JPH02275752A - Production mullite material - Google Patents

Production mullite material

Info

Publication number
JPH02275752A
JPH02275752A JP1091622A JP9162289A JPH02275752A JP H02275752 A JPH02275752 A JP H02275752A JP 1091622 A JP1091622 A JP 1091622A JP 9162289 A JP9162289 A JP 9162289A JP H02275752 A JPH02275752 A JP H02275752A
Authority
JP
Japan
Prior art keywords
mullite
alumina
coal ash
ash
products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1091622A
Other languages
Japanese (ja)
Other versions
JPH0774096B2 (en
Inventor
Takeshi Otake
大竹 武
Kunio Uchida
邦夫 内田
Mitsutaka Kawamura
河村 光隆
Teiji Okubo
大久保 悌二
Fumikazu Igasaki
伊ケ崎 文和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1091622A priority Critical patent/JPH0774096B2/en
Publication of JPH02275752A publication Critical patent/JPH02275752A/en
Publication of JPH0774096B2 publication Critical patent/JPH0774096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain feedstock for mullite ceramics in low costs by forming a mixture of deironated and decarbonized coal ash and alumina and firing the products. CONSTITUTION:Alumina is added to deironated and decarbonized coal ash, the mixture is formed and fired to give the subject material. The ash is reduced less than 2wt.% in iron and less than 0.5wt.% in carbon. The deironation treatment is carried out by using a magnetic separator, when needed, followed by treatment with hydrochloric acid or sulfuric acid. The decarbonization is effected in order to reduce carbon residue (including unchanged coal) by calcinating at 800 to 900 deg.C after deironation. Unsatisfactory pretreatment forms foams during the firing of the formed products. The residual iron causes colored (red brown) products with market value reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックス用ムライト系材料の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a mullite-based material for ceramics.

(従来の技術) 各種の燃焼炉から排出される石炭灰は、現在その40%
がセメント原料、ケイ酸カリ肥料、軽量骨材等に有効利
用されている。しかし残りは有効利用することなくただ
埋立地に廃棄されているのが実情である。しかし廃棄は
年々埋立地もなくなり、公害等が発生し社会問題となっ
ている。したかって石炭灰の有効利用率を高めることが
重要な課題になっている。
(Conventional technology) Currently, 40% of coal ash is discharged from various combustion furnaces.
It is effectively used as a raw material for cement, potassium silicate fertilizer, lightweight aggregate, etc. However, the reality is that the remaining waste is simply disposed of in landfills without being put to effective use. However, as the number of landfill sites disappears year by year, waste disposal is becoming a social problem, causing pollution and other problems. Therefore, increasing the effective utilization rate of coal ash has become an important issue.

一方、ファインセラミックス原料として近年ムライトが
注目されて来ている。ムライトは高温圧縮強度、クリー
プ強度ともアルミナよりはるかに大きく、炭化ケイ素に
匹敵する材料であり酸化物系の高温構造材料として注目
されている。しかしムライトは、天然にはまれな鉱物で
ある。
On the other hand, mullite has recently attracted attention as a raw material for fine ceramics. Mullite has much higher high-temperature compressive strength and creep strength than alumina, is comparable to silicon carbide, and is attracting attention as an oxide-based high-temperature structural material. However, mullite is a mineral that is rare in nature.

大エムライI・の合成法としてこれまで第1にゾル−ゲ
ル法、共沈法、加水分解法、熱分解法、噴霧熱分解法、
水熱合成法などが知られている。これらの方法で生成し
たムライトは、高純度であるか、非常に高価なムライト
材料となる。したかってファインセラミックス材料とし
て使われる。すなわち、エレクトロニクスセラミックス
材料及び高温構造材料として使われる。
So far, the primary methods for synthesizing Daiemurai I have been the sol-gel method, coprecipitation method, hydrolysis method, pyrolysis method, spray pyrolysis method,
Hydrothermal synthesis methods are known. The mullite produced by these methods is either highly pure or becomes a very expensive mullite material. Therefore, it is used as a fine ceramic material. That is, it is used as an electronic ceramic material and a high-temperature structural material.

