JPH02275011A - Cooling system for internal combustion engine - Google Patents

Cooling system for internal combustion engine

Info

Publication number
JPH02275011A
JPH02275011A JP9665989A JP9665989A JPH02275011A JP H02275011 A JPH02275011 A JP H02275011A JP 9665989 A JP9665989 A JP 9665989A JP 9665989 A JP9665989 A JP 9665989A JP H02275011 A JPH02275011 A JP H02275011A
Authority
JP
Japan
Prior art keywords
cooling water
port side
passage
intake port
exhaust port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9665989A
Other languages
Japanese (ja)
Inventor
Hiroko Ogita
小木田 浩子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9665989A priority Critical patent/JPH02275011A/en
Publication of JPH02275011A publication Critical patent/JPH02275011A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/242Arrangement of spark plugs or injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis

Abstract

PURPOSE:To accelerate the extent of fuel carburetion by installing a means which selects a flow of cooling water to an exhaust port side cooling water duct at time of partial load driving and to an intake port side cooling water duct at time of the high load driving, respectively, out of two cooling water ducts leading to each cooling water passage at both these intake and exhaust port sides. CONSTITUTION:In a cylinder head 2 provided with each two of intake and exhaust ports 3, 7 at each combustion chamber, cooling water passages 5, 8 extending in the cylinder array direction are installed in each underside of these intake and exhaust ports 3, 7. In addition, there is provided a combustion chamber upper side cooling water passage 6 which traverses the upper part of the combustion chamber between these intake and exhaust ports 3, 7, surrounding a spark plug hole, and extending in the cylinder array direction, and a partition