JPH0227763B2 - - Google Patents

Info

Publication number
JPH0227763B2
JPH0227763B2 JP55077453A JP7745380A JPH0227763B2 JP H0227763 B2 JPH0227763 B2 JP H0227763B2 JP 55077453 A JP55077453 A JP 55077453A JP 7745380 A JP7745380 A JP 7745380A JP H0227763 B2 JPH0227763 B2 JP H0227763B2
Authority
JP
Japan
Prior art keywords
contact
weight
thickness
micromotor
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55077453A
Other languages
Japanese (ja)
Other versions
JPS573316A (en
Inventor
Mitsuyoshi Sayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP7745380A priority Critical patent/JPS573316A/en
Publication of JPS573316A publication Critical patent/JPS573316A/en
Publication of JPH0227763B2 publication Critical patent/JPH0227763B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • Dc Machiner (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はマイクロモータ用機械式ガバナ可動接
点の製造方法に関する。 従来、マイクロモータ用機械式ガバナ可動接点
を製造するには、第1図aに示す如く接点用板材
1をプレス抜きして円形のリングプロジエクシヨ
ン2a付接点材2を作り、次にこれを第1図bに
示す如く重錘3の一側上面にプロジエクシヨン溶
接し、次いで接点材2から離隔して重錘3の上面
に第1図cに示す如くばね材4を溶接する方法
と、第2図aに示す如く接点用線材5を重錘3の
一側上面に溶接し、次にその接点用線材5を所要
の高さ位置にて第2図bに示す如く切断し、次い
で重錘3上に切り残された接点材5aを第2図c
に示す如くプレス成形して円板状になし、然る後
その円板状の接点材5a′から離隔して重錘3の上
面に第2図dに示す如くばね材4を溶接する方法
とがある。 ところでこれらの方法はいずれも重錘3に接点
材2や接点用線材5を溶接し且つばね材4を溶接
するので、溶接に手間〓がかかり、生産性が悪か
つた。また高価な貴金属を節約する為、重錘3上
の接点材2や5a′の厚さを薄くしたかつたができ
ず、また接触信頼性にとぼしかつた。即ち、前者
の製造方法では接点用板材1が極端に薄いとプレ
ス抜きした際、表面が球面状に突出した円形のリ
ングプロジエクシヨン2a付接点材2となるの
で、接点性能に悪影響を与えることになり、また
重錘3への溶接の際、中空の電極でリングプロジ
エクシヨン2aを通して加圧溶接するので、中央
部がへこんだり、リングプロジエクシヨン2aが
腰くだけになつたりしてうまく溶接できず、しか
もばりやちりが生じたりするので接点材2の厚さ
を薄くできなかつたのである。一方後者の製造方
法では重錘3上に切り残された接点材5aを薄く
成形する為に加工率を高くすると接点材5aや重
錘3が割れ、また重錘3上に溶接された接点用線
材5の切断高さを低くしたり重錘3上に溶接する
接点用線材5の線径を太くすると、うまく切断で
きなかつたり或いは切断が困難となるので、接点
材5a′の厚さを薄くすることができなかつた。 本発明は上記諸事情に鑑みなされたものであ
り、溶接工程が一回で済み、生産性の向上と自動
化を図ることができ、しかも重錘上の接点材を薄
くして高価な貴金属を節約でき、接触信頼性の高
いマイクロモータ用機械式ガバナ可動接点の製造
方法を提供せんとするものである。 本発明のマイクロモータ用機械式ガバナ可動接
点の製造方法の一例を図によつて説明すると、第
3図aに示す如く重錘用帯材10の上面の一側長
手方向に扁平角形断面の浅い凹溝11を設けてこ
の凹溝11内に第3図bに示す如く接点帯材12
を嵌合の上圧延圧着し、次にこの複合帯材13を
接点面が略正方形となるように第3図cに示す如
く複合帯材13の長手方向と直角方向に切断し、
次いでこの切断片14の接点面側の表面に第3図
dに示す如く接点材12aから離隔してばね材1
5の一端部をばね材15の長手方向が圧延圧着さ
れた接点材12aと直角方向となるように溶接し
てマイクロモータ用機械式ガバナ可動接点16を
得るものである。 かように本発明のマイクロモータ用機械式ガバ
ナ可動接点の製造方法は、重錘用帯材10と接点
帯材12とを圧延圧着により一体化するので、重
錘と接点材の厚み比と圧延加工率を適当に設定す
ることにより接点材の厚さを大幅に薄くすること
ができる。従つて従来の製造方法のように接点材
の溶接が不完全だつたり、接点材表面が球面状と
なつたり、接点材中央部がへこんだり、接点材周
囲にばりやちりが生じたり、或いは接点材が割れ
たり、接点材表面に切断痕(破断面)や凹凸が残
つたりするようなことは無い。 また本発明のマイクロモータ用機械式ガバナ可
動接点の製造方法では、手間〓のかかる溶接工程
が重錘とばね材との溶接の1回だけで接点材とば
ね材及び重錘とばね材の2回の溶接が不要である
ので、生産性が著しく向上し、自動化も容易であ
る。しかも、複合帯材は切断されるだけなので、
複合帯材の屑や不良品の発生もない。 次に本発明のマイクロモータ用機械式ガバナ可
動接点の製造方法の効果を明瞭ならしめる為にそ
の具体的な実施例と従来例について説明する。 実施例 1 第3図aに示す如く幅7.5mm、厚さ2.5mmの圧延
された黄銅より成る重錘用帯材10の一側端縁よ
り1mm隔てた位置の上面一側の長手方向に幅1.5
mm、深さ0.2mmの扁平角形断面の浅い凹溝11を
設けてこの凹溝11内に第3図bに示す如く幅
1.5mm、深さ0.3mmのPd−Ru10重量%(以下
「w/o」とする。)より成る接点帯材12を嵌合
の上圧延圧着して、幅8mm、厚さ2.3mmの重錘用
帯材10の一側端縁より1mm隔てた位置の上面一
側の凹溝11内に幅1.5mm、厚さ0.3mmの接点帯材
12を一体に有する複合帯材13を成形し、次に
この複合帯材13を接点が略正方形となるように
第3図cに示す如く長手方向と直角方向に幅2.3
mmに切断し、次いでこの切断片14の上面に第3
図dに示す如く接点材12aから1mm離隔して長
さ11.5mm、厚さ0.2mmのBeCuより成るばね材15
の一側部を長さ4.5mmにわたつて溶接してマイク
ロモータ用機械式ガバナ可動接点16を得た。 実施例 2 第3図aに示す如く幅7.5mm、厚さ2.5mmのCu−
Ni30w/oより成る重錘用帯材10の一側端縁
より1mm隔てた位置の上面一側の長手方向に幅
1.5mm、深さ0.2mmの扁平角形断面の浅い凹溝11
を設けてこの凹溝11内に第3図bに示す如く幅
1.5mm、厚さ0.3mmのAg−Pd40w/o−Cu30w/
oより成る接点帯材12を嵌合の上圧延圧着し
て、幅8mm、厚さ2.3mmの重錘用帯材10の一側
端縁より1mm隔てた位置の上面一側の凹溝11内
に幅1.5mm、厚さ0.3mmの接点帯材12を一体に有
する複合帯材13を成形し、次にこの複合帯材1
3を接点が略正方形となるように第3図cに示す
如く長手方向と直角方向に幅2.3mmに切断し、次
いでこの切断片14の上面に第3図dに示す如く
接点材12aから1mm離隔して長さ11.5mm、厚さ
0.2mmのBeCuより成るばね材15の一側部を長さ
4.5mmにわたつて溶接してマイクロモータ用機械
式ガバナ可動接点16を得た。 従来例 1 第1図aに示す如く厚さ0.1mmのPd−Ru10w/
