JPH02277781A - Phosphating solution for combined structure and phosphating method - Google Patents

Phosphating solution for combined structure and phosphating method

Info

Publication number
JPH02277781A
JPH02277781A JP30802689A JP30802689A JPH02277781A JP H02277781 A JPH02277781 A JP H02277781A JP 30802689 A JP30802689 A JP 30802689A JP 30802689 A JP30802689 A JP 30802689A JP H02277781 A JPH02277781 A JP H02277781A
Authority
JP
Japan
Prior art keywords
ions
ion
fluorine
fluorine ions
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30802689A
Other languages
Japanese (ja)
Other versions
JPH0633464B2 (en
Inventor
Katsuya Yamamoto
勝也 山本
Kenichi Fukutani
福谷 賢一
Tsuneo Saito
斉藤 庸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1308026A priority Critical patent/JPH0633464B2/en
Publication of JPH02277781A publication Critical patent/JPH02277781A/en
Publication of JPH0633464B2 publication Critical patent/JPH0633464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • C23C22/365Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To improve the adhesion and waterproof secondary adhesion of a coating film by using a phosphating soln. of a specified pH having specified concns. of Zn ions, Ni ions, Mn ions, Na or K ions, phosphate ions, total F ions, nitrate ions, nitrite ions, complex F ions and free F ions. CONSTITUTION:A phosphating soln. of pH2-3.5 contg. 0.3-2g/l Zn ions, 0.3-4g/l Ni ions, 0.3-2g/l Mn ions, 0.1-10g/l Na ions, 5-25g/l phosphate ions, 0.1-20g/l total F ions, >=4g/l nitrate ions and 0.01-1g/l nitrite ions is used. The total F ions include 0.1-5g/l (expressed in terms of F) complex F ions and 0.01-2g/l free F ions. Even a combined structure contg. Al parts can be continuously phosphated and a formed phosphate coating film improves the adhesion of a coating film formed by cationic electrodeposition after exposure to the open air and the waterproof secondary adhesion.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、鉄鋼板、亜鉛及びアルミニウム等の異質の素
材が一緒に組み合わされて構成されている自動車ボデー
、即ち複合構造物の表面を処理するためのリン酸塩処理
液及び処理方法に関するものである。
The present invention relates to a phosphate treatment solution and treatment method for treating the surface of an automobile body, that is, a composite structure, which is constructed by combining different materials such as steel plates, zinc, and aluminum. be.

【従来技術】[Prior art]

従来、アルミウニラムを構成体の一部、即ちパーツとし
ている自動車ボデーをリン酸塩処理する場合には、その
アルミニウムパーツをボデーに取付ける前に、主として
性能上の理由からクロメート処理を行い、その後で鉄鋼
板及び亜鉛めっき鋼板からなる自動車ボデーに組付け、
再度リン酸塩処理を行い、続いてカチオン電着塗装を行
っている方法が周知である。この方法の特徴は、最初に
アルミニウムパーツ上に生成させたクロメート皮膜が、
後で行うリン酸塩処理工程で、その一部のクロム及びア
ルミニウムの溶出が生じ、クロメート皮膜が不完全な皮
膜状態になり易く、又当然のことであるがリン酸塩皮膜
の生成も起こらないのである。
Conventionally, when phosphating a car body that is made of aluminum unilam, the aluminum part is chromate treated primarily for performance reasons before being attached to the body, and then the aluminum part is treated with chromate for performance reasons. Assembled into an automobile body made of sheet and galvanized steel sheet,
A well-known method is to perform phosphate treatment again, followed by cationic electrodeposition coating. The feature of this method is that the chromate film that is first formed on the aluminum part is
In the subsequent phosphate treatment step, some of the chromium and aluminum are eluted, which tends to leave the chromate film incomplete, and as a matter of course, no phosphate film is formed. It is.