また第2に天然のカオリンとアルミナとの固体反応によ
るムライトが製造市販されている。この方法で生成した
ムライトは第1の方法で生成したムライトよりは不純物
(Fe20j、MgO1CaO、アルカリ類等)か若干
含入するため、若干機能か劣る。したかって用途は高温
用磁気材料、高温用耐火物、及び硬質磁気材料として用
いられる。
Secondly, mullite is manufactured and commercially available by solid reaction of natural kaolin and alumina. The mullite produced by this method contains some impurities (Fe20j, MgO1CaO, alkalis, etc.) than the mullite produced by the first method, and therefore is slightly inferior in functionality. Therefore, it is used as a high-temperature magnetic material, a high-temperature refractory, and a hard magnetic material.

(発明が解決しようとする課題) しかしながら上記のゾル−ゲル法、共沈法、加水分解法
、熱分解法、噴霧熱分解法又は水熱合成法ては、■)出
発原料が高価である、2)合成法が複雑て手間かかかり
、また反応時間か長く生産性が悪い、等の問題かあり、
その結果これらの方法て生成したムライトは非常に高価
なものになっていた。またカオリンとアルミナとの固体
反応によるムライトは、反応性が悪いので高温(180
0〜1850℃)て焼成し製品化している。この方法も
高温焼成のため燃料費かかさみ高価なムライトとなって
いた。また、粘土鉱物原料中で最も高価な原料であるカ
オリンを使用するので第1の方法て生成されたムライト
よりは若干安いかそれでも現在1トンlO万円以上で販
売されている。
(Problems to be Solved by the Invention) However, the above-mentioned sol-gel method, coprecipitation method, hydrolysis method, pyrolysis method, spray pyrolysis method, or hydrothermal synthesis method has two problems: ■) The starting materials are expensive; 2) The synthesis method is complicated and time-consuming, and the reaction time is long and productivity is poor.
As a result, the mullite produced by these methods has become very expensive. In addition, mullite, which is produced by a solid reaction between kaolin and alumina, has poor reactivity, so high temperatures (180
0 to 1850°C) to produce products. This method also requires high-temperature firing, resulting in high fuel costs and expensive mullite. In addition, since kaolin, which is the most expensive raw material among clay mineral raw materials, is used, it is slightly cheaper than mullite produced by the first method, but it is currently sold for more than 1 ton, 10,000 yen.

(課題を解決するための手段) 本発明者らはこのような従来の人工ムライトの製造方法
、特に固体反応によるムライトの製造方法の欠点を克服
するため鋭意研究を重ねた結果、石炭灰は火力発Ti所
ボイラーの1500〜1600℃火炎中で生成され、鉱
物組成としては石英か主鉱物であるか、ボーrラー高温
中に石炭灰中のシリカとアルミナ成分か反応し、若干の
ムライトが生成される。その含有♀−は数%である。ま
た石炭灰中には非晶質のシリカの存在が認められること
、したがって石炭灰にアルミナを加えて混合−焼成すれ
ば、非晶質のシリカとアルミナの固体反応による新たな
ムライト質の生成か可能であることを見出した。
(Means for Solving the Problems) The present inventors have conducted intensive research to overcome the drawbacks of the conventional method for producing artificial mullite, especially the method for producing mullite by solid reaction. It is produced in the 1500-1600°C flame of a Ti plant boiler, and the mineral composition is either quartz or the main mineral, or the silica and alumina components in the coal ash react during the high temperature of the borer, producing some mullite. be done. The content of ♀- is several percent. In addition, the presence of amorphous silica is recognized in coal ash. Therefore, if alumina is added to coal ash and mixed and fired, a new mullite will be generated due to a solid reaction between amorphous silica and alumina. I found out that it is possible.

そして、この際石炭灰中に含まれるアルカリ金属又はア
ルカリ土類金属がムライト生成促進剤(焼結補助剤)と
して寄与することから、従来の焼成温度よりも300〜
500℃も低い温度(1300〜1500℃)でムライ
トを製造できることを見出し、これらの知見に基づいて
本発明を完成するに至った。
At this time, the alkali metal or alkaline earth metal contained in the coal ash contributes as a mullite formation accelerator (sintering aid), so the firing temperature is 300 - 300 m
It was discovered that mullite can be produced at a temperature as low as 500°C (1300 to 1500°C), and the present invention was completed based on these findings.

