類、ヘキサン、キシレン等様々なもの
が用いられるが、誘電率が高く粘性の低いもの、水分の
低く水との親和力の低いものが好ましいが、水分に関し
ては本発明に示した如く、脱水して使用すればよい。ま
た、公害等を考慮し蒸気圧が低く、危険性、毒性の低い
ものを選択するのが好ましい。In addition, as mentioned above, various organic solvents are used, such as alcohols, aromatics, amides, hexane, xylene, etc., but some have a high dielectric constant and low viscosity, others have low water content and have no affinity for water. Although it is preferable that the water content is low, the water content may be dehydrated before use as shown in the present invention. Further, in consideration of pollution, etc., it is preferable to select a material that has a low vapor pressure, is low in danger, and is low in toxicity.
これらの点に鑑み、使用できる溶媒としては、高い比誘
電率、低い粘度、室温付近で液体であり、揮発性が低い
等の物性が要求される。使用される代表的な有機溶媒を
表−1に示す。In view of these points, usable solvents are required to have physical properties such as high dielectric constant, low viscosity, being liquid at around room temperature, and low volatility. Table 1 shows typical organic solvents used.
以下余白
表−1
使用される溶媒とその物性値
一本発明の含水量3000ppm(第9請求項)同様に
、有機電界メッキ工程中における外的酸化要因を除く方
法において、その含有水分量にいて説明する。Margin table below - 1 Solvents used and their physical properties - Moisture content of the present invention: 3000 ppm (Claim 9) Similarly, in the method of removing external oxidation factors during the organic electroplating process, the water content explain.
上述した有機溶媒を使用するに当たっても、最も注意す
べきは、水分であるが、これら極性溶媒は水を溶解する
ものが多く、処理工程中に多量に水分を含んでしまうと
いう必然的な欠点がある。When using the above-mentioned organic solvents, the most important thing to be careful about is water, but many of these polar solvents dissolve water, so they have the inevitable drawback of containing a large amount of water during the treatment process. be.
この含有水分量は、各種有機溶媒を製造する段階におい
て生成され、また、有機溶媒により吸水性が異なり、そ
の後の保存状態、使用環境によりその水分含有量は変化
する。This water content is generated at the stage of manufacturing various organic solvents, and the water absorption properties differ depending on the organic solvent, and the water content changes depending on the subsequent storage conditions and use environment.
特にエタノール、メタノール等の低分子アルコールは、
水の溶解度が無限大であり、その吸水性は高い。また他
の有機溶媒においても、吸水性の高いものが存在する(
ホルムアミド等)。即ち、この有機溶媒の有する吸水性
のため、使用及び保存環境により、有機溶媒自体の水分
含有量は変化する。Especially low molecular weight alcohols such as ethanol and methanol,
Its solubility in water is infinite, and its water absorption is high. There are also other organic solvents that have high water absorption (
formamide etc.). That is, due to the water absorption property of this organic solvent, the water content of the organic solvent itself changes depending on the usage and storage environment.
そこで、本発明者らは、この有機電解メッキにおける諸
条件の影響を検討した結果、特に有機溶媒中の水分量及
びメッキ処理雰囲気を制御することを見い出したもので
ある。As a result of studying the effects of various conditions on organic electrolytic plating, the inventors of the present invention have found that the amount of water in the organic solvent and the plating atmosphere can be particularly controlled.
すなわち、本発明によれば、有機電解メッキの有機溶媒
中の水分を、3000 ppa+以下とし、しかも、メ
ッキ槽等の雰囲気N、、Ar等とし、大気としゃ断した
雰囲気にて有機電解メッキを行なうものである。That is, according to the present invention, the water content in the organic solvent for organic electrolytic plating is 3000 ppa+ or less, and the organic electrolytic plating is performed in an atmosphere such as N, Ar, etc. in the plating tank, which is cut off from the atmosphere. It is something.
これにより、本発明における有機溶媒は、エタノール、
メタノール等のアルコール類、ベンゼン等の芳香族、ア
ミド類、BPC,プロピレンカーボネイト、ヘキサン、
キシレン等の様々な、有機溶媒を用いることもできる。Thereby, the organic solvent in the present invention is ethanol,
Alcohols such as methanol, aromatics such as benzene, amides, BPC, propylene carbonate, hexane,
Various organic solvents can also be used, such as xylene.
なお、水分の量を3000 ppm以下としたのは、耐
食性、光沢度に優れたメッキ槽を得るための上限である
からである。The reason why the amount of water is 3000 ppm or less is because this is the upper limit for obtaining a plating bath with excellent corrosion resistance and gloss.
本発明において有機溶媒中の水分量を3000pp■以
下とする方法としては、通常行なわれるCa金属、モレ
キュラーシーブ等を用いた脱水方法を用いればよく、さ
らにメッキ環境を保護するためには、電解層をAr、N
2等の不活性ガス雰囲気中に配置すればよい。特には、
グローブボックス等が好ましい。In the present invention, as a method for reducing the water content in the organic solvent to 3000 pp or less, a commonly used dehydration method using Ca metal, molecular sieve, etc. may be used, and in order to further protect the plating environment, an electrolytic layer Ar, N
It may be placed in an inert gas atmosphere such as No. 2. in particular,
A glove box or the like is preferred.
一本発明の各構成成分の含有量(第8請求項)本発明で
使用する金属塩は0.1〜2.0mol/N有機溶媒中
に含有していれば、メッキにより良好な皮膜を形成する
ことができ、目的に応じてその濃度を変えることができ
る。なお、0.1mol/Ωより少ない領域ではメッキ
膜生成能力が低く、共存反応である水素発生等による電
流効率の低下、またメッキ時間も長時間を要すため、金
属塩の添加量の下限は0.1a+ol/gとする必要が
ある。また、2゜Omol/IIより多い領域では、反
応速度の増大に伴う、メッキ皮膜の不均一化、及び金属
塩の有機溶媒に対する溶解度の限界により、未溶解金属
塩粉末が、メッキ皮膜の生成反応に悪影響を及ぼすため
、金属塩の添加量の上限は2.0mol/II!とする
必要がある。1. Content of each component of the present invention (Claim 8) If the metal salt used in the present invention is contained in an organic solvent of 0.1 to 2.0 mol/N, a good film can be formed by plating. The concentration can be changed depending on the purpose. In addition, in the region of less than 0.1 mol/Ω, the ability to form a plating film is low, the current efficiency decreases due to coexisting reactions such as hydrogen generation, and the plating time also takes a long time, so the lower limit of the amount of metal salt added is It is necessary to set it to 0.1a+ol/g. In addition, in a region where the amount is more than 2° Omol/II, the undissolved metal salt powder will react with the forming reaction of the plating film due to the non-uniformity of the plating film due to the increase in the reaction rate and the limited solubility of the metal salt in the organic solvent. The upper limit of the amount of metal salt added is 2.0 mol/II! It is necessary to do so.
有機溶媒に添加する支持塩及び安定剤は、■電気メッキ
、および電気分解を行なうときの支持塩であって、電解
を行なう際に、導電性を付与するもの、
■メッキ浴の安定剤、緩衝剤等に用いられるものであり
、これら添加剤を1種だけでも、また2種以上を混合添
加しても目的は達成できる。Supporting salts and stabilizers added to organic solvents include: ■ Supporting salts for electroplating and electrolysis, which provide conductivity during electrolysis; ■ Stabilizers and buffers for plating baths. These additives are used in additives, etc., and the purpose can be achieved by adding only one type of these additives or by adding a mixture of two or more types.
支持塩及び安定剤の添加濃度としては0.005II。The concentration of supporting salt and stabilizer added was 0.005II.
/f)以上添加すれば目標のメッキを行なうことができ
るので十分である。なお、0.005mol/Nより少
ない領域ではメッキ液への導電性の付与、安定化、緩衝
作用には不十分であり、添加剤は0.005mo1/R
以上とする必要がある。/f) or more is sufficient to achieve the target plating. In addition, if the amount is less than 0.005 mol/N, it is insufficient to impart conductivity to the plating solution, stabilize it, or buffer it, so the additive should be less than 0.005 mol/N.
It is necessary to do more than that.
以上述べたように本発明における組成のメッキ液を有機
溶媒電解メッキにおいて使用することにより、緻密で均
一な膜組織を得ることができ、耐食性に優れた、しかも
密着性に優れ、外観上金属光沢に優れたメッキ膜をNd
−Fe−B系希土類永久磁石表面に得ることができ、工
業上極めて有効である。As described above, by using the plating solution having the composition of the present invention in organic solvent electrolytic plating, it is possible to obtain a dense and uniform film structure, which has excellent corrosion resistance, excellent adhesion, and has a metallic luster in appearance. Excellent plating film with Nd
It can be obtained on the surface of -Fe-B rare earth permanent magnets and is extremely effective industrially.
[実施例] 次に、本発明の実施例について説明する。[Example] Next, examples of the present invention will be described.
−第1実施例− メッキ試験用試料を以下のように作成した。-First Example- A plating test sample was prepared as follows.
まず、通常の粉末冶金法により、33 W t%Nd−
10wt%B#Febapの組成を有する焼結体を作成
し、この焼結体を10X10X5(I1g+)の寸法に
切断加工し、メッキ試験用試料とした。First, 33 W t%Nd-
A sintered body having a composition of 10 wt% B#Febap was created, and this sintered body was cut into a size of 10×10×5 (I1g+) to serve as a sample for a plating test.
上記の試料を、表−2に示す支持塩、電析条件において
有機電解メッキを行ない、各条件における試験を作成し
た。ここで、電解液の主成分を成す有機溶媒として、メ
タノール(CM、OH)、金属塩としてトリフルオロ酢
酸ニッケルtNi(CF3 Coo)2 + を使用し
ている。The above sample was subjected to organic electrolytic plating under the supporting salt and electrodeposition conditions shown in Table 2, and tests under each condition were prepared. Here, methanol (CM, OH) is used as the organic solvent that constitutes the main component of the electrolytic solution, and nickel trifluoroacetate tNi(CF3Coo)2+ is used as the metal salt.
なお、比較材として、塩化アンモニウム(NH40g)
、硝酸リチウム、(LiNOi)、硫酸水素アンモニウ
ム1(NH4)HSO41を支持塩として使用したとき
の試料を作成した。In addition, as a comparison material, ammonium chloride (NH40g)
, lithium nitrate, (LiNOi), and ammonium hydrogen sulfate 1 (NH4) HSO41 were used as supporting salts.
以下余白
ここで、表−2に示した電析条件でメッキした試料(試
料No、 1〜35)の耐食性試験を行なった。Margin below Here, a corrosion resistance test was conducted on samples (sample Nos. 1 to 35) plated under the electrodeposition conditions shown in Table 2.
その方法および条件は、低温恒温度試験で 60℃、9
5%、2000h r施した。表−3に、これらの耐食
性試験結果を示す。The method and conditions are low temperature constant temperature test at 60℃, 9
5% for 2000 hours. Table 3 shows the results of these corrosion resistance tests.
以下余白
表−3
各種支持塩で得たメッキ試料の耐食性試験結果次に、第
1実施例による有機電解メッキと通常のワット浴より形
成されるメッキとの比較を行うため、第1実施例で用い
たNd−Fe争B焼結体ヘワット浴でNiメッキした試
料と、第1実施例のメタノール−Ni塩−N a 2
B40tの浴より形成したNiメッキ試料についてSI
MSによる分析を行なった。Table 3: Corrosion resistance test results of plating samples obtained with various supporting salts Next, in order to compare the organic electrolytic plating according to the first example with the plating formed by a normal Watt bath, Samples plated with Ni in the Hewat bath of the Nd-Fe sintered body used and the methanol-Ni salt-N a 2 sample of the first example
SI for Ni-plated samples formed from B40t bath
Analysis by MS was performed.
その結果を、第1図、第2図に示す。ここで、第1図は
、ワット浴によるメッキ試料の結果、第2図は有機電解
メッキ(Ni塩−Na2BaOt−メタノール)の結果
を示したものである。The results are shown in FIGS. 1 and 2. Here, FIG. 1 shows the results of a plating sample using a Watt bath, and FIG. 2 shows the results of organic electrolytic plating (Ni salt-Na2BaOt-methanol).
第1図、第2図より通常のワット浴によるメッキでは、
H20,02といったNd−Fe−Bを酸化する物質が
多く存在していることが分かる。From Figures 1 and 2, plating using a normal Watt bath,
It can be seen that there are many substances that oxidize Nd-Fe-B, such as H20,02.
また、本実施例の有機電解メッキについては、C−Hの
化合物のピークが多くみられるものの、H2O,02と
いった悪影響を及ぼすピークは、全く認められず、通常
のワット浴によるメッキと、有機電解メッキとでは、そ
のメッキ層に含有される不純物は明らかに異なることが
わかった。In addition, in the organic electrolytic plating of this example, although many peaks of C-H compounds were observed, no peaks with adverse effects such as H2O,02 were observed at all. It was found that the impurities contained in the plating layer are clearly different from plating.
−第2実施例−
通常の粉末冶金法による3 3 w t%N d −1
,OB−Febagの組成を有する焼結体を得た。この
焼結体と110X10X5(+m)の寸法に切り出しメ
ッキ試験用T、Rをいくつか得た。-Second Example- 33wt%Nd-1 by normal powder metallurgy method
, OB-Febag was obtained. This sintered body was cut out to a size of 110 x 10 x 5 (+m) to obtain several T and R pieces for plating tests.
次に、表−4に示すメッキ条件にて本実施例に係わる有
機電解メッキ(a、b、c)及び比較材として支持塩N
H4Cf1 (塩化アンモニウム)を用いた有機電解メ
ッキ(比較例1)、通常のワット浴による電解Niメッ
キ(比較例2))の条件の試料を作製した。Next, under the plating conditions shown in Table 4, organic electrolytic plating (a, b, c) according to this example and supporting salt N as a comparative material were applied.
Samples were prepared under the conditions of organic electrolytic plating using H4Cf1 (ammonium chloride) (Comparative Example 1) and electrolytic Ni plating using a normal Watts bath (Comparative Example 2).
以下余白
これらメッキされた試験片80℃895%湿度試験を5
00hr施した。この耐食性試験結果を表−5に示す。The margins below are these plated test pieces 80℃895% humidity test 5
It was applied for 00 hours. The results of this corrosion resistance test are shown in Table-5.
表−5より本発明に係る実施例による支持塩を用いた試
料は比較材に比べ著しく耐食性に優れていることがわか
る。Table 5 shows that the samples using the supporting salts according to the examples of the present invention have significantly better corrosion resistance than the comparative materials.
以下余白
以上、Nd・Fe争Bについて述べたが、Yを含めた希
土類(R)−T(遷移金属)−B系合金についても同様
の効果が期待できることは容易に推察できるところであ
る。Although the Nd/Fe conflict B has been described in the following margins, it can be easily inferred that similar effects can be expected for rare earth (R)-T (transition metal)-B alloys including Y.
一第3実施例−
通常の粉末冶金法により、33 w t%Nd−1、O
wt%B−Febalの組成を有する焼結体を作成し、
この焼結体を1010X10X5(aの寸法に切断加工
し、メッキ試験用試料とした。1. Third Example - 33 wt%Nd-1, O
Create a sintered body having a composition of wt%B-Febal,
This sintered body was cut into a size of 1010×10×5 (a) and used as a sample for a plating test.
上記の試料を表−6に示すクラウン化合物を添加した電
析条件において有機電解メッキを行ない、各条件におけ
る試料を作成した。表−6より、クラウン化合物を添加
することにより、これらが電解液中のNiイオンに強く
配位し、それにより金属塩の解離が促進され、イオンの
移動度を大きくしている。その結果として、クラウン化
合物を添加した方が、無添加の場合に比べ、同じ電流を
流すのに必要な電圧が少なくてすむ。The above samples were subjected to organic electrolytic plating under the electrodeposition conditions in which the crown compound shown in Table 6 was added, and samples under each condition were prepared. Table 6 shows that by adding the crown compound, these compounds strongly coordinate with the Ni ions in the electrolyte, thereby promoting the dissociation of the metal salt and increasing the mobility of the ions. As a result, when the crown compound is added, less voltage is required to flow the same current than when the crown compound is not added.
本実施例ではNiイオンに配位し易いクラウン化合物を
選択したが、支持塩にアルカリ金属のイオンを用いた場
合に、これらのアルカリ金属イオンと配位し易いクラウ
ン化合物を選択すれば同様の効果が゛期待できることは
容易に推察できるところである。In this example, a crown compound that easily coordinates with Ni ions was selected, but when alkali metal ions are used as the supporting salt, the same effect can be obtained by selecting a crown compound that easily coordinates with these alkali metal ions. It is easy to infer that this can be expected.
次に、表−6に示した電析条件でメッキした試料(Nα
36〜39)の耐食性試験(恒温恒湿試験で 60℃、
95%、2000h r)を行なった。Next, a sample plated under the electrodeposition conditions shown in Table 6 (Nα
36-39) corrosion resistance test (constant temperature and humidity test at 60℃,
95%, 2000 hr).
表−7にこれらの耐食性試験結果を示す。Table 7 shows the results of these corrosion resistance tests.
以下余白
−第4実施例−
通常の粉末冶金法により、33 w t%Nd−1,0
B−FeBAlの組成を有する焼結体を得た。この焼結
体を1010X10X5(a寸法に切り出し、メッキ試
験用のT、Pを何個か得た。次にメッキ方法としてメタ
ノール−ホウ酸−トリフルオロ酢酸N1による有機電解
メッキを上記試料に施した。この時の電解条件は、浴温
40℃にて電流密度3 (A/dr&)とした。ここで
、メタノール中の水分量による差を検出するために、あ
らかじめ水分量を調整したメタノールを5種類用意した
。この5種類のメタノールの水分をカールフィッシャー
法にて測定したところ、50 ppts 。The following margin - Fourth Example - 33 wt%Nd-1,0 by normal powder metallurgy method
A sintered body having a composition of B-FeBAl was obtained. This sintered body was cut into a size of 1010 x 10 x 5 (a) to obtain several T and P pieces for plating tests.Next, as a plating method, organic electrolytic plating with methanol-boric acid-trifluoroacetic acid N1 was applied to the above sample. The electrolytic conditions at this time were a bath temperature of 40°C and a current density of 3 (A/dr&).Here, in order to detect the difference due to the water content in methanol, methanol whose water content was adjusted in advance was The water content of these five types of methanol was measured using the Karl Fischer method, and found to be 50 ppts.
280ppm 、 630ppm 、 620pp
m 、 1540ppm、2860pp11,351
0ppa+、5780ppmであった。この7種類のメ
タノールを用い上記メッキ条件にてメッキと施した。280ppm, 630ppm, 620ppm
m, 1540ppm, 2860pp11,351
It was 0ppa+, 5780ppm. Plating was performed using these seven types of methanol under the above plating conditions.
得られた7種類のメッキされて資料について、その外観
観察、及び80”Cr95%恒温恒温試験を500h
r施した。表−8に試験結果を示す。The obtained 7 types of plated materials were subjected to appearance observation and 80"Cr95% constant temperature constant temperature test for 500 hours.
r was applied. Table 8 shows the test results.
て測定したところ50pp層、28Opp層、630p
pm 、 620ppm 、 1 540
ppm 、 2860ppm 。When measured, 50pp layer, 28Opp layer, 630p layer
pm, 620ppm, 1540
ppm, 2860ppm.
3510ppm、5780ppmであった。この7種類
のメタノールを用い上記メッキ条件にてメッキと施した
。They were 3510 ppm and 5780 ppm. Plating was performed using these seven types of methanol under the above plating conditions.
得られた7種類のメッキされて資料について、その外観
観察、及び80@Cr95%恒温恒温試験を500h
r施した。The obtained 7 types of plated materials were subjected to appearance observation and 80@Cr95% constant temperature constant temperature test for 500 hours.
r was applied.
表−8に試験結果を示す。表−8より洛中の水分量が3
000 ppm以下では外観にもすぐれ、耐食性良好な
メッキ層が得られることがわかる。Table 8 shows the test results. From Table 8, the water content in Rakuchu is 3
000 ppm or less, a plated layer with excellent appearance and good corrosion resistance can be obtained.
以下余白
−第実施例5−
第4実施例で得られた33Nd−1゜0B−FebaΩ
(wt%)の組成を有する試料について、第4実施例
と同じくメタノール−ホウ酸−トリフルオロ酢酸Niの
電解液とし、比較例の大気開放型のメッキ浴、本発明に
係るグローブボックスを用いたAr雰囲気中に配置した
メッキ浴の2種類のメッキを施した。Below margin - Example 5 - 33Nd-1゜0B-FebaΩ obtained in the fourth example
(wt%), an electrolyte of methanol-boric acid-Ni trifluoroacetate was used as in the fourth example, an air-open plating bath of the comparative example, and a glove box according to the present invention. Two types of plating were performed in plating baths placed in an Ar atmosphere.
次にこれら試料の外観検査、80℃×95%恒温恒温試
験を1000h r施した。表−8に試験結果を示す。Next, these samples were subjected to an external appearance inspection and a constant temperature test at 80°C x 95% for 1000 hours. Table 8 shows the test results.
表−9よりAr雰囲気で処理した試料の方が、外観、耐
食性共に優れていることがわかる。From Table 9, it can be seen that the samples treated in the Ar atmosphere are superior in both appearance and corrosion resistance.
以下余白 一実施例6− めっき試験用試料を以下のようにして作製した。Margin below Example 6- A plating test sample was prepared as follows.
通常の粉末冶金法により33wt%Nd−1,Ovt%
B −F e batの組成を有する焼結体を作製し、
この焼結体を1010X10X1の方法に切断加工し、
めつき試験用試料とした。33wt%Nd-1, Ovt% by normal powder metallurgy method
Producing a sintered body having a composition of B-F e bat,
This sintered body was cut into a size of 1010x10x1,
This was used as a plating test sample.
この試料を表−10に示すめっき液組成及び電析条件に
おいて有機電解めっきを行ない、各条件における試料を
作製した(試料40〜63)。This sample was subjected to organic electrolytic plating under the plating solution composition and electrodeposition conditions shown in Table 10 to produce samples under each condition (Samples 40 to 63).
尚、比較材としてN i (NO3) 2を金属塩とし
て使用したときの試料も作製した(試料64゜65)。As a comparative material, a sample was also prepared using N i (NO3) 2 as a metal salt (sample 64°65).
更に通常の水溶液電解めっき(Watts浴)AfIイ
オンブレーティングによる試料66及び、67も作製し
た。Furthermore, samples 66 and 67 were also prepared by ordinary aqueous electrolytic plating (Watts bath) AfI ion blating.
表−10に示した電析条件でめっきした試料(試料磁4
0〜67)の耐食性試験を行なった。Samples plated under the electrodeposition conditions shown in Table 10 (sample magnet 4
Corrosion resistance tests of 0 to 67) were conducted.
その方法、及び条件は恒温恒湿試験で60℃、95%X
2000hr施した。The method and conditions are constant temperature and humidity test at 60℃, 95%
It was applied for 2000 hours.
表−11にこれらの耐食性試験結果を示す。なお、試験
した試料は表−10中の電析条件において、最も良好な
めっき膜が得られた条件で作製した試料について行なっ
た。Table 11 shows the results of these corrosion resistance tests. The samples tested were those prepared under the electrodeposition conditions shown in Table 10 that yielded the best plating film.
表−11より、本発明による金属塩を用いた有機電解法
によりめっきした試料40〜63は比較材64〜67に
比べ著しく耐食性に優れていることがわかる。From Table 11, it can be seen that samples 40 to 63 plated by the organic electrolytic method using the metal salt according to the present invention have significantly better corrosion resistance than comparative materials 64 to 67.
臥下#0
赤さび析出
これは、硝酸系の金属塩の場合には、Nd−Fe−B磁
石表面を著しく浸食し、磁石体表面での電析を妨げるが
、酢酸系、および過塩素酸の金属塩の場合にはその影響
が極めて少ないために得られた結果であろう。Beneath #0 Red Rust Precipitation This will significantly erode the Nd-Fe-B magnet surface and prevent electrodeposition on the magnet surface in the case of nitric acid-based metal salts, but in the case of acetic acid-based and perchloric acid This result may be due to the fact that the influence of metal salts is extremely small.
以上、金属間化合物系永久磁石としてNd−Fe−B系
について述べたがR(Yを含む希土類元素) −T (
遷移・金属)−B系合金に関しても同様の効果が期待で
きることは容易に推察できるところである。Above, Nd-Fe-B system was described as an intermetallic compound permanent magnet, but R (rare earth element including Y) -T (
It can be easily inferred that similar effects can be expected for transition/metal)-B alloys as well.
以下余白 −第7実施例− めっき試験用試料を次のようにして作製した。Margin below -Seventh Example- A plating test sample was prepared as follows.
通常の粉末冶金法により、33vt%Nd−1、Ovt
%B−Febal、の組成を有する焼結体を作製し、こ
の焼結体を10 X 10 X 1 m+sの寸法に切
断加工し、めっき試験用試料とした。By ordinary powder metallurgy method, 33vt%Nd-1, Ovt.
A sintered body having a composition of %B-Febal was prepared, and this sintered body was cut into a size of 10 x 10 x 1 m+s to prepare a sample for a plating test.
上記の試料を次の第12表及び第13表に示すめっき液
組成、および電析条件において有機電解めっきを行ない
、各条件における試料を作製した。The above samples were subjected to organic electrolytic plating under the plating solution compositions and electrodeposition conditions shown in Tables 12 and 13 below to produce samples under each condition.
尚、浴温は、室温を下限沸点温度よりやや低い温度を上
限とした。The upper limit of the bath temperature was set to room temperature, which was slightly lower than the lower boiling point temperature.
なお比較材としてアセトニトリル(CH,CN)、エチ
ルメチルケトン(CH3C0C2Hs )、[金属イオ
ンと結合し難く、電析し易い金属錯体を作り難いもの]
を有機溶媒として使用したときの試料も作製した。更に
通常の水溶液電解めっき(Watts浴’) 、lイオ
ンブレーティングによる試料も作製した。As comparative materials, acetonitrile (CH, CN), ethyl methyl ketone (CH3C0C2Hs), [materials that are difficult to bond with metal ions and difficult to form metal complexes that are easy to electrodeposit]
A sample was also prepared when using this as an organic solvent. Furthermore, samples were also prepared by conventional aqueous electrolytic plating (Watts bath') and l-ion blating.
以下舎臼
第14表
表−12及び表−13に示した電析条件でめっきした試
料(試料Na68〜89)の耐食性試験を行なった。そ
の方法、および条件は恒温恒湿試験で60℃X湿度95
%2000hr施した。表−14に、これらの耐食性試
験結果を示す。なお比較した試料は表−12及び表−1
3中の条件において最も良好なメッキ膜が得られた条件
で作製した試料を示す。Corrosion resistance tests were conducted on samples (sample Na 68 to 89) plated under the electrodeposition conditions shown in Table 14 Table 12 and Table 13 below. The method and conditions are constant temperature and humidity test at 60℃ x 95℃ humidity.
%2000hr. Table 14 shows the results of these corrosion resistance tests. The samples compared are shown in Table-12 and Table-1.
A sample prepared under the conditions in which the best plating film was obtained under the conditions of No. 3 is shown below.
以下余日
表−14より、本発明による有機溶媒を用いた有機電解
法によりめっきを施した試料は比較材に比べ、著しく耐
食性に優れていることがわかる。From Table 14 below, it can be seen that the samples plated by the organic electrolytic method using an organic solvent according to the present invention have significantly better corrosion resistance than the comparative materials.
以上、金属間化合物系永久磁石としてNd−Fe−B系
について述べたが、R(Yを含む希土類元素)−丁(遷
移金属)−B系合金に間しても同様の効果が期待できる
ことは容易に推察できるところである。Above, we have described the Nd-Fe-B system as an intermetallic compound permanent magnet, but the same effect can be expected with the R (rare earth element including Y)-T (transition metal)-B system alloy. This can be easily inferred.
一第8実施例− メッキ試験用試料を以下のようにして作成した。1.Eighth Example- A plating test sample was prepared as follows.
通常の粉末冶金法により、33vt%N d −1,O
wt%B−Febalの組成を有する焼結体を作成し、
この焼結体を10 X 10 X 1 mmの寸法に切
断加工し、メッキ試験用試料とした。By ordinary powder metallurgy method, 33vt%N d -1,O
Create a sintered body having a composition of wt%B-Febal,
This sintered body was cut into a size of 10 x 10 x 1 mm and used as a sample for a plating test.
上記の試料を、表15に示すメッキ液組成、および電析
条件において有機電解メッキを行ない、各条件における
試料を作成した。The above samples were subjected to organic electrolytic plating under the plating solution composition and electrodeposition conditions shown in Table 15 to create samples under each condition.
なお、比較材として、通常の水溶液電解メッキ(Wat
ts浴)、AfIイオンブレーティングによる試料も作
成した。As a comparative material, ordinary aqueous electrolytic plating (Wat
Samples were also prepared using AfI ion blating.
表−15に示した電析条件でメッキした試料(試料Nα
90〜120)の耐食性試験を行なった。Sample plated under the electrodeposition conditions shown in Table 15 (Sample Nα
A corrosion resistance test of 90 to 120) was conducted.
その方法および条件は恒温恒湿試験で60℃×95?6
2000hr施した。表−16にこれらの耐食性試験結
果を示す。The method and conditions are constant temperature and humidity test at 60℃ x 95?6
It was applied for 2000 hours. Table 16 shows the results of these corrosion resistance tests.
なお、試験した試料は、表−15中の条件において、最
も良好なメッキ膜が得られた条件で作成した試料を示す
。Note that the tested samples are those prepared under the conditions in Table 15 under which the best plating film was obtained.
臥下宗9
表−15より、本発明による有機溶媒電気メッキ液を用
いた有機電解法によりメッキした試料は比較材に比べ著
しく耐食性に優れていることがわかる。また、その効果
も金属塩濃度0.11Ilol/J2以上の使用でより
優れていることがわかる。From Table 15, it can be seen that the samples plated by the organic electrolytic method using the organic solvent electroplating solution according to the present invention have significantly better corrosion resistance than the comparative materials. Moreover, it can be seen that the effect is even better when the metal salt concentration is 0.11 Ilol/J2 or more.
[発明の効果]
以上の説明の通り、本発明における支持塩を有機電解メ
ッキにおいて使用することにより、極めて耐食性のよい
、密着性に優れた、金属光沢を有する外観上美しいメッ
キ層をNd−Fe−B磁石表面に得ることができ工業上
極めて有効である。[Effects of the Invention] As explained above, by using the supporting salt of the present invention in organic electrolytic plating, a plated layer with extremely good corrosion resistance, excellent adhesion, and a beautiful appearance with metallic luster can be formed using Nd-Fe. -B It can be obtained on the surface of the magnet and is extremely effective industrially.
また、本発明におけるクラウン化合物を有機電解メッキ
において使用することにより、電離したイオンと錯体を
形成し、有機溶媒への溶解度を増加し、しかも、本発明
の支持塩による導電率を共働して高めることができる。In addition, by using the crown compound of the present invention in organic electrolytic plating, it forms a complex with ionized ions, increases the solubility in organic solvents, and works together with the conductivity of the supporting salt of the present invention. can be increased.
また、本発明によれば、電解液となる有機溶媒中の水分
量を3000 ppm以下とし、さらにメッキ浴雰囲気
をAr、N2等の不活性雰囲気に配することにより、大
気より侵入する水分、酸素等を防ぐことができるから、
メッキ工程中に悪影響を及ぼす水、欲存酸素を極力低下
させることかできる。Furthermore, according to the present invention, the amount of water in the organic solvent serving as the electrolyte is set to 3000 ppm or less, and the plating bath atmosphere is set to an inert atmosphere such as Ar or N2, thereby preventing moisture and oxygen from entering from the atmosphere. Because it can prevent such things as
It is possible to reduce as much as possible the amount of water and greedy oxygen that have an adverse effect during the plating process.
また、本発明によれば、有機電解メッキ法を用′t、)
てNd−Fe−B金属間化合物永久磁石表面に、耐酸化
性めっき層を形成させる工程において、金属塩として遷
移金属(AΩ、Sn、Pb、CrNi、Cu、Znを含
む)のトリプルオロ酢酸塩、酢酸塩、過塩素酸塩の少く
とも1種を使用することにより、Nd−Fe−B磁石上
に耐食性、密着性、および外観性に優れためっき膜を得
ることができ、耐酸化性に優れたNd−Fe−8金属間
化合物永久磁石を得ることができる。Further, according to the present invention, an organic electrolytic plating method is used.
In the step of forming an oxidation-resistant plating layer on the surface of the Nd-Fe-B intermetallic compound permanent magnet, triple oleoacetate of a transition metal (including AΩ, Sn, Pb, CrNi, Cu, and Zn) is used as a metal salt. By using at least one of , acetate, and perchlorate, it is possible to obtain a plating film with excellent corrosion resistance, adhesion, and appearance on the Nd-Fe-B magnet, and it has excellent oxidation resistance. An excellent Nd-Fe-8 intermetallic compound permanent magnet can be obtained.
また、本発明によれば、有機溶媒系電気メッキ液を構成
を、前記金属塩0.t 〜2.0fflol/1、有機
溶媒に溶解する前記添加剤(支持塩及び安定剤)0.0
05mol/ 11以上、残部が前記有機溶媒からなる
有機電界メッキ液とすることにより、Nd−Fe−B金
属間化合物磁石上に耐食性、密着性、および外観性に優
れたメッキ膜を得ることができ、耐酸化性に優れたNd
−Fe−B金属間化合物永久磁石を得ることができる。Further, according to the present invention, the organic solvent-based electroplating solution has a composition of 0.5% of the metal salt. t ~2.0 fflol/1, the additives (supporting salts and stabilizers) dissolved in the organic solvent 0.0
By using an organic electroplating solution consisting of 05 mol/11 or more and the balance being the organic solvent, a plated film with excellent corrosion resistance, adhesion, and appearance can be obtained on the Nd-Fe-B intermetallic compound magnet. , Nd with excellent oxidation resistance
-Fe-B intermetallic compound permanent magnets can be obtained.
なお、金属間化合物系希土類永久磁石として、Nd−F
e−B系について述べたが、R(Yを含む希土類元素)
−T (遷移金属)−B系合金に関しても同様の効果
が期待できることは容易に推察できるところである。In addition, as an intermetallic compound rare earth permanent magnet, Nd-F
Although I mentioned the e-B system, R (a rare earth element containing Y)
It can be easily inferred that similar effects can be expected for -T (transition metal)-B alloys.
第1図は、有機電解メッキ(Ni塩−Na2B407−
メタノール)のSIMS分析結果図、第2図はワット浴
によるメッキ試料SIMS分析結果図を示したものであ
る。Figure 1 shows organic electrolytic plating (Ni salt-Na2B407-
Fig. 2 shows the results of SIMS analysis of a plated sample using a Watt bath.
Claims (1)
、残部を有機溶媒とする有機溶媒電解メッキ液を用いる
有機電解メッキ方法により、 R,Fe,Bを主成分とするR_2T_1_4B金属間
化合物永久磁石材料(ここで、RはYを含む希土類元素
、Tは遷移金属を示す。)の表面に、メッキ膜を形成す
る有機電解メッキ工程において用いられるメッキ膜用有
機溶媒電気メッキ液において、前記支持塩として、 [1]R’_3BO_3(R’はH又はアルキル基を表
す。),MBO_2(MはH又はアルカリ金属を表す。 ),M’BO_3(M’はアルカリ金属を表す。 ),M’_2B_xO_(_3_x_+_2_)_/_
2(xは2以上の偶数である。)を少なくとも一以上含
むほう酸系化合物と、 [2]M’XO_4及びR’_4NXO_4(Xはハロ
ゲンを表す。)の少なくともどちらか一方を含むアルカ
リ金属又はテトラアルキルアンモニウムのXO_4^−
塩と、 [3]M’BX_4又はR’NBX_4の少なくともど
ちらか一方を含むアルカリ金属及びテトラアルキルアン
モニウムのBX_4^−塩と、 [4]M’PX_6及びR’NPX_6の少なくともど
ちらか一方を含むアルカリ金属及びテトラアルキルアン
モニウムのPX_6^−塩と、 [5]M’CX_3SO_3及びR’_4NCX_3S
O_3の少なくともどちらか一方を含むアルカリ金属及
びテトラアルキルアンモニウムのCX_3SO_3^−
塩と、 [6]R’COOM’を含むアルカリ金属のR’COO
^−塩と からなるグループより選択された少なくとも一種以上を
含有することを特徴とするR_2T_1_4B金属間化
合物永久磁石のメッキ膜用有機溶媒電気メッキ液。 2)第1請求項記載の前記支持塩は、 前記ほう酸系化合物として、 ほう酸(H_3BO_3)を、 前記テトラアルキルアンモニウムのXO_4^−塩とし
て、過塩素酸テトラブチルアンモニウム{[CH_3(
CH_2)_3]_4NClO_4}を含有することを
特徴とするR_2T_1_4B金属間化合物永久磁石の
メッキ膜用有機溶媒電気メッキ液。 3)第1又は第2請求項記載のR_2T_1_4B金属
間化合物永久磁石のメッキ膜用有機溶媒電気メッキ液に
おいて、 前記支持塩と共に添加される化合物として双還性クラウ
ン化合物を含有し、これにより、前記有機溶媒中にアニ
オン錯体を形成して金属カチオンを活性化することを特
徴とするR_2T_1_4B金属間化合物永久磁石のメ
ッキ膜用有機溶媒電気メッキ液。 4)金属元素の1種以上を含有する金属塩と、支持塩と
、残部を有機溶媒とする有機溶媒電解メッキ液を用いる
有機電解メッキ方法により、 R,Fe,Bを主成分とするR_2T_1_4B金属間
化合物永久磁石材料(ここで、RはYを含む希土類元素
、Tは遷移金属を示す。)の表面に、メッキ膜を形成す
る有機電解メッキ工程において用いられるメッキ膜用有
機溶媒電気メッキ液において、前記金属塩として、 トリフルオロ酢酸塩、酢酸塩、過塩素酸塩のうちの少く
とも1種を含有し、 当該塩として、Al,Pb,Sn,Cr,Ni,Cu,
Znの少なくとも1種を含有することを特徴とするR_
2T_1_4B金属間化合物永久磁石のメッキ膜用有機
溶媒電気メッキ液。 5)金属元素の1種以上を含有する金属塩と、支持塩と
、残部を有機溶媒とする有機溶媒電解メッキ液を用いる
有機電解メッキ方法により、 R,Fe,Bを主成分とするR_2T_1_4B金属間
化合物永久磁石材料(ここで、RはYを含む希土類元素
、Tは遷移金属を示す。)の表面に、メッキ膜を形成す
る有機電解メッキ工程において用いられるメッキ膜用有
機溶媒電気メッキ液において、前記有機溶媒として、 プロトン性両性溶媒及びプロトン受容性溶媒のうち少く
とも1種を含有することを特徴とするR_2T_1_4
B金属間化合物永久磁石のメッキ膜用有機溶媒電気メッ
キ液。 6)第5請求項記載の前記有機溶媒において、前記プロ
トン性両性溶媒としては、メタノール(CH_3OH)
,エタノール(C_2H_5OH)の少なくとも1種を
含有し、 前記プロトン受容性溶媒として ホルムアミド(HCONH_2),ジメチルホルムアミ
ド{HCON(CH_3)2},アセトアミド(CH_
3CONH_2)の少なくとも1種を含有することを特
徴とするR_2T_1_4B金属間化合物永久磁石のメ
ッキ膜用有機溶媒電気メッキ液。 7)第1〜第6請求項記載のいづれかのR_2T_1_
4B金属間化合物永久磁石のメッキ膜用有機溶媒電気メ
ッキ液において、 前記支持塩と共に添加される安定剤として、次亜リン酸
塩MH_2PO_2及びスルファミン酸(C_7H_5
NO_3S)の少なくともどちらか一方を含有すること
を特徴とするR_2T_1_4B金属間化合物永久磁石
のメッキ膜用有機溶媒電気メッキ液。 8)第1〜第7請求項記載のいづれかのR_2T_1_
4B金属間化合物永久磁石のメッキ膜用有機溶媒電気メ
ッキ液において、実質的に、 前記金属塩の添加量は0.1〜2.0mol/l、前記
支持塩及び前記安定剤の添加量は0.005mol/l
以上、 残部が前記有機溶媒からなる ことを特徴とするR_2T_1_4B金属間化合物永久
磁石のメッキ膜用有機溶媒電気メッキ液。 9)第1〜第8請求項記載のいづれかのR_2T_1_
4B金属間化合物永久磁石のメッキ膜用有機溶媒電気メ
ッキ液に含有される水の含有量は、実質的に3000p
pm以下であることを特徴とするR_2T_1_4B金
属間化合物永久磁石のメッキ膜用有機溶媒電気メッキ液
。[Scope of Claims] 1) R, Fe, and B are produced by an organic electrolytic plating method using a metal salt containing one or more metal elements, a supporting salt, and an organic solvent electrolytic plating solution with the remainder being an organic solvent. For plating films used in organic electrolytic plating processes to form plating films on the surface of R_2T_1_4B intermetallic compound permanent magnet materials (here, R is a rare earth element containing Y, and T is a transition metal) as the main component. In the organic solvent electroplating solution, as the supporting salt, [1] R'_3BO_3 (R' represents H or an alkyl group), MBO_2 (M represents H or an alkali metal), M'BO_3 (M' represents an alkali metal.), M'_2B_xO_(_3_x_+_2_)_/_
[2] An alkali metal containing at least one of M'XO_4 and R'_4NXO_4 (X represents a halogen); Tetraalkylammonium XO_4^-
[3] BX_4^-salt of an alkali metal and tetraalkylammonium containing at least one of M'BX_4 or R'NBX_4; [4] containing at least one of M'PX_6 and R'NPX_6 PX_6^-salt of alkali metal and tetraalkylammonium, [5] M'CX_3SO_3 and R'_4NCX_3S
Alkali metal and tetraalkylammonium CX_3SO_3^- containing at least one of O_3
salt and R'COO of alkali metals including [6] R'COOM'
An organic solvent electroplating solution for plating films of R_2T_1_4B intermetallic compound permanent magnets, characterized by containing at least one selected from the group consisting of salts. 2) The supporting salt according to claim 1 includes: boric acid (H_3BO_3) as the boric acid compound; and tetrabutylammonium perchlorate {[CH_3(
An organic solvent electroplating solution for plating film of R_2T_1_4B intermetallic compound permanent magnet, characterized by containing CH_2)_3]_4NClO_4}. 3) The organic solvent electroplating solution for plating films of R_2T_1_4B intermetallic compound permanent magnets according to the first or second claim, further comprising a bireducing crown compound as a compound added together with the supporting salt, whereby the An organic solvent electroplating solution for plating films of R_2T_1_4B intermetallic compound permanent magnets, which is characterized by forming an anion complex in an organic solvent to activate metal cations. 4) R_2T_1_4B metal containing R, Fe, and B as main components by an organic electrolytic plating method using a metal salt containing one or more metal elements, a supporting salt, and an organic solvent electrolytic plating solution with the remainder being an organic solvent. In an organic solvent electroplating solution for a plating film used in an organic electrolytic plating process to form a plating film on the surface of an intermediate compound permanent magnet material (where R is a rare earth element containing Y, and T is a transition metal). , the metal salt contains at least one of trifluoroacetate, acetate, and perchlorate, and the salt includes Al, Pb, Sn, Cr, Ni, Cu,
R_ characterized by containing at least one kind of Zn
2T_1_4B Organic solvent electroplating solution for plating films of intermetallic compound permanent magnets. 5) R_2T_1_4B metal containing R, Fe, and B as main components by an organic electrolytic plating method using a metal salt containing one or more metal elements, a supporting salt, and an organic solvent electrolytic plating solution with the remainder being an organic solvent. In an organic solvent electroplating solution for a plating film used in an organic electrolytic plating process to form a plating film on the surface of an intermediate compound permanent magnet material (where R is a rare earth element containing Y, and T is a transition metal). , R_2T_1_4, characterized in that the organic solvent contains at least one of a protic amphoteric solvent and a proton-accepting solvent.
B Organic solvent electroplating solution for plating films on intermetallic compound permanent magnets. 6) In the organic solvent according to claim 5, the protic amphoteric solvent is methanol (CH_3OH).
, ethanol (C_2H_5OH), and the proton-accepting solvents include formamide (HCONH_2), dimethylformamide {HCON(CH_3)2}, acetamide (CH_
3CONH_2) An organic solvent electroplating solution for plating films of R_2T_1_4B intermetallic compound permanent magnets. 7) Any R_2T_1_ described in the first to sixth claims
In the organic solvent electroplating solution for plating film of 4B intermetallic compound permanent magnet, hypophosphite MH_2PO_2 and sulfamic acid (C_7H_5) are added as stabilizers together with the supporting salt.
An organic solvent electroplating solution for a plating film of an R_2T_1_4B intermetallic compound permanent magnet, characterized by containing at least one of the following: NO_3S). 8) Any R_2T_1_ described in the first to seventh claims
In the organic solvent electroplating solution for plating films of 4B intermetallic compound permanent magnets, the amount of the metal salt added is 0.1 to 2.0 mol/l, and the amount of the supporting salt and the stabilizer added is 0. .005mol/l
As described above, an organic solvent electroplating solution for a plating film of an R_2T_1_4B intermetallic compound permanent magnet, characterized in that the remainder consists of the organic solvent. 9) Any R_2T_1_ described in the first to eighth claims
The water content contained in the organic solvent electroplating solution for plating film of 4B intermetallic compound permanent magnet is substantially 3000p.
An organic solvent electroplating solution for plating films of R_2T_1_4B intermetallic compound permanent magnets, characterized in that the electroplating solution is pm or less.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1101421A JP2779830B2 (en) | 1988-04-20 | 1989-04-20 | R lower 2 T lower 1 lower 4 B organic solvent electroplating solution for plating film of intermetallic compound permanent magnet |
EP90912946A EP0499638B1 (en) | 1989-04-20 | 1990-08-31 | Method for Plating a Permanent Magnet of a R2T14B Intermetallic Compound |
DE69032805T DE69032805T2 (en) | 1989-04-20 | 1990-08-31 | Process for coating permanent magnets of the intermetallic compound R2T14B |
PCT/JP1990/001113 WO1992004484A1 (en) | 1989-04-20 | 1990-08-31 | Electroplating bath using organic solvent for plating permanent magnet of r2t14b intermetallic compound |
US07/873,243 US5290425A (en) | 1989-04-20 | 1992-04-24 | Organic solvent electrolyte for plating film of R2 T14 B intermetallic compound permanent magnet |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-97558 | 1988-04-20 | ||
JP9755888 | 1988-04-20 | ||
JP19708388 | 1988-08-09 | ||
JP63-197083 | 1988-08-09 | ||
JP63-316469 | 1988-12-16 | ||
JP31646988 | 1988-12-16 | ||
JP1101421A JP2779830B2 (en) | 1988-04-20 | 1989-04-20 | R lower 2 T lower 1 lower 4 B organic solvent electroplating solution for plating film of intermetallic compound permanent magnet |
PCT/JP1990/001113 WO1992004484A1 (en) | 1989-04-20 | 1990-08-31 | Electroplating bath using organic solvent for plating permanent magnet of r2t14b intermetallic compound |
US07/873,243 US5290425A (en) | 1989-04-20 | 1992-04-24 | Organic solvent electrolyte for plating film of R2 T14 B intermetallic compound permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02277794A true JPH02277794A (en) | 1990-11-14 |
JP2779830B2 JP2779830B2 (en) | 1998-07-23 |
Family
ID=27525869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1101421A Expired - Fee Related JP2779830B2 (en) | 1988-04-20 | 1989-04-20 | R lower 2 T lower 1 lower 4 B organic solvent electroplating solution for plating film of intermetallic compound permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2779830B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004079055A1 (en) * | 2003-03-05 | 2004-09-16 | Tdk Corporation | Method for producing rare-earth permanent magnet and metal plating bath |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5093215B2 (en) | 2009-11-26 | 2012-12-12 | トヨタ自動車株式会社 | Method for producing sintered rare earth magnet |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55158289A (en) * | 1979-05-30 | 1980-12-09 | Tatsuko Takei | Electrodialysis method from nonaqueous solution of aluminum and beryllium |
JPS639108A (en) * | 1986-06-30 | 1988-01-14 | Seiko Instr & Electronics Ltd | Surface treating method for magnet |
JPS63259096A (en) * | 1987-04-16 | 1988-10-26 | Tokin Corp | Production of permanent magnet having superior oxidation resistance |
-
1989
- 1989-04-20 JP JP1101421A patent/JP2779830B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55158289A (en) * | 1979-05-30 | 1980-12-09 | Tatsuko Takei | Electrodialysis method from nonaqueous solution of aluminum and beryllium |
JPS639108A (en) * | 1986-06-30 | 1988-01-14 | Seiko Instr & Electronics Ltd | Surface treating method for magnet |
JPS63259096A (en) * | 1987-04-16 | 1988-10-26 | Tokin Corp | Production of permanent magnet having superior oxidation resistance |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004079055A1 (en) * | 2003-03-05 | 2004-09-16 | Tdk Corporation | Method for producing rare-earth permanent magnet and metal plating bath |
US7473343B2 (en) | 2003-03-05 | 2009-01-06 | Tdk Corporation | Method of manufacturing rare-earth magnet, and plating bath |
Also Published As
Publication number | Publication date |
---|---|
JP2779830B2 (en) | 1998-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tabakovic et al. | Organic additives in the electrochemical preparation of soft magnetic CoNiFe films | |
Fashu et al. | Effect of EDTA and NH4Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid | |
CN101892477B (en) | Treatment solution for preparing aluminum alloy surface amorphous composite passivation film, preparation method and application | |
CN102586829B (en) | Process method for reducing magnetic loss of neodymium-iron-boron permanent magnet under high-temperature and high-humidity conditions | |
CN107245732B (en) | A method of high-strength corrosion-resisting cadmium tin titanium alloy being electroplated in 304 or 316L stainless steel surface | |
CN102234800A (en) | Aluminum alloy rare earth passivating liquid taking chlorine salt as accelerator and use method thereof | |
Yin et al. | Mass transport effects on the electrodeposition of iron-nickel alloys at the presence of additives | |
Nakano et al. | Electrodeposition behavior of Zn–Ni alloys from an alkaline zincate solution containing ethylenediamine | |
Kaseem et al. | Modification of a porous oxide layer formed on an Al–Zn–Mg alloy via plasma electrolytic oxidation and post treatment using oxalate ions | |
US20090035603A1 (en) | Method for producing rare earth metal-based permanent magnet having copper plating film on surface thereof | |
Wang et al. | Effect of novel ternary ligand system on acidic electroless Ni-P plating on AZ91D magnesium alloy | |
Stafford et al. | The electrodeposition of Al Mn ferromagnetic phase from molten salt electrolyte | |
JPH03173106A (en) | Rare earth permanent magnet with corrosion resistant film and manufacture thereof | |
JPH02277794A (en) | Organic solvent electroplating solution for plating film of r2t14b intermetallic compound permanent magnet | |
Nakano et al. | Electrodeposition behavior of Zn–Co alloys from an alkaline zincate solution containing triethanolamine | |
Coleman et al. | The effects of multiple electroplated zinc layers on the inhibition of hydrogen permeation through an iron membrane | |
US3859149A (en) | Method for etching aluminium alloys | |
US7972491B2 (en) | Method for imparting hydrogen resistance to articles | |
Singh et al. | Electrodeposition of ternary nickel—iron—cobalt alloys from acetate bath | |
EP0499638B1 (en) | Method for Plating a Permanent Magnet of a R2T14B Intermetallic Compound | |
WO1999002337A1 (en) | High temperature passivation of rare earth magnets | |
JP2602650B2 (en) | Manufacturing method of permanent magnet with excellent oxidation resistance | |
JP2681797B2 (en) | Organic electrolytic plating method for rare earth permanent magnet materials | |
Daamouche et al. | A Study of the Electrodeposited Ni–Fe Alloy Thin Films | |
Liang et al. | Electrochemical deposition of Fe-Pt magnetic alloy films with large magnetic anisotropy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |