JPH02277012A - Microactuator - Google Patents

Microactuator

Info

Publication number
JPH02277012A
JPH02277012A JP1097559A JP9755989A JPH02277012A JP H02277012 A JPH02277012 A JP H02277012A JP 1097559 A JP1097559 A JP 1097559A JP 9755989 A JP9755989 A JP 9755989A JP H02277012 A JPH02277012 A JP H02277012A
Authority
JP
Japan
Prior art keywords
beams
electrodes
control circuit
voltages
microactuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1097559A
Other languages
Japanese (ja)
Inventor
Kenji Igarashi
健二 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1097559A priority Critical patent/JPH02277012A/en
Publication of JPH02277012A publication Critical patent/JPH02277012A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Micromachines (AREA)

Abstract

PURPOSE:To obtain the microactuator which can adjust a device finely by providing a moving mechanism made of a piezoelectric material, plural electrodes provided on beams, and a control circuit which moves a table. CONSTITUTION:The microactuator is constituted by providing the moving mechanism 10, the electrodes 17 - 20 provided on the beams 12 - 15, and the control circuit 21. When the control circuit 21 applies negative voltages having the same voltage level to the electrodes 17 and 18 and positive voltages to the electrodes 19 and 20, the beams 12 and 13 made of piezoelectric materials contract and the beams 14 and 15 expand. Their quantities of variation correspond to the voltage levels and they operate reversely when the voltages are applied reversely. Consequently, the table 16 is balanced and moves as shown by an arrow (a). Further, when the electrodes 17 and 20 are applied with negative voltages and the electrodes 18 and 19 are applied with positive voltages at the same time, the beams 12 and 15 contract and the beams 13 and 14 extend, so that the table 16 turns as shown by an arrow (b). The table rotates reversely when the voltages are applied reversely. Consequently, the fine table 16 can be moved to a desired position and a system to be adjusted is mounted on the table 16 to enable parallel movement and turning on the table plane, thereby adjusting the system to be adjusted finely.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えば光学デバイスの光軸調整に適用される
マイクロアクチュエータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a microactuator applied to, for example, optical axis adjustment of an optical device.

(従来の技術) 微細な構造のデバイス、例えば第5図に示すような大き
さがLO+n程度の光学デバイス1においては光軸の、
3!#整が行なわれる。この光学デバイス1は、デバイ
ス本体2の内部に発光素子3が設けられるとともにこの
発光素子3と対向する側に光ファイバー4がコネクタ5
によって取り付けられている。そして、これら発光索子
3と光ファイバー4との間に光学レンズ系6が配置され
ている。
(Prior Art) In a device with a fine structure, for example, an optical device 1 with a size of about LO+n as shown in FIG.
3! #Setup is performed. This optical device 1 includes a light emitting element 3 provided inside a device body 2, and an optical fiber 4 connected to a connector 5 on the side facing the light emitting element 3.
installed by. An optical lens system 6 is arranged between the light emitting cables 3 and the optical fibers 4.

このような構成であれば、発光素子3からの光は拡大ビ
ームとして放射され、この拡大ビームが光学レンズ系6
により集光ビーム7に変換されて光ファイバー4に入射
される。
With such a configuration, the light from the light emitting element 3 is emitted as an expanded beam, and this expanded beam is emitted by the optical lens system 6.
The light beam is converted into a focused beam 7 and input into the optical fiber 4.

ところで、かかる光学デバイス1では集光ビーム7が損
失無く確実に光ファイバー4に入射するように光学レン
ズ系6の光軸が調整されるか、この光軸調整はデバイス
本体2の外部から外部光軸調整装置によって光学レンズ
系6の姿勢を変えることによって行なわれる。
By the way, in such an optical device 1, the optical axis of the optical lens system 6 is adjusted so that the condensed beam 7 reliably enters the optical fiber 4 without loss, or this optical axis adjustment is performed from outside the device main body 2 to an external optical axis. This is done by changing the attitude of the optical lens system 6 using an adjustment device.

しかしながら、このような外部光軸調整装置は大型であ
り、かつ高価なものとなっている。そのうえ、光学デバ
イス1は超小型化が進んでおり、このような光学デバイ
ス1に対して大型の光軸調整装置は構造等を変更しなけ
れば光軸を調整することが困難となる。従って、以上の
ような光学デバイス1に限らず微細な全てのデバイスに
対して適用できる調整の為の手段が要求されている。
However, such an external optical axis adjustment device is large and expensive. Moreover, the optical device 1 is becoming increasingly miniaturized, and it becomes difficult to adjust the optical axis of a large-sized optical axis adjustment device for such an optical device 1 without changing the structure or the like. Therefore, there is a need for an adjustment means that can be applied not only to the optical device 1 as described above but also to all fine devices.

(発明が解決しようとする課題) 以上のように微細なデバイスに対する各種調整は大型の
外部調整装置であって高価なものとなり、微細な全ての
デバイスに対して適用できる調整の為の手段が要求され
ている。
(Problems to be Solved by the Invention) As described above, various adjustments to fine devices require large external adjustment devices and are expensive, and a means for adjustment that can be applied to all fine devices is required. has been done.

そこで本発明は、微細なデバイスの調整ができるマイク
ロアクチュエータを提供することを目的とする。
Therefore, an object of the present invention is to provide a microactuator that allows fine adjustment of devices.

[発明の構成] (課題を解決するための手段) 本発明は、テーブルを複数の梁により支持した圧電材料
から形成される微細な可動機構と、6梁にそれぞれ設け
られた複数の電極と、これら電極にそれぞれ正負極の電
圧を供給してテーブルを移動させる制御回路を備えて上
記目的を達成しようとするマイクロアクチュエータであ
る。
[Structure of the Invention] (Means for Solving the Problems) The present invention includes a fine movable mechanism formed from a piezoelectric material in which a table is supported by a plurality of beams, a plurality of electrodes provided on each of the six beams, This microactuator is equipped with a control circuit that moves the table by supplying positive and negative voltages to these electrodes, respectively, to achieve the above object.

そして、可動機構は、レーザアシストエツチングにより
形成されている。
The movable mechanism is formed by laser assisted etching.

(作用) このような手段を備えたことにより、6梁にそれぞれ設
けられた複数の・電極にそれぞれ制御回路から正負極の
電圧が供給されると、圧電効果により6梁が収縮してテ
ーブルが移動する。
(Function) By providing such a means, when positive and negative voltages are supplied from the control circuit to the plurality of electrodes provided on each of the six beams, the six beams contract due to the piezoelectric effect and the table Moving.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図はマイクロアクチュエータの構成図である。同図
において10は可動機構であって、この可動機構10は
外枠11の内側に4本の梁12゜13.14.15によ
って支持されたテーブル16が形成されている。ところ
で、この可動機構10はレーザアシストエツチングによ
る加工によって形成されるもので、外枠11の各辺の長
さは10m5程度に形成されている。そして、6梁12
゜13.14.15にはそれぞれ金Auから成る各電極
17.18,19.20が形成されている。
FIG. 1 is a configuration diagram of a microactuator. In the figure, reference numeral 10 denotes a movable mechanism, and this movable mechanism 10 has a table 16 formed inside an outer frame 11 and supported by four beams 12, 13, 14, and 15. By the way, this movable mechanism 10 is formed by laser-assisted etching, and the length of each side of the outer frame 11 is approximately 10 m5. And 6 beams 12
Electrodes 17, 18 and 19, 20 made of gold (Au) are formed at 13, 14, and 15, respectively.

ところで、レーザアシストエツチングは微細加工を行う
加工方法であって、例えば化学液の中にシリコン81等
の材料を浸漬するか、又流れている化学液中に材料を置
き、この状態に材料の表面にレーザビームを照射してレ
ーザビームの照射された領域を選択的に除去するもので
ある。そこで、第1図に示す可動機構10は圧電材料で
あるPZT (PbTi Z roi )基板に金Au
をコーティングした材料を水酸化カリウム(KOH)の
溶液中に浸漬し、Nb:YAGレーザをアシストとして
ウェットエツチングして形成したものである。
By the way, laser-assisted etching is a processing method that performs microfabrication. For example, a material such as silicon 81 is immersed in a chemical solution, or the material is placed in a flowing chemical solution, and the surface of the material is etched in this state. The area irradiated with the laser beam is selectively removed by irradiating the area with a laser beam. Therefore, the movable mechanism 10 shown in FIG.
It is formed by immersing the coated material in a potassium hydroxide (KOH) solution and performing wet etching using an Nb:YAG laser as an assist.