すなわち本発明は、脱鉄及び脱炭素した石炭灰にアルミ
ナを加えこの混合物を生成、焼成することを特徴とする
ムライト系材料の製造方法を提供するものである。
That is, the present invention provides a method for producing a mullite-based material, which is characterized by adding alumina to deironated and decarbonized coal ash to produce and sinter the mixture.

本発明に用いられる石炭灰は好ましくは、5i02 5
5wt%以上、A文203 20wj%以−1−を含有
するものである。これは前処理により、好ましくは鉄分
2wt%以下、炭素分0.5wt%以下とされる。
The coal ash used in the present invention is preferably 5i02 5
It contains 5 wt% or more and A-text 203 20 wj% or more -1-. Preferably, the iron content is 2 wt% or less and the carbon content is 0.5 wt% or less by pretreatment.

本発明に使用する石炭灰は、所定量のTiO2、CaO
lMgO,に20、Na2O等を含有していてもよい。
The coal ash used in the present invention contains a predetermined amount of TiO2, CaO
1MgO, 20, Na2O, etc. may be contained.

本発明において前処理としては脱鉄、脱炭素。In the present invention, pretreatment includes deironization and decarbonization.

酸処理及び微粉砕等が挙げられる。脱鉄処理はまず磁選
機による脱鉄の後、必要に応じてさらに塩酸、硫酸等で
酸洗いして行う。脱炭素は石炭灰の残存炭素分(未然石
炭分)を減する目的で行い、脱鉄後800〜900″C
で仮焼し脱炭素灰にすることにより行われる。
Examples include acid treatment and pulverization. The iron removal treatment is carried out by first removing iron using a magnetic separator, and then, if necessary, by pickling with hydrochloric acid, sulfuric acid, etc. Decarbonization is performed for the purpose of reducing the residual carbon content (unprocessed coal content) of coal ash.
This is done by calcining it into decarbonized ash.

以j−のボj処理か不十分では後工程で形成される成形
体は焼成中に発泡性か生じる。また残存鉄分の為、有色
(赤褐色)を呈し、商品価値が劣るものしか得られない
If the following treatment is insufficient, the molded product formed in the subsequent process will have foaming properties during firing. Also, due to the residual iron content, it is colored (reddish brown) and can only be obtained with inferior commercial value.

また本発明に使用するアルミナとしては水酸化アルミニ
ウム、γ型アルミナ又はα型アルミナ等を挙げることか
てきる。アルミナのその粒径は特に制限はないか経済性
から数ミクロンからl107tとするのか好ましい。こ
のアルミナの石炭灰への配合比は特に限定するものでは
ないが、ムライトの5iOzとA120:lの成分wt
%は、S i 02 28 、2wL%、A文、0. 
71.8wt%である。従って石炭灰中の5in2の量
に対し、理論配合比にするのが最も好ましいか、アルミ
ナが高価な原料である故、経済性を考慮に入れ、2:1
〜1:1の範囲の配合比が好ましい。
Further, examples of the alumina used in the present invention include aluminum hydroxide, γ-type alumina, α-type alumina, and the like. There is no particular restriction on the particle size of alumina, but it is preferably from several microns to 1107t from economical considerations. The blending ratio of this alumina to the coal ash is not particularly limited, but the composition wt of 5iOz of mullite and A120:l
% is S i 02 28 , 2wL%, A sentence, 0.
It is 71.8wt%. Therefore, for the amount of 5 in2 in coal ash, it is most preferable to use the theoretical mixing ratio, or since alumina is an expensive raw material, taking economic efficiency into consideration, it is 2:1.
A blending ratio in the range of 1:1 is preferred.

より好ましくは、1:1(炭種Aの前処理灰の場合S 
102 35 、5wt%:AltO:s64.6wt
%となる)かよい。こうして得られた混合物は微粉体は
ど反応性はよいか、経済性の点から数ミクロンから10
ミクロン程度に微粉砕するのか好ましい。
More preferably, 1:1 (S for pretreated ash of coal type A)
102 35, 5wt%: AltO:s64.6wt
%). The reactivity of the thus obtained mixture is determined from a few microns to 10 microns from an economic point of view.
It is preferable to grind it to a micron size.