【発明が解決しようとする課題】[Problem to be solved by the invention]

前記従来例の方法では、先にクロメート処理したアルミ
ニウムパーツが組み込まれているため、リン酸塩処理液
中にクロム及びアルミニウムの溶出が起き、クロメート
皮膜及びリン酸塩皮膜が不完全な皮膜状態となり、その
後の塗装処理を行った塗膜の密着性能が劣り、特に耐水
二次密着性が劣ると云う課題を有している。 又、自動車ボデーの製造工程では、パーツ組付け→表面
処理→塗装の一連の流れ工程において、前記従来例の工
程は、アルミニウムパーツのみ別工程で、水洗処理→ク
ロメート処理→水洗乾燥処理を必要とし、しかる侵にパ
ーツ組付け→表面処理→塗装の工程を経なければならず
、作業性及びコストの面での課題も有している。 前記アルミニウムパーツをクロメート処理することなく
自動車ボデーに組付けてリン酸塩処理を行った場合には
、従来公知の処理液では、アルミニウムパーツの表面に
満足な性能を有する皮膜、つまり塗装後の耐糸サビ性及
び耐水二次密着性に優れた皮膜を得ることができず、高
い塗膜性能が要求されている自動車ボデーとしては不向
きな皮膜しか形成できない。同時に、その処理工程にお
いて、リン酸塩処理液中にアルミニウムイオンが溶出し
、それによって異なった種類の素材が組み合わされた自
動車ボデーの表面全体に亘って化成される皮膜の性能が
著しく低下すると云う大きな課題を有することになる。
In the conventional method, since aluminum parts that have been previously chromate-treated are incorporated, chromium and aluminum are leached into the phosphate treatment solution, resulting in incomplete chromate and phosphate coatings. However, there is a problem in that the adhesion performance of the coating film after subsequent painting treatment is poor, especially the water resistant secondary adhesion is poor. In addition, in the manufacturing process of automobile bodies, in the series of flow steps of parts assembly → surface treatment → painting, the conventional process described above requires a separate process for aluminum parts, which includes water washing → chromate treatment → water washing and drying. However, it is necessary to go through the steps of parts assembly, surface treatment, and painting, which poses problems in terms of workability and cost. When the above-mentioned aluminum parts are assembled into an automobile body and subjected to phosphate treatment without being subjected to chromate treatment, conventionally known treatment liquids do not produce a film with satisfactory performance on the surface of the aluminum parts, that is, the durability after painting. It is not possible to obtain a film with excellent thread rust resistance and water-resistant secondary adhesion, and only a film can be formed that is unsuitable for automobile bodies that require high coating film performance. At the same time, during the treatment process, aluminum ions are eluted into the phosphate treatment solution, which significantly reduces the performance of the coating that is chemically formed over the entire surface of the automobile body, which is made of a combination of different materials. This will pose major challenges.

【課題を解決するための手段】[Means to solve the problem]

前記従来例の種々の課題を解決する具体的手段として本
発明は、亜鉛イオン0.3〜2.0fi/l2、ニッケ
ルイオン0.3〜4.0g/l、マンガンイオン0.3
〜2.0g/l、ナトリウムイオン3〜10g/fl、
カリウムイオン0,1〜10g/l!、リン酸イオン5
,0〜25.09 /λ、全フッ素イオン0.1〜20
g/l2 、硝酸イオン4.0g/ n以上及び亜硝酸
イオン0.01〜1.09/βを主成分とし、pH2,
0〜3.5で、且つ全フッ素イオン中に錯フッ素イオン
がフッ素として0.1〜55F/βであり、遊離フッ素
イオンが0.01〜2g/i、含まれていることを特徴
とする複合構造物用リン酸塩処理液、及び該処理液を用
い、且つ酸性フッ化ソーダと酸性フッ化カリウムの混合
物を補給液として、前記遊離フッ素イオン濃度を維持し
ながら複合構造物を処理することを特徴とする処理方法
を提供するものであり、一般的な製造工程を変更するこ
となく適用しても、複合構造物の表面に、カチオン電着
塗装下地として優れた皮膜を化成させることができるの
である。 尚、経時によりアルミニウムイオンが400ppm以上
含まれて来た場合、遊離フッ素イオンを0.01〜29
/lに維持すると、全フッ素イオンは1〜20g/lの
範囲になってくる。
As a specific means for solving the various problems of the conventional example, the present invention provides zinc ions of 0.3 to 2.0 fi/l2, nickel ions of 0.3 to 4.0 g/l, and manganese ions of 0.3
~2.0g/l, sodium ion 3~10g/fl,
Potassium ion 0.1-10g/l! , phosphate ion 5
,0~25.09/λ, total fluorine ion 0.1~20
g/l2, nitrate ion 4.0g/n or more and nitrite ion 0.01-1.09/β as main components, pH2,
0 to 3.5, complex fluorine ions are 0.1 to 55 F/β as fluorine in total fluorine ions, and free fluorine ions are contained in an amount of 0.01 to 2 g/i. A phosphate treatment solution for composite structures, and treating a composite structure using the treatment solution and using a mixture of acidic sodium fluoride and acidic potassium fluoride as a replenishing solution while maintaining the free fluorine ion concentration. The present invention provides a treatment method that is characterized by the following, and even when applied without changing the general manufacturing process, it is possible to form a film on the surface of a composite structure that is excellent as a base for cationic electrodeposition coating. It is. In addition, if over 400 ppm of aluminum ions are included over time, free fluorine ions should be reduced by 0.01 to 29 ppm.
/l, the total fluorine ions will be in the range of 1-20g/l.