oより成る接点用板材1をプレス抜きして直径
0.7mmの円形のリングプロジエクシヨン2a付接
点材2を作り、次にこれを第1図bに示す如く厚
さ2.3mm、長さ8mm、2.3mmのCu−Ni30w/oより
成る重錘3の一端縁より1mm隔てた位置の上面中
央にプロジエクシヨン溶接し、次いで接点材2か
ら1mm離隔して重錘3の上面に第1図cに示す如
く長さ11.5mm、厚さ0.2mmのBeCuより成るばね材
4の一側部を長さ4.5mmにわたつて溶接してマイ
クロモータ用機械式ガバナ可動接点を得た。 従来例 2 第2図aに示す如く厚さ0.7mmのPd−Ru10w/
oより成る接点用線材5を厚さ2.3mm、長さ8mm、
幅2.3mmの圧延された黄銅より成る重錘3の一端
縁より1.5mm離れた位置の上面中央に溶接し、次
にその接点用線材5を高さ0.6mmの位置にて第2
図bに示す如く切断し、次いで重錘3上に切り残
された接点材5aを第2図cに示す如くプレス成
形して一端縁より1mm隔てた位置に直径1.5mm、
厚さ0.1mmの円板状の接点材5a′を形成し、然る
後その接点材5a′から1mm離隔して重錘3の上面
に第2図dに示す如く長さ11.5mm、厚さ0.2mmの
BeCuより成るばね材4の一側部を長さ4.5mmにわ
たつて溶接してマイクロモータ用機械式ガバナ可
動接点を得た。 然してこれら実施例1、2及び従来例1、2の
マイクロモータ用機械式ガバナ可動接点各100ケ
について重錘上の接点材の溶接状態、形状、表面
状等を検査したところ、下記の表に示すような結
果を得た。
The present invention relates to a method of manufacturing a mechanical governor movable contact for a micromotor. Conventionally, in order to manufacture a mechanical governor movable contact for a micromotor, as shown in FIG. A method of welding projection welding to the top surface of one side of the weight 3 as shown in FIG. 1b, and then welding a spring material 4 to the top surface of the weight 3 apart from the contact material 2 as shown in FIG. As shown in FIG. 2a, the contact wire 5 is welded to the upper surface of one side of the weight 3, and then the contact wire 5 is cut at a required height position as shown in FIG. 2b. The contact material 5a left uncut on the weight 3 is shown in Fig. 2c.
As shown in FIG. 2D, the spring material 4 is press-formed into a disk shape, and then the spring material 4 is welded to the upper surface of the weight 3 at a distance from the disk-shaped contact material 5a' as shown in FIG. 2D. There is. However, in all of these methods, the contact material 2 and the contact wire 5 are welded to the weight 3, and the spring material 4 is welded, so welding is time-consuming and productivity is poor. Furthermore, in order to save expensive precious metals, the thickness of the contact material 2 and 5a' on the weight 3 could not be made thinner, and the contact reliability was compromised. That is, in the former manufacturing method, if the contact plate material 1 is extremely thin, when it is pressed out, the contact material 2 with the ring projection 2a having a spherical protruding surface will be formed, which will adversely affect the contact performance. Also, when welding to the weight 3, pressure welding is carried out through the ring projection 2a with a hollow electrode, so the center part is not dented and the ring projection 2a is only bent, making it difficult to weld properly. Moreover, it was not possible to reduce the thickness of the contact material 2 because it would generate burrs and dust. On the other hand, in the latter manufacturing method, if the processing rate is increased to form the contact material 5a left uncut on the weight 3 into a thin layer, the contact material 5a and the weight 3 will break, and the contact material 5a left on the weight 3 may break. If the cutting height of the wire 5 is lowered or the wire diameter of the contact wire 5 welded onto the weight 3 is increased, it may not be possible to cut it properly or it will be difficult to cut, so the thickness of the contact material 5a' should be made thinner. I couldn't do it. The present invention was developed in view of the above circumstances, and it is possible to improve productivity and automate the welding process only once, and also to save expensive precious metals by making the contact material on the weight thinner. It is an object of the present invention to provide a method for manufacturing a mechanical governor movable contact for a micromotor, which has high contact reliability. An example of the method for manufacturing a mechanical governor movable contact for a micromotor according to the present invention will be explained with reference to the drawings. As shown in FIG. A groove 11 is provided, and a contact strip 12 is inserted into the groove 11 as shown in FIG. 3b.