この混合物微粉体の成形は形、大きさ等は制限はないが
成形に必要な圧力は500〜1200トン/cm”か好
ましく、より好ましくは1トン/crn’とする。成形
体の焼成は焼成時間8〜15時間が好ましいか、より好
ましくは10時間である。焼成温度は1300〜160
0℃が好ましいか、より好ましい温度は1400〜15
00℃である。焼成保持時間は2〜5時間か好ましいか
通常2時間で十分である。焼成体冷却後は、粗砕あるい
は微粉砕にしてムライト系材料とする。
The molding of this fine powder mixture is not limited to any shape or size, but the pressure required for molding is preferably 500 to 1,200 tons/cm', more preferably 1 ton/crn'. The time is preferably 8 to 15 hours, more preferably 10 hours.The firing temperature is 1300 to 160
Preferably 0°C, more preferably 1400-15
It is 00℃. The firing holding time is preferably 2 to 5 hours, and usually 2 hours is sufficient. After the fired body is cooled, it is crushed coarsely or finely to obtain a mullite-based material.

(実施例) 以下実施例に基づいて本発明をさらに詳細に説明する。(Example) The present invention will be explained in more detail below based on Examples.

実施例1 第1表に後述する実施例2に使用する石炭灰B種ととも
に本発明て使用する石炭灰A種の組成を示す。この石炭
灰A種を厳選機にかけ、磁力1万5千〜2万ガウスて脱
鉄した。次いで脱鉄法を電気炉を用い、温度800℃、
保持時間2時間で脱炭素した。
Example 1 Table 1 shows the composition of coal ash type A used in the present invention as well as coal ash type B used in Example 2, which will be described later. This type A coal ash was passed through a carefully selected machine to remove iron using a magnetic force of 15,000 to 20,000 Gauss. Next, the iron removal method was carried out using an electric furnace at a temperature of 800°C.
Decarbonization was achieved with a holding time of 2 hours.

脱炭素灰は微粉砕機で微粉末法にした(平均粒径7〜8
ミクロン)。次に脱鉄−説炭素一微粉砕した石炭灰10
0gを用い、温水洗い(温水1文、温度80°C″′c
Wl拌しながら)さらに酸洗い(e度2規定の塩酸l2
中で、温度80°C,時間2時間攪拌しながら洗浄)、
ろ過後、乾燥して+fij処理は終了する。
The decarbonized ash was made into a fine powder using a pulverizer (average particle size 7-8
micron). Next, iron removal theory: carbon 10 finely pulverized coal ash
Using 0g, wash with warm water (1 sentence of warm water, temperature 80°C'''c)
(while stirring) and pickling (with 2N hydrochloric acid l2
Washing at 80°C for 2 hours with stirring)
After filtration, the +fij treatment is completed by drying.

次に前処理灰50gに水酸化アルミニウム、γ型アルミ
ナ又はα型アルミナ50gを加えてよく混合し、水分1
0wt%を加えて、成形圧1トン/cm’の圧で直11
16mm、長さ14〜16mmの円柱状の成形体を成形
した。この成形体を電気炉を用いて昇温速度150℃/
時間、焼成温度1500℃、保持時間2時間て焼成しム
ライトを生成した。
Next, add 50 g of aluminum hydroxide, γ-type alumina, or α-type alumina to 50 g of pretreated ash, mix well, and
Add 0 wt% and directly press 11 at a molding pressure of 1 ton/cm'.
A cylindrical molded body having a diameter of 16 mm and a length of 14 to 16 mm was molded. This molded body was heated at a heating rate of 150°C/
Mullite was produced by firing at a firing temperature of 1500° C. and a holding time of 2 hours.

上記方法により得られたムライトの性状を第2表に示す
。またそれぞれのX線回折図を第1図(a)、(b)、
(c)及び(d)に示す。
Table 2 shows the properties of the mullite obtained by the above method. In addition, the respective X-ray diffraction patterns are shown in Figure 1 (a), (b),
Shown in (c) and (d).

実施例2 第1表に示す石炭灰B種を磁選機にかけ実施例1と同様
に脱鉄、脱炭素し、微粉砕した。石炭灰B種は同表に示
すように元から鉄分か少ない灰であるので、石炭灰A種
のように温水洗い、酸洗いはしなくてもよい。磁選脱鉄
−説炭素一徹粉砕1ノたB灰50gにγ型アルミナ50
gを加え、よく混合した後実施例1と同様に成形−焼成
し、ムライトを生成した。
Example 2 Type B coal ash shown in Table 1 was subjected to a magnetic separator to remove iron, decarbonize, and pulverize in the same manner as in Example 1. As shown in the same table, type B coal ash is originally ash with low iron content, so unlike type A coal ash, it does not need to be washed with warm water or pickled. Magnetic Separation - De-ironization - Theory of carbon pulverization 50 g of B ash and 50 g of γ-type alumina
After mixing well, molding and firing were carried out in the same manner as in Example 1 to produce mullite.

I;記方法により得られたムライトの性状を前記実施例
1と同様に第2表に示す。また第1図(d)にそのX線
回折図を示す。
The properties of the mullite obtained by the method described above are shown in Table 2 as in Example 1 above. Moreover, the X-ray diffraction pattern is shown in FIG. 1(d).

第2表の本発明ムライトと市販品ムライl−(カオリン
−水酸化アルミニウム)の物性比較で示すように、はと
んど差がない。特に圧装引張り強度ては第2表て見られ
るように本発明品か市販品よりも優れている。
As shown in Table 2, which compares the physical properties of the mullite of the present invention and the commercially available mullite (kaolin-aluminum hydroxide), there is almost no difference between them. In particular, as shown in Table 2, the compressed tensile strength is superior to the products of the present invention and commercially available products.

また第1図のX線回折図で示すように、ムライト結晶の
生成は市販品第1図(e)(カオリン−水酸化アルミニ
ウム)と同格である。
Furthermore, as shown in the X-ray diffraction diagram of FIG. 1, the formation of mullite crystals is on the same level as the commercial product shown in FIG. 1(e) (kaolin-aluminum hydroxide).

(発明の効果) 以上説明したように本発明方法によれば低コストでムラ
イト質セラミックス原料を製造することがてきる。すな
わち、従来の固体反応方法により得られた市販品ムライ
トよりも、石炭灰の磁選−仮焼一微粉砕一酸洗いの前処
理を含めても20〜30%は安く製造できる。また、鉄
分の少ない石炭灰を原料とした場合は酸洗いは必要とし
ないのでさらに安く、1/2程度で製造できる。従って
本発明は固体反応方法に比べて、非常に経済性に富む。
(Effects of the Invention) As explained above, according to the method of the present invention, a mullite ceramic raw material can be produced at low cost. That is, it can be produced 20 to 30% cheaper than commercially available mullite obtained by conventional solid reaction methods, even including the pretreatment of magnetic separation, calcination, pulverization, and pickling of coal ash. In addition, if coal ash with a low iron content is used as a raw material, pickling is not necessary, so it is even cheaper and can be produced at about 1/2 the cost. Therefore, the present invention is much more economical than solid reaction methods.

さらに生成したムライトの性状も従来品と同等かもしく
はそれ以上である。
Furthermore, the properties of the produced mullite are equal to or better than those of conventional products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)、(c)及び(d)は第1表及び
第2表に示す実施例のムライト質セラミックス原料のX
線回折図、第1図(e)は従来例のムライト質セラミッ
クス原料のX線回折図である。
Figure 1 (a), (b), (c) and (d) show the X of the mullite ceramic raw materials of the examples shown in Tables 1 and 2
Figure 1(e) is an X-ray diffraction diagram of a conventional mullite ceramic raw material.

Claims (1)

【特許請求の範囲】[Claims]  脱鉄及び脱炭素した石炭灰にアルミナを加え、この混
合物を成形、焼成することを特徴とするムライト系材料
の製造方法。
A method for producing a mullite-based material, which comprises adding alumina to deironated and decarbonized coal ash, shaping and firing the mixture.
JP1091622A 1989-04-11 1989-04-11 Method for manufacturing mullite material Expired - Lifetime JPH0774096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1091622A JPH0774096B2 (en) 1989-04-11 1989-04-11 Method for manufacturing mullite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1091622A JPH0774096B2 (en) 1989-04-11 1989-04-11 Method for manufacturing mullite material

Publications (2)

Publication Number Publication Date
JPH02275752A true JPH02275752A (en) 1990-11-09
JPH0774096B2 JPH0774096B2 (en) 1995-08-09

Family

ID=14031666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1091622A Expired - Lifetime JPH0774096B2 (en) 1989-04-11 1989-04-11 Method for manufacturing mullite material

Country Status (1)

Country Link
JP (1) JPH0774096B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186910A (en) * 2006-01-13 2007-07-26 Japan Fine Ceramics Center Ceramic sintered body, ballast, and ballast track bed
JP2020039994A (en) * 2018-09-06 2020-03-19 昭和電工株式会社 Method of processing incineration ash, and method of reusing the same
CN114907097A (en) * 2022-02-28 2022-08-16 内蒙古佳汇新材料科技有限公司 Method for producing mullite inert alumina ceramic ball

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147009A (en) * 1974-10-19 1976-04-22 Kogyo Gijutsuin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147009A (en) * 1974-10-19 1976-04-22 Kogyo Gijutsuin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186910A (en) * 2006-01-13 2007-07-26 Japan Fine Ceramics Center Ceramic sintered body, ballast, and ballast track bed
JP2020039994A (en) * 2018-09-06 2020-03-19 昭和電工株式会社 Method of processing incineration ash, and method of reusing the same
CN114907097A (en) * 2022-02-28 2022-08-16 内蒙古佳汇新材料科技有限公司 Method for producing mullite inert alumina ceramic ball

Also Published As

Publication number Publication date
JPH0774096B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
CN102757211B (en) Aerated concrete block produced by specially-made mineral waste residue and tailings steel slag and production method of aerated concrete block
TW492951B (en) Method and apparatus for using steel slag in cement clinker production
CN100415679C (en) Making process of electrofused mullite
CN102976641A (en) Micro-expansive moderate-heat Portland cement and production method thereof
CN102311136A (en) Method for producing low iron aluminum sulfate by utilization of coal gangue
CN101306826A (en) Process for extracting metallurgy-level aluminum oxide from fly ash or slag
Pei et al. A novel process to fully utilize red mud based on low-calcium sintering
CN101591197A (en) A kind of method of utilizing pre-desiliconizing with high alumina fly ash to prepare calcium silicate fertilizer
CN101792179B (en) Production method of electrically melt yttrium oxide stabilized zirconia granulation powder
CN102627305A (en) Method using alkaline process to extract alumina in coal ash
CN101028935A (en) Method for extracting aluminum hydrate or alumina from coal gangue and method for producing cement from fag end
CN109437607A (en) A kind of preparation method of high-density sintered magnesia
CN110950644A (en) Steel slag sintered brick and preparation method thereof
CN1325432C (en) Agglomeration method for synthesizing mullite by using high aluminous fly ash
CN101684524A (en) Method and device for preparing magnesium metal by carbothermic reduction
CN103864086A (en) Method of producing borax by utilizing boron-rich slag
CA1188713A (en) Process for producing hydraulic cement from dicalcium silicate
JPH02275752A (en) Production mullite material
WO2020206832A1 (en) Method for extracting iron from high-iron red mud and directly cementing
US4436550A (en) Process for recovery of aluminum from carbonaceous waste products
KR100536261B1 (en) Recovery method of alumina by using sulphuric acid leaching method from molten incinerator slag of sewage sludge
RU2787859C1 (en) Method for preparing aluminum titanate fire-resistant material using industrial aluminum slag and titanium slag
CN107857276B (en) A method of utilizing dicalcium silicate alkaline process synthetic calcium silicate
JP2002087854A (en) Low-heat cement consisting of clinker having high phosphorus content and blast furnace slag fine powder
RU2200707C1 (en) Process of producing alumina from ash-and-slag wastes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term