一方、21は制御回路であって、この制御回路21は各
電極17.1g、19.20にそれぞれ正負極のアナロ
グ電圧をその電圧レベルをテーブル16の移動量に応じ
て可変して印加する機能を有するものである。なお、可
動機構10の各電極17〜20の形成された而とは反対
の面は接地されている。
On the other hand, 21 is a control circuit, and this control circuit 21 has a function of applying analog voltages of positive and negative polarities to each electrode 17.1g and 19.20 by varying the voltage level according to the amount of movement of the table 16. It has the following. Note that the surface of the movable mechanism 10 opposite to that on which the electrodes 17 to 20 are formed is grounded.

かかる構成であれば、制御回路21によって各電極17
〜2Qのうち各電極17.18に同一電圧レベルの負電
圧が印加されるとともに各電極19.20に同一電圧レ
ベルの正電圧が印加されると、第2図に示すように圧電
材料の圧電効果によって6梁12,13は縮・むととも
に6梁14゜15は伸びる。ここで、6梁12,13の
縮み量は負電圧のレベルによって応じ、又6梁14゜1
5の伸び量は正電圧のレベルに応じている。この結果、
テーブル16は矢印(イ)方向に平行移動する。なお、
各電極17.18に同一電圧レベルの正電圧を印加する
とともに各電極19.20に同一電圧レベルの負電圧を
印加すれば、テーブル16は矢印(イ)方向とは逆方向
に平行移動する。又、制御回路21によって各電極17
〜20のうち各電極17.20に同一電圧レベルの負電
圧が印加されるとともに各電極18.19に同一電圧レ
ベルの正電圧が印加されると、第3図に示すように圧電
材料の圧電効果によって6梁12゜15は縮むとともに
6梁13.14は伸びる。この結果、テーブル16は矢
印(ロ)方向に回動する。なお、各電極17.20に同
一電圧レベルの正電圧を印加するとともに各電極18.
19に同一電圧レベルの負電圧を印加すれば、テーブル
16は矢印(ロ)方向に対して逆方向に回動する。
With such a configuration, each electrode 17 is controlled by the control circuit 21.
When a negative voltage of the same voltage level is applied to each electrode 17.18 of ~2Q and a positive voltage of the same voltage level is applied to each electrode 19.20, the piezoelectricity of the piezoelectric material is increased as shown in FIG. As a result of the effect, the six beams 12 and 13 are contracted and the six beams 14 and 15 are elongated. Here, the amount of contraction of the six beams 12 and 13 depends on the level of negative voltage, and the amount of contraction of the six beams 14°1
The amount of elongation in No. 5 corresponds to the level of positive voltage. As a result,
The table 16 moves in parallel in the direction of arrow (A). In addition,
When a positive voltage of the same voltage level is applied to each electrode 17, 18 and a negative voltage of the same voltage level is applied to each electrode 19, 20, the table 16 moves in parallel in the direction opposite to the direction of arrow (A). In addition, each electrode 17 is controlled by the control circuit 21.
When a negative voltage of the same voltage level is applied to each electrode 17.20 among the electrodes 17.20 and a positive voltage of the same voltage level is applied to each electrode 18.19, the piezoelectricity of the piezoelectric material increases as shown in FIG. As a result of the effect, the 6 beams 12.15 will shrink and the 6 beams 13.14 will elongate. As a result, the table 16 rotates in the direction of arrow (b). Note that while applying a positive voltage of the same voltage level to each electrode 17.20, each electrode 18.
When a negative voltage of the same voltage level is applied to the table 19, the table 16 rotates in the opposite direction to the direction of the arrow (b).

このように上記一実施例であれば、6梁12〜15にそ
れぞれ設けられた各電極17〜20にそれぞれ制御回路
21から正負極のry圧を印加して圧電効果による6梁
12〜15の収縮によってテーブル16を移動するよう
にしたので、微細なテーブル16を所望の位置に移動さ
せることができる。従って、このテーブル16上に被調
整系を載置すれば微細な被調整系をテーブル16の平面
上で平行移動させたり回動させて微調整ができる。
In this way, in the above embodiment, positive and negative ry pressures are applied from the control circuit 21 to the electrodes 17 to 20 provided on the six beams 12 to 15, respectively, and the piezoelectric effect is applied to the six beams 12 to 15. Since the table 16 is moved by contraction, the fine table 16 can be moved to a desired position. Therefore, by placing the system to be adjusted on the table 16, fine adjustments can be made by moving or rotating the system in parallel on the plane of the table 16.

次に上記第1実施例のマイクロアクチュエータを光学デ
バイスに適用した場合について第4図に示す光学デバイ
スの構成図を参照して説明する。
Next, a case in which the microactuator of the first embodiment is applied to an optical device will be described with reference to the configuration diagram of the optical device shown in FIG.

なお、第1図と同一部分には同一符号を付してその詳し
い説明は省略する。デバイス本体30の内部には発光索
子31が設けられるとともにこの発光素子31と対向す
る側に光ファイバー32がコネクタ3・3によって取り
付けられている。そして、光ファイバー32の取り付は
位置には4分割された受光索子34が設けられている。
Note that the same parts as in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted. A light-emitting cable 31 is provided inside the device main body 30, and an optical fiber 32 is attached to the side facing the light-emitting element 31 by connectors 3. A light receiving cable 34 divided into four parts is provided at the position where the optical fiber 32 is attached.

又、デバイス本体30の内部には第1図に示す可動機構
10が設けられ、この可動機構1,0のテーブル16上
に支持台35を介して光学レンズ系36が設けられてい
る。一方、姿勢制御回路37は受光素子34の4つの各
分割素子からの受光信号を受けてこれら受光信号から集
光ビーム31bの集光位置を求め、この集光位置と光学
レンズ系36の光軸が合わされたときの集光位置とのず
れ量を求めてこのずれ量を無くす各電圧信号v1〜v4
を可動機構10の各電極17〜20に供給する機能を有
するものである。
A movable mechanism 10 shown in FIG. 1 is provided inside the device main body 30, and an optical lens system 36 is provided on the table 16 of the movable mechanism 1, 0 via a support 35. On the other hand, the attitude control circuit 37 receives the light receiving signals from each of the four divided elements of the light receiving element 34, determines the focusing position of the focused beam 31b from these light receiving signals, and uses this focusing position and the optical axis of the optical lens system 36. Each voltage signal v1 to v4 calculates the amount of deviation from the focusing position when the two are aligned and eliminates this amount of deviation.
It has a function of supplying each of the electrodes 17 to 20 of the movable mechanism 10.

このような構成であれば、発光素子31から発光された
光の拡大ビーム31aは光学レンズ系36によって集光
ビーム31bに変換されて光ファイバー32に入射する
。このとき、受光素子34は集光ビーム31bの集光位
置に応じて4つの分割素子から受光量に応じた各受光信
号を出力する。これら受光信号は姿勢制御回路37に送
られ、この姿勢制御回路37は各受光信号から集光ビー
ム31bの集光位置を求めて光学レンズ系36の光軸が
合わされたときの集光位置とのずれ量を求める。そして
、この姿勢制御回路37はこのずれ量を無くす各電圧信
号v1〜V、をそれぞれ各電極17〜20に送る。これ
により、可動機構10の6梁12〜15が第2図及び第
3図に示すように収縮してテーブル16が110行移動
及び回動する。しかるに、このテーブル16の移動によ
って光学レンズ系36の姿勢が調整され、この結果光学
レンズ系36の光軸が合わされる。
With such a configuration, the expanded beam 31 a of light emitted from the light emitting element 31 is converted into a condensed beam 31 b by the optical lens system 36 and enters the optical fiber 32 . At this time, the light-receiving element 34 outputs each light-receiving signal according to the amount of light received from the four divided elements according to the focusing position of the focused beam 31b. These light reception signals are sent to the attitude control circuit 37, and this attitude control circuit 37 determines the focusing position of the focused beam 31b from each light receiving signal and compares it with the focusing position when the optical axis of the optical lens system 36 is aligned. Find the amount of deviation. Then, this attitude control circuit 37 sends voltage signals v1 to V to each electrode 17 to 20, respectively, to eliminate this amount of deviation. As a result, the six beams 12 to 15 of the movable mechanism 10 contract as shown in FIGS. 2 and 3, and the table 16 moves and rotates by 110 rows. However, by moving the table 16, the attitude of the optical lens system 36 is adjusted, and as a result, the optical axes of the optical lens system 36 are aligned.

このように光学デバイスに適用すれば、超小型のデバイ
ス本体30の内部に可動機構10を設けて光学レンズ系
36の光軸を調整できる。
When applied to an optical device in this manner, the optical axis of the optical lens system 36 can be adjusted by providing the movable mechanism 10 inside the ultra-small device main body 30.

なお、本発明は上記一実施例に限定されるものでなくそ
の主旨を逸脱しない範囲で変形してもよい。例えば、可
動機構10のテーブル16は上記一実施例のように平行
移動及び回動に限らず構造を食えてテーブルをXY平面
上で平行移動させるとともにθ方向に回動させるように
してもよい。
Note that the present invention is not limited to the above-mentioned embodiment, and may be modified without departing from the spirit thereof. For example, the table 16 of the movable mechanism 10 is not limited to parallel movement and rotation as in the above-mentioned embodiment, but may be modified so that the table is moved parallel on the XY plane and rotated in the θ direction.

又、光学デバイスの光軸調整に限らず他の微細なデバイ
スの各種調整に適用してもよい。
Further, the present invention is not limited to optical axis adjustment of optical devices, but may be applied to various adjustments of other minute devices.

[発明の効果] 以上詳記したように本1発明によれば、微細なデバイス
の調整ができるマイクロアクチュエータを提供できる。
[Effects of the Invention] As detailed above, according to the first invention, it is possible to provide a microactuator that can finely adjust devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明に係わるマイクロアクチュエ
ータの一実施例を説明するための図であって、第1図は
構成図、第2図及び第3図は可動機構の作用を示す図、
第4図は光学デバイスに適用した場合の構成図、第5図
は従来技術を説明するための図である。 10・・・可動機構、11・・・外枠、12〜15・・
・梁、16・・・テーブル、17〜20・・・電極、2
1・・・制御回路。 出願人代理人 弁理士 鈴江武彦 第2図 第3図 第4図
1 to 4 are diagrams for explaining one embodiment of the microactuator according to the present invention, in which FIG. 1 is a configuration diagram, and FIGS. 2 and 3 are diagrams showing the action of the movable mechanism. ,
FIG. 4 is a configuration diagram when applied to an optical device, and FIG. 5 is a diagram for explaining the prior art. 10... Movable mechanism, 11... Outer frame, 12-15...
・Beam, 16...Table, 17-20...Electrode, 2
1... Control circuit. Applicant's representative Patent attorney Takehiko Suzue Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)テーブルを複数の梁により支持した圧電材料から
形成される微細な可動機構と、前記各梁にそれぞれ設け
られた複数の電極と、これら電極にそれぞれ正負極の電
圧を供給して前記テーブルを移動させる制御回路とを具
備したことを特徴とするマイクロアクチュエータ。
(1) A fine movable mechanism formed from a piezoelectric material in which a table is supported by a plurality of beams, a plurality of electrodes provided on each beam, and positive and negative voltages are supplied to each of these electrodes to support the table. A microactuator comprising: a control circuit for moving a microactuator;
(2)可動機構は、レーザアシストエッチングにより形
成されている請求項(1)記載のマイクロアクチュエー
タ。
(2) The microactuator according to claim (1), wherein the movable mechanism is formed by laser-assisted etching.
JP1097559A 1989-04-19 1989-04-19 Microactuator Pending JPH02277012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1097559A JPH02277012A (en) 1989-04-19 1989-04-19 Microactuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097559A JPH02277012A (en) 1989-04-19 1989-04-19 Microactuator

Publications (1)

Publication Number Publication Date
JPH02277012A true JPH02277012A (en) 1990-11-13

Family

ID=14195594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097559A Pending JPH02277012A (en) 1989-04-19 1989-04-19 Microactuator

Country Status (1)

Country Link
JP (1) JPH02277012A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942837A (en) * 1996-04-02 1999-08-24 Mdc Max Datwyler Bleienbach Ag Highly dynamic piezo-electric drive mechanism
JP2001320104A (en) * 1999-10-01 2001-11-16 Ngk Insulators Ltd Piezoelectric/electrostrictive device and its manufacturing method
JP2001320105A (en) * 1999-10-01 2001-11-16 Ngk Insulators Ltd Piezoelectric/electrostrictive device and its manufacturing method
JP2005157360A (en) * 2003-11-20 2005-06-16 Agilent Technol Inc Alignment assembly and method for optical module
JP2006524317A (en) * 2002-12-20 2006-10-26 モレキュラー・イメージング・コーポレーション Rapid scanning stage for scanning probe microscopes
JP2010502899A (en) * 2005-09-08 2010-01-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Actuation system for personal care devices using linear actuators
JP2010134432A (en) * 2008-09-30 2010-06-17 Fraunhofer Ges Micromechanical element, sensor for monitoring micromechanical element, method of operating micromechanical element, method of monitoring micromechanical element, computer program including program code for executing the methods, and method of affecting mechanical natural vibration of micromechanical element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345519B2 (en) * 1980-10-13 1988-09-09 Hitachi Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345519B2 (en) * 1980-10-13 1988-09-09 Hitachi Ltd

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942837A (en) * 1996-04-02 1999-08-24 Mdc Max Datwyler Bleienbach Ag Highly dynamic piezo-electric drive mechanism
JP2001320104A (en) * 1999-10-01 2001-11-16 Ngk Insulators Ltd Piezoelectric/electrostrictive device and its manufacturing method
JP2001320105A (en) * 1999-10-01 2001-11-16 Ngk Insulators Ltd Piezoelectric/electrostrictive device and its manufacturing method
JP2006524317A (en) * 2002-12-20 2006-10-26 モレキュラー・イメージング・コーポレーション Rapid scanning stage for scanning probe microscopes
JP2012008132A (en) * 2002-12-20 2012-01-12 Agilent Technol Inc Rapid scan stage for scanning probe type microscope
JP2005157360A (en) * 2003-11-20 2005-06-16 Agilent Technol Inc Alignment assembly and method for optical module
JP2010502899A (en) * 2005-09-08 2010-01-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Actuation system for personal care devices using linear actuators
JP2010134432A (en) * 2008-09-30 2010-06-17 Fraunhofer Ges Micromechanical element, sensor for monitoring micromechanical element, method of operating micromechanical element, method of monitoring micromechanical element, computer program including program code for executing the methods, and method of affecting mechanical natural vibration of micromechanical element
US8379283B2 (en) 2008-09-30 2013-02-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Micromechanical element and sensor for monitoring a micromechanical element

Similar Documents

Publication Publication Date Title
US7460294B2 (en) Optically addressed MEMS
US5080458A (en) Method and apparatus for positioning an optical fiber
US4639630A (en) Piezoceramic servo-drive for producing translational motion, especially for application to ring laser mirrors
US4084903A (en) High-precision mask photorepeater
US6706999B1 (en) Laser beam tertiary positioner apparatus and method
US7095916B2 (en) Beam-steering optical switching apparatus
US7495818B2 (en) Microelectromechanical device array and method for driving the same
US6678458B2 (en) System and method for precise positioning of microcomponents
US20050220394A1 (en) Micromirror element and optical switch
JPH02277012A (en) Microactuator
KR20060017495A (en) Method and apparatus to drill holes in an electric circuit substrate
CN101522357A (en) Laser working apparatus
EP2239792A1 (en) Positioning device and use of the same
EP1284434A3 (en) An optical switching apparatus and method for fabricating
US7224508B2 (en) MEMS-based optical communications beam steering apparatus
US7157695B2 (en) Optical deflection device including an optical deflection surface having controllable attitude and control method thereof
US20070216910A1 (en) Method and Device for Hyperacute Detection of an Essentially Rectilinear Contrast Edge and System for Fine Following and Fixing of Said Contrast Edge
US7898729B2 (en) Combinational PZT and MEMS beam steering
US4831246A (en) Large angle off-axis beam steering of a phased telescope array
JPH02277011A (en) Microactuator
JP2004130507A (en) Electronic component device
US7864408B2 (en) Beam deflection using PZT resonance
US6701036B2 (en) Mirror, optical switch, and method for redirecting an optical signal
WO2001095026A1 (en) High speed optical intelligent switch
JPH03168606A (en) Optical connection structure for optical semiconductor modules