are fitted and rolled and crimped, and then this composite strip 13 is cut in a direction perpendicular to the longitudinal direction of the composite strip 13, as shown in FIG.
Next, a spring material 1 is attached to the surface of the cut piece 14 on the contact surface side at a distance from the contact material 12a as shown in FIG. 3d.
A mechanical governor movable contact 16 for a micromotor is obtained by welding one end of the spring material 15 such that the longitudinal direction of the spring material 15 is perpendicular to the rolled and crimped contact material 12a. As described above, in the method of manufacturing a mechanical governor movable contact for a micromotor according to the present invention, the weight band material 10 and the contact band material 12 are integrated by rolling crimping, so that the thickness ratio of the weight and contact material and the rolling By appropriately setting the processing rate, the thickness of the contact material can be significantly reduced. Therefore, unlike conventional manufacturing methods, the welding of the contact material may be incomplete, the surface of the contact material may become spherical, the center of the contact material may be dented, burrs or dust may occur around the contact material, or There is no possibility that the contact material will crack or that cut marks (broken surfaces) or unevenness will remain on the surface of the contact material. In addition, in the method of manufacturing a mechanical governor movable contact for a micromotor of the present invention, the time-consuming welding process is only one time of welding the weight and the spring material, and two of the contact material and the spring material and the weight and the spring material are welded together. Since multiple welding steps are not required, productivity is significantly improved and automation is easy. Moreover, since the composite strip material is simply cut,
There is no generation of composite strip material waste or defective products. Next, in order to clarify the effects of the method of manufacturing a mechanical governor movable contact for a micromotor according to the present invention, specific examples and conventional examples thereof will be described. Embodiment 1 As shown in Figure 3a, the width is 7.5 mm wide and 2.5 mm thick in the longitudinal direction of one side of the top surface of a weight band 10 made of rolled brass at a position 1 mm apart from one side edge. 1.5
A shallow groove 11 with a flat rectangular cross section of 0.2 mm in depth is provided in the groove 11, and the width is as shown in Fig. 3b.
A contact strip material 12 made of 10% by weight Pd-Ru (hereinafter referred to as "w/o") with a width of 1.5 mm and a depth of 0.3 mm is fitted and rolled and crimped to form a weight with a width of 8 mm and a thickness of 2.3 mm. A composite strip material 13 having a contact strip material 12 with a width of 1.5 mm and a thickness of 0.3 mm integrally is formed in a concave groove 11 on one side of the upper surface at a position 1 mm apart from one edge of the strip material 10, and then The width of this composite strip 13 is 2.3 mm in the longitudinal direction and the perpendicular direction, as shown in FIG. 3c, so that the contact points are approximately square.