【作 用】[For use]

異なった素材例えば、アルミニウム、鉄、亜鉛めっき(
亜鉛合金めっき、合金化亜鉛めっき)等を一緒に組付け
た複合構造物に対し、リン酸亜鉛の同時処理を可能とす
るには、■異なった素材が共通して、塗装後の塗膜性能
が良いこと、■アルミニウムを処理するためにリン酸塩
処理液中にアルミニウムが溶出し、アルミニウムイオン
の蓄積によって化成性が悪くなり、性能劣化を招くので
、アルミニウムイオンのコントロールを必要とすること
、が要求されるのである。 従って、前記処理液組成において、フッ素イオンの存在
、即ち全フッ素イオン中に錯フッ素イオンが0.1〜5
fJ/l2であり、遊離フッ素イオン(全フッ素イオン
量)−(錯フッ素イオン中のフッ素量)−(/l F3
中のフッ素量)=遊離フッ素イオン量が0.01〜2g
/It含まれていることが不可欠の条件であり、この処
理液を30〜55℃にして、複合構造物を1〜5分浸漬
して処理し、該複合構造物の表面に化成されたリン酸亜
鉛系皮膜中にニッケル及びマンガンが夫々1〜10%の
比率(好ましくは4%程度)で含有していることに特徴
がある。 処理液中にアルミニウムイオンが溶出して増加すると、
複合構造物の鉄鋼板及びアルミニ・クム表面上の皮膜化
成性を阻害する。特に、アルミニウムイオンが150D
Dm以上(M離フッ素イオンのmに略対応)になると極
端に悪くなる。従って、前記処理液を用いて連続的に処
理を行うに当たっては次式、 AI+3+2KHF2+NaHF2−+K  NaAl
F6 ↓ト3H+ の反応により、溶出アルミニウムイオン吊に見合うKH
F  及びNa1−IF2を適宜添加し、遊離フッ素イ
オンを所定量の範囲に維持することにより溶出アルミニ
ウムイオンをコントロールし、複合構造物の表面に生成
するリン酸塩皮膜を適正な皮膜にすることが可能になる
のである。 この場合に、処理液中の遊離フッ素イオン量を制御する
ことでアルミニウムイオンをコントロールするのであっ
て、そのためにKHF2及びNaHF2を添加し、アル
ミニウムイオンをに2NaAIF6の形で沈澱させるの
である。そして、重要なことは、酸性フッ化ナトリウム
1分子量に対し、酸性フッ化カリウム2分子山の割合で
混合されていることであり、これらの成分を別々に添加
するのではなく、予め両者を混合させた混合物を処理液
中に連続的に又は間欠的に添加することである。この様
にすることによって、アルミニウム化合物の沈澱が瞬時
に生成し、遊離フッ素イオンの測定が正確に行え、コン
トロールが容易となる。 この場合の混合物は液体又は固体であってもよい。 本発明のリン酸塩処理液を適用することによる性能的な
特徴としては、複合構造物の素材の内、鉄と亜鉛めっき
材に対しては一般的なリン酸亜鉛処理によるものとほと
んど差異のない皮膜が形成でき、アルミニウム材に対し
ては形成された皮膜の性能向上の効果が著しい。即ち、
アルミニウム表面に生成するリン酸塩被膜は、リン酸、
弗酸、亜鉛の三成分でもZn  (、PO)  ”4H
20の生成は可能であるが、前記したように本発明にお
いては更にその皮膜中にニッケル及びマンガンが夫々1
〜10%の比率で含有していることで、皮膜結晶が緻密
化し、尚且つ耐水二次密着性及び屋外sii性が向上す
るのである。この場合の本発明に係る処理液を用いて処
理した皮膜性能を、塗装後において従来例と比較した結
果は表1の通りである。 表 1 (塗装後の性能結果) 従来例zn系処理液組成 Zn      1.29/l! Na      7.0n PO415/F N O37n S n F e    3   〃 NO20,5n PH3,2p 従来例クロム系処理液組成 CrO27g7tt PO410n F       2   n PH1,5n 本発明処理液組成 Z n ”    L4g/I Nt2+1.5  /F Mn”    0.5  n −31s、sg/I O4 SiF      3  g/l! 1”        100  ppmNO37g/I K”       0.5  /l Na         7 No2   0.2 PH3,2 (実施例] 次に本発明の処理液及び処理方法について幾つかの実施
例を挙げ、従来例と比較してその効果を明らかにする。 実施例 1 (1)処理液組成 Zn2”    1.1〜1.2 9/βN i ” 
   0.9〜l 、 Q   nM n ”    
0.4〜0.6   n3−15.0〜15.5  7 2−2〜3 S i F s 遊離F     O,08〜0.15 O3 に゛ Na O2 PH (2)処理試験材 書5000系アルミ材 (3)処理条件 45℃、2分浸漬 6〜8 0.05〜0.5 6.8〜7.8 0.15〜0.25 3.2〜3.3   11 上記処理条件で、アルミニウム板と電気亜鉛めっき鋼板
と亜鉛−ニッケルめっき鋼板と鉄鋼板とで構成される自
動車ボディ(Fe :AJ : Zn−Ni−6:1:
3)を、遊離フッ素が管理範囲になるように、遊離フッ
素を測定(遊離フッ素測定法・・・・・・全フッ素m−
錯体フッ素中のフッ素量−八βF3 (Fとして)−遊
離フッ素11)Lで、含水率10%のK)IF2F2粉
末2量子量レーク状Na)−IF21分子mとの5%混
合水溶液を添加しながら及び他成分も維持される様に補
給剤を補給しながら、2 rd/i、処理し、その時点
で各試験片の性能をチエツクした結果を表2に示す。 比較例 1 KHF2とNaHF2の混合液のかわりに、5%NaH
F2を用いた以外は、実施例1と同条件で行った結果を
表2に示す。 比較例 2 遊離フッ素をO’9/l近辺で維持しながら行った以外
は、実施例1と同じ方法で行った結果を表2に示す。 配管系統の詰まりが、実施例1のときより多かった。 比較例 3 KHF2とN a HF2の混合液のがわりに5%KH
F、、を用いた以外は、実施例1と同条件で行った結果
を表2に示す。 *v1装条件 カチオン電着 175℃、20分焼付 云う優れた効果も奏する。
Different materials e.g. aluminum, iron, galvanized (
In order to be able to simultaneously treat zinc phosphate on composite structures assembled with zinc alloy plating, alloyed zinc plating, etc., it is necessary to: - In order to treat aluminum, aluminum is eluted into the phosphate treatment solution, and the accumulation of aluminum ions worsens the chemical formation properties and causes performance deterioration, so it is necessary to control aluminum ions. is required. Therefore, in the treatment liquid composition, the presence of fluorine ions, that is, 0.1 to 5 complex fluorine ions in the total fluorine ions.
fJ/l2, free fluorine ions (total fluorine ion amount) - (fluorine amount in complex fluorine ions) - (/l F3
(amount of fluorine in) = amount of free fluorine ions is 0.01 to 2 g
/It is an essential condition, and the treatment solution is heated to 30 to 55°C and the composite structure is immersed for 1 to 5 minutes. The zinc oxide film is characterized in that nickel and manganese are each contained in a ratio of 1 to 10% (preferably about 4%). When aluminum ions elute and increase in the processing solution,
Inhibits film formation on the surfaces of steel plates and aluminum cum of composite structures. In particular, aluminum ions are 150D
When it exceeds Dm (approximately corresponds to m of M-separated fluorine ion), it becomes extremely bad. Therefore, when performing continuous treatment using the treatment liquid, the following formula, AI+3+2KHF2+NaHF2-+K NaAl
Due to the reaction of F6 ↓ and 3H+, KH corresponding to the amount of eluted aluminum ions is generated.
By adding F and Na1-IF2 appropriately and maintaining free fluorine ions within a predetermined range, eluted aluminum ions can be controlled and the phosphate film formed on the surface of the composite structure can be made into an appropriate film. It becomes possible. In this case, aluminum ions are controlled by controlling the amount of free fluorine ions in the treatment solution, and for this purpose KHF2 and NaHF2 are added to precipitate aluminum ions in the form of 2NaAIF6. What is important is that the ratio of two molecular weight molecules of acidic potassium fluoride to one molecular weight of acidic sodium fluoride is mixed. Rather than adding these components separately, they are mixed in advance. The mixture is added continuously or intermittently to the processing solution. By doing so, aluminum compound precipitates are instantaneously formed, free fluorine ions can be measured accurately, and control becomes easy. The mixture in this case may be liquid or solid. The performance characteristics of applying the phosphating solution of the present invention are that among the materials of composite structures, there is almost no difference in performance for iron and galvanized materials compared to that obtained by general zinc phosphate treatment. It is possible to form a film that does not require the use of aluminum, and the effect of improving the performance of the formed film on aluminum materials is remarkable. That is,
The phosphate film that forms on the aluminum surface is caused by phosphoric acid,
Even with the three components of hydrofluoric acid and zinc, Zn (, PO) "4H
Although it is possible to produce nickel and manganese in the film, as mentioned above, in the present invention, nickel and manganese are each added to the film.
By containing it at a ratio of ~10%, the film crystal becomes dense and water resistant secondary adhesion and outdoor SII properties are improved. Table 1 shows the results of comparing the performance of the film treated with the treatment liquid according to the present invention in this case with that of the conventional example after painting. Table 1 (Performance results after painting) Conventional example Zn-based treatment liquid composition Zn 1.29/l! Na 7.0n PO415/F N O37n S n Fe 3 〃 NO20,5n PH3,2p Conventional chromium-based treatment liquid composition CrO27g7tt PO410n F 2 n PH1,5n Invention treatment liquid composition Z n ” L4g/I Nt2+1.5 /F Mn” 0.5 n −31s, sg/I O4 SiF 3 g/l! 1" 100 ppm NO37g/IK" 0.5/l Na 7 No2 0.2 PH3,2 (Example) Next, some examples of the treatment liquid and treatment method of the present invention will be given and compared with conventional examples. Example 1 (1) Treatment liquid composition Zn2" 1.1-1.2 9/βN i "
0.9~l, QnMn”
0.4-0.6 n3-15.0-15.5 7 2-2-3 S i F s Free FO, 08-0.15 O3 to Na O2 PH (2) Processing test material 5000 series Aluminum material (3) Processing conditions 45°C, 2 minute immersion 6-8 0.05-0.5 6.8-7.8 0.15-0.25 3.2-3.3 11 Under the above processing conditions, Automobile body (Fe:AJ:Zn-Ni-6:1:
3), measure free fluorine so that free fluorine is within the control range (free fluorine measurement method...total fluorine m-
Amount of fluorine in the fluorine complex - 8βF3 (as F) - free fluorine 11) In L, a 5% mixed aqueous solution with 10% water content K) IF2F2 powder 2 quantum amounts of lake-like Na)-IF2 1 molecule m is added. Table 2 shows the results of checking the performance of each test piece at that point. Comparative Example 1 5% NaH instead of a mixture of KHF2 and NaHF2
Table 2 shows the results obtained under the same conditions as in Example 1 except that F2 was used. Comparative Example 2 Table 2 shows the results of the same method as in Example 1, except that the free fluorine was maintained at around O'9/l. The piping system was more clogged than in Example 1. Comparative Example 3 5% KH instead of a mixed solution of KHF2 and NaHF2
Table 2 shows the results obtained under the same conditions as in Example 1 except that F. *V1 mounting conditions: cationic electrodeposition: 175°C, 20 minutes baking, which is an excellent effect.

Claims (1)

【特許請求の範囲】 (1)亜鉛イオン0.3〜2.0g/l、ニッケルイオ
ン0.3〜4.0g/l、マンガンイオン0.3〜2.
0g/l、ナトリウムイオン3〜10g/l、カリウム
イオン0.1〜10g/l、リン酸イオン5.0〜25
.0g/l、全フッ素イオン0.1〜20g/l、硝酸
イオン4.0g/l以上及び亜硝酸イオン0.01〜1
.0g/lを主成分とし、pH2.0〜3.5で、且つ
全フッ素イオン中に錯フッ素イオンがフッ素として0.
1〜5g/lであり、下記式で現わされる遊離フッ素イ
オンが0.01〜2g/l舎まれていることを特徴とす
る鉄鋼、亜鉛めつき鋼及びアルミニウム材を有する複合
構造物用リン酸塩処理液。 全フッ素イオン(g/l)−錯フッ素イオン中のフッ素
(g/l)−AlF_3中のフッ素イオン(g/l)=
遊離フッ素イオン(g/l) (2)処理工程において、溶出するアルミニウムイオン
に対し、(過剰の)遊離フッ素イオンが含まれているこ
とを特徴とする請求項(1)記載の複合構造物用リン酸
塩処理液。(3)カチオン電着塗装下地用皮膜を形成さ
せるために適用される請求項(1)記載の複合構造物用
リン酸塩処理液。 (4)亜鉛イオン0.3〜2.0g/l、ニッケルイオ
ン0.3〜4.0g/l、マンガンイオン0.3〜2.
0g/l、ナトリウムイオン3〜10g/l、カリウム
イオン0.1〜10g/l、リン酸イオン5.0〜25
.0g/l、全フッ素イオン0.1〜20g/l、硝酸
イオン4.0g/l以上及び亜硝酸イオン0.01〜1
.0g/lを主成分とし、pH2.0〜3.5で、且つ
全フッ素イオン中に錯フッ素イオンがフッ素として0.
1〜5g/lであり、遊離フッ素イオンが0.01〜2
g/l含まれている酸性処理液を用い、酸性フッ化ナト
リウムと酸性フッ化カリウムの混合物を補給剤として、
前記遊離フッ素イオン濃度を維持しながら前記複合構造
物を処理することを特徴とする処理方法。 (5)混合物が、酸性フッ化ナトリウム1分子量に対し
、酸性フッ化カリウム2分子量の割合で混合されている
液体又は固体である請求項(4)記載の処理方法。
[Claims] (1) Zinc ions 0.3 to 2.0 g/l, nickel ions 0.3 to 4.0 g/l, manganese ions 0.3 to 2.0 g/l.
0g/l, sodium ion 3-10g/l, potassium ion 0.1-10g/l, phosphate ion 5.0-25
.. 0g/l, total fluorine ion 0.1-20g/l, nitrate ion 4.0g/l or more and nitrite ion 0.01-1
.. The main component is 0 g/l, the pH is 2.0 to 3.5, and the total fluorine ions contain 0.0 g/l of complex fluorine ions as fluorine.
For composite structures containing steel, galvanized steel, and aluminum materials, characterized by containing 1 to 5 g/l and 0.01 to 2 g/l of free fluorine ions expressed by the following formula: Phosphating solution. Total fluorine ions (g/l) - Fluorine in complex fluorine ions (g/l) - Fluorine ions in AlF_3 (g/l) =
Free fluorine ions (g/l) (2) For the composite structure according to claim (1), wherein in the treatment step, free fluorine ions are contained (in excess) relative to the aluminum ions eluted. Phosphating solution. (3) The phosphate treatment solution for composite structures according to claim (1), which is applied to form a base film for cationic electrodeposition coating. (4) Zinc ion 0.3-2.0g/l, nickel ion 0.3-4.0g/l, manganese ion 0.3-2.
0g/l, sodium ion 3-10g/l, potassium ion 0.1-10g/l, phosphate ion 5.0-25
.. 0g/l, total fluorine ion 0.1-20g/l, nitrate ion 4.0g/l or more and nitrite ion 0.01-1
.. The main component is 0 g/l, the pH is 2.0 to 3.5, and the total fluorine ions contain 0.0 g/l of complex fluorine ions as fluorine.
1 to 5 g/l, and free fluorine ions are 0.01 to 2
Using an acidic treatment solution containing g/l and using a mixture of acidic sodium fluoride and acidic potassium fluoride as a replenishing agent,
A processing method characterized in that the composite structure is processed while maintaining the free fluorine ion concentration. (5) The treatment method according to claim (4), wherein the mixture is a liquid or solid in which 1 molecular weight of acidic sodium fluoride is mixed with 2 molecular weights of acidic potassium fluoride.
JP1308026A 1989-01-31 1989-11-28 Phosphate treatment liquid for composite structure and treatment method Expired - Lifetime JPH0633464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308026A JPH0633464B2 (en) 1989-01-31 1989-11-28 Phosphate treatment liquid for composite structure and treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2197589 1989-01-31
JP1-21975 1989-01-31
JP1308026A JPH0633464B2 (en) 1989-01-31 1989-11-28 Phosphate treatment liquid for composite structure and treatment method

Publications (2)

Publication Number Publication Date
JPH02277781A true JPH02277781A (en) 1990-11-14
JPH0633464B2 JPH0633464B2 (en) 1994-05-02

Family

ID=26359128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308026A Expired - Lifetime JPH0633464B2 (en) 1989-01-31 1989-11-28 Phosphate treatment liquid for composite structure and treatment method

Country Status (1)

Country Link
JP (1) JPH0633464B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267378A (en) * 1990-03-16 1991-11-28 Mazda Motor Corp Method for phosphating metal surface and phosphating solution
JPH0483881A (en) * 1990-07-27 1992-03-17 Nippon Parkerizing Co Ltd Phoshate treatment for composite structural material
JPH04160165A (en) * 1990-10-24 1992-06-03 Nippon Parkerizing Co Ltd Phosphate chemical conversion treating liquid for constituting body of iron-aluminum metallic sheet
JPH0551799A (en) * 1991-08-26 1993-03-02 Honda Motor Co Ltd Method for surface treatment of combined product of aluminum material with iron material
JPH05202485A (en) * 1991-11-25 1993-08-10 Sumitomo Metal Ind Ltd Galvanized steel sheet and its manufacture
US5795407A (en) * 1994-05-11 1998-08-18 Henkel Corporation Method for pre-treating aluminum materials prior to painting
JP2002212751A (en) * 2001-01-17 2002-07-31 Nippon Paint Co Ltd Metal surface treatment method
JP2003064481A (en) * 2001-08-22 2003-03-05 Nippon Paint Co Ltd Zinc phosphate treatment agent
RU2690876C1 (en) * 2018-06-14 2019-06-06 Закрытое Акционерное общество "ФК" (ЗАО " ФК") Phosphate coating production method
JP2020517827A (en) * 2017-04-21 2020-06-18 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA A continuous zinc phosphate treatment of metal parts in a sludge-free manner for forming layers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619300A (en) * 1968-11-13 1971-11-09 Amchem Prod Phosphate conversion coating of aluminum, zinc or iron
JPS60204889A (en) * 1984-03-29 1985-10-16 Nisshin Steel Co Ltd Zinc phosphate treatment of steel sheet plated with zn-al alloy
JPS6136588A (en) * 1984-07-27 1986-02-21 株式会社 応用地質調査事務所 Flexible pipe joining method in underground displacement measurement, etc. using inclinometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619300A (en) * 1968-11-13 1971-11-09 Amchem Prod Phosphate conversion coating of aluminum, zinc or iron
JPS60204889A (en) * 1984-03-29 1985-10-16 Nisshin Steel Co Ltd Zinc phosphate treatment of steel sheet plated with zn-al alloy
JPS6136588A (en) * 1984-07-27 1986-02-21 株式会社 応用地質調査事務所 Flexible pipe joining method in underground displacement measurement, etc. using inclinometer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267378A (en) * 1990-03-16 1991-11-28 Mazda Motor Corp Method for phosphating metal surface and phosphating solution
JPH0483881A (en) * 1990-07-27 1992-03-17 Nippon Parkerizing Co Ltd Phoshate treatment for composite structural material
JPH04160165A (en) * 1990-10-24 1992-06-03 Nippon Parkerizing Co Ltd Phosphate chemical conversion treating liquid for constituting body of iron-aluminum metallic sheet
JP2794013B2 (en) * 1990-10-24 1998-09-03 日本パーカライジング株式会社 Phosphate chemical conversion treatment solution for iron-aluminum metal sheet metal construction
JPH0551799A (en) * 1991-08-26 1993-03-02 Honda Motor Co Ltd Method for surface treatment of combined product of aluminum material with iron material
JPH05202485A (en) * 1991-11-25 1993-08-10 Sumitomo Metal Ind Ltd Galvanized steel sheet and its manufacture
US5795407A (en) * 1994-05-11 1998-08-18 Henkel Corporation Method for pre-treating aluminum materials prior to painting
JP2002212751A (en) * 2001-01-17 2002-07-31 Nippon Paint Co Ltd Metal surface treatment method
JP4658339B2 (en) * 2001-01-17 2011-03-23 日本ペイント株式会社 Metal surface treatment method
JP2003064481A (en) * 2001-08-22 2003-03-05 Nippon Paint Co Ltd Zinc phosphate treatment agent
JP2020517827A (en) * 2017-04-21 2020-06-18 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA A continuous zinc phosphate treatment of metal parts in a sludge-free manner for forming layers
RU2690876C1 (en) * 2018-06-14 2019-06-06 Закрытое Акционерное общество "ФК" (ЗАО " ФК") Phosphate coating production method

Also Published As

Publication number Publication date
JPH0633464B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
KR910003722B1 (en) Phosphate coating composition and method of applying a zinc-nickel phosphate coating
US4263059A (en) Coating solutions of trivalent chromium for coating zinc and cadmium surfaces
US6395105B1 (en) Phosphating process with a metalliferous re-rinsing stage
JPH01123080A (en) Zinc phosphate type film treatment method and solution, and replenishing agent
AU2003293945B2 (en) Process for providing a thin corrosion inhibiting coating on a metallic surface
JPS6256580A (en) Chromating solution for galvanized steel sheet
US3810792A (en) Process for the application of phosphate coatings on steel,iron and zinc surfaces
FI70599B (en) SHEET METAL CONSTRUCTION CONVERTIBLE CONTAINERS WITH OVER / ELLER ZINK
US5200000A (en) Phosphate treatment solution for composite structures and method for treatment
CA2024793C (en) Protective coating processes for zinc coated steel
US5792283A (en) Nickel-free phosphating process
JPH02277781A (en) Phosphating solution for combined structure and phosphating method
MXPA97004126A (en) Method for applying coatings of phosphate asuperficies metali
JPS5819481A (en) Zinc phosphate chemical treating liquid composition
KR20040046347A (en) The trivalent chromate which contains no trace of hexavalent chrome nor any oxidizing agent
KR101664637B1 (en) Replenishing compositions and methods of replenishing pretreatment compositions
US6596414B1 (en) Phosphate-treated galvanized steel sheet excellent in corrosion resistance and paintability
CA2266625A1 (en) Method for phosphating a steel band
KR101674818B1 (en) Coating composites containing trivalent chromium, zinc-based metal plated steel sheet using the same and coating method
US4708744A (en) Process for phosphating metal surfaces and especially iron surfaces
US3090710A (en) Method and solution for producing chromate coatings on zinc and zinc alloys
WO2001032953A1 (en) Zinc phosphating process and composition with reduced pollution potential
CA2303877A1 (en) Method for phosphatizing a steel strip
WO1995005247A1 (en) Process for treating zinciferous surfaces
JPS5834178A (en) Chromate treatment for plated steel plate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 16