mm, and then on the top surface of this cut piece 14 a third
As shown in Figure d, a spring material 15 made of BeCu with a length of 11.5 mm and a thickness of 0.2 mm is spaced 1 mm from the contact material 12a.
One side was welded over a length of 4.5 mm to obtain a mechanical governor movable contact 16 for a micromotor. Example 2 As shown in Figure 3a, a Cu-
Width in the longitudinal direction of one side of the upper surface of the weight band material 10 made of Ni30w/o, 1 mm apart from the edge of one side.
Shallow groove 11 with flat square cross section of 1.5mm and depth 0.2mm
In this concave groove 11, a width is provided as shown in FIG. 3b.
1.5mm, thickness 0.3mm Ag-Pd40w/o-Cu30w/
The contact strip material 12 consisting of the contact strip material 12 is fitted and top rolled and crimped, and the width is 8 mm and the thickness is 2.3 mm. A composite strip material 13 having a contact strip material 12 with a width of 1.5 mm and a thickness of 0.3 mm is formed into one piece, and then this composite strip material 1 is molded.
3 is cut into a width of 2.3 mm in the longitudinal direction and perpendicular direction as shown in FIG. 3 c, so that the contact point is approximately square, and then 1 mm from the contact material 12 a is cut on the upper surface of this cut piece 14 as shown in FIG. 3 d. 11.5mm long and thick
The length of one side of the spring material 15 made of 0.2 mm BeCu
A mechanical governor movable contact 16 for a micromotor was obtained by welding over 4.5 mm. Conventional example 1 As shown in Figure 1a, Pd-Ru10w/with a thickness of 0.1 mm
The contact plate material 1 consisting of o is pressed out and the diameter is
A contact material 2 with a 0.7 mm circular ring projection 2a is made, and then this is attached to a weight 3 made of Cu-Ni30w/o with a thickness of 2.3 mm, a length of 8 mm, and 2.3 mm, as shown in Fig. 1b. Projection welding is performed on the center of the upper surface at a distance of 1 mm from one end edge, and then a piece of 11.5 mm in length and 0.2 mm in thickness is attached to the upper surface of the weight 3 at a distance of 1 mm from the contact material 2, as shown in Figure 1c. One side of the spring material 4 made of BeCu was welded over a length of 4.5 mm to obtain a movable contact for a mechanical governor for a micromotor. Conventional example 2 As shown in Figure 2a, Pd-Ru10w/with a thickness of 0.7 mm
The contact wire 5 consisting of o has a thickness of 2.3 mm, a length of 8 mm,
A weight 3 made of rolled brass with a width of 2.3 mm is welded to the center of the upper surface at a position 1.5 mm away from one end edge, and then the contact wire 5 is welded to the second wire at a height of 0.6 mm.
The contact material 5a left uncut on the weight 3 is then press-formed as shown in FIG.
A disc-shaped contact material 5a' with a thickness of 0.1 mm is formed, and then a disc-shaped contact material 5a' with a length of 11.5 mm and a thickness of 0.2mm
One side of the spring material 4 made of BeCu was welded over a length of 4.5 mm to obtain a movable contact for a mechanical governor for a micromotor. However, when we inspected the welding condition, shape, surface condition, etc. of the contact material on the weight for each of 100 mechanical governor movable contacts for micro motors of Examples 1 and 2 and Conventional Examples 1 and 2, the following table shows the results. We obtained the results shown below.

【表】 上記の表で明らかなように実施例1、2のマイ
クロモータ用機械式ガバナ可動接点は、従来例
1、2のそれに比べ接点材の厚さが薄くとも全く
不良品が生じないことが判る。 以上詳記した通り本発明のマイクロモータ用機
械式ガバナ可動接点の製造方法は、重錘用帯材と
接点帯材とを圧延圧着により一体化するので、従
来のように溶接不完全、接点表面の円弧状突出、
接点中央部のへこみ、接点周縁のちり、ばり、接
点割れ、接点表面の切断痕残留、接点表面の凹凸
等を発生させないで、接点材の厚さを大幅に薄く
することができて、高価な貴金属を節約できる。 また甚だ手間〓のかかる溶接工程が重錘とばね
材との溶接だけであるので、生産性が著しく向上
し、自動化も容易で、しかも複合帯材の屑や不良
品の発生もない等の効果がある。 さらに本発明の製造方法によれば、接点材の表
面積の広いガバナ可動接点が得られるので、固定
接点との位置合わせが容易であり、また接触の信
頼性が向上する等の二次的効果を奏する。
[Table] As is clear from the table above, the micromotor mechanical governor movable contacts of Examples 1 and 2 do not produce any defective products even though the thickness of the contact material is thinner than that of conventional examples 1 and 2. I understand. As described in detail above, in the method of manufacturing a mechanical governor movable contact for a micromotor according to the present invention, the weight band material and the contact band material are integrated by rolling and crimping. arcuate protrusion,
The thickness of the contact material can be significantly reduced without causing dents in the center of the contact, dust, burrs, cracks in the contact, residual cut marks on the contact surface, unevenness on the contact surface, etc., and eliminates the need for expensive contact materials. You can save precious metals. In addition, since the only welding process that takes a lot of time is the welding of the weight and the spring material, productivity is significantly improved, automation is easy, and there is no generation of composite strip material waste or defective products. There is. Furthermore, according to the manufacturing method of the present invention, a movable governor contact with a large surface area of the contact material can be obtained, which facilitates alignment with a fixed contact, and has secondary effects such as improved contact reliability. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a乃至cは従来のマイクロモータ用機械
式ガバナ可動接点の製造方法の工程を示す図、第
2図a乃至dは同じく従来のマイクロモータ用機
械式ガバナ可動接点の製造方法の工程を示す図、
第3図a乃至dは本発明のマイクロモータ用機械
式ガバナ可動接点の製造方法の工程を示す図であ
る。 10……重錘用帯材、11……凹溝、12……
接点帯材、12a……接点材、13……複合帯
材、14……切断片、15……ばね材、16……
マイクロモータ用機械式ガバナ可動接点。
1A to 1C are diagrams showing the steps of a conventional method for manufacturing a mechanical governor movable contact for a micromotor, and FIGS. 2A to 2D are diagrams showing the steps of a conventional method for manufacturing a mechanical governor movable contact for a micromotor. The figure shown,
FIGS. 3a to 3d are diagrams showing the steps of the method for manufacturing a mechanical governor movable contact for a micromotor according to the present invention. 10... Band material for weight, 11... Concave groove, 12...
Contact strip material, 12a...Contact material, 13...Composite strip material, 14...Cut piece, 15...Spring material, 16...
Mechanical governor movable contacts for micro motors.

Claims (1)

【特許請求の範囲】[Claims] 1 重錘用帯材10の上面の一側長手方向に扁平
角形断面の浅い凹溝11を設けてこの凹溝11内
に接点帯材12を嵌合の上圧延圧着し、次にこの
複合帯材13を接点が略正方形となるように長手
方向と直角方向に切断し、次いでこの切断片14
の接点面側の表面に接点材12aから離隔してば
ね材15の長手方向が圧延圧着された接点材12
aと直角方向となるように溶接することを特徴と
するマイクロモータ用機械式ガバナ可動接点の製
造方法。
1. A shallow groove 11 with a flat rectangular cross section is provided in the longitudinal direction of one side of the upper surface of the weight band material 10, and the contact band material 12 is fitted into this groove 11 and then rolled and crimped, and then this composite band is The material 13 is cut in a direction perpendicular to the longitudinal direction so that the contact points are approximately square, and then this cut piece 14 is
A contact material 12 having a longitudinal direction of a spring material 15 rolled and crimped on the contact surface side surface of the contact material 12a at a distance from the contact material 12a.
A method for manufacturing a mechanical governor movable contact for a micromotor, the method comprising welding in a direction perpendicular to a.
JP7745380A 1980-06-09 1980-06-09 Method of manufacturing governor movable contact for micromotor Granted JPS573316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7745380A JPS573316A (en) 1980-06-09 1980-06-09 Method of manufacturing governor movable contact for micromotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7745380A JPS573316A (en) 1980-06-09 1980-06-09 Method of manufacturing governor movable contact for micromotor

Publications (2)

Publication Number Publication Date
JPS573316A JPS573316A (en) 1982-01-08
JPH0227763B2 true JPH0227763B2 (en) 1990-06-19

Family

ID=13634426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7745380A Granted JPS573316A (en) 1980-06-09 1980-06-09 Method of manufacturing governor movable contact for micromotor

Country Status (1)

Country Link
JP (1) JPS573316A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108885953B (en) 2016-04-01 2019-10-25 打矢恒温器株式会社 The manufacturing method of electric contact

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5349482Y2 (en) * 1973-03-30 1978-11-28

Also Published As

Publication number Publication date
JPS573316A (en) 1982-01-08

Similar Documents

Publication Publication Date Title
JPH0227763B2 (en)
JPS5826764B2 (en) Manufacturing method of multi-contact spring
US4639988A (en) Method of making quartz oscillators
JP2823262B2 (en) Manufacturing method of composite contact strip
JPH0126761B2 (en)
JPS586633Y2 (en) Weld piece for projection welding
JPS6160224A (en) Formation of thin metallic plate
JPS6366012B2 (en)
JPH0631354A (en) Simultaneous press for punching and bending
JPH0716739B2 (en) Short tube manufacturing method
JPH06150766A (en) Manufacture of hemispherical electric contact
JPH05343160A (en) Working method of plug chip
JPS59144585A (en) Projection welding method
JPS61277122A (en) Manufacture of electric contact
JPH06260050A (en) Manufacture of electric contact
JPH067932A (en) Manufacture of grating
JPS5929359B2 (en) Manufacturing method of irregularly shaped composite wire
JPH0312014A (en) Production of magnetic head core stock
JPH0138327B2 (en)
JPS63207479A (en) Manufacture of lower electrode for welding electric contact
JPH06310360A (en) Manufacture of sealed coil
JPS6351327B2 (en)
JPH0819442B2 (en) Manufacturing method of sintered parts
JPH05174933A (en) Manufacture of slide contact
JPH0541265A (en) Manufacture of contact pin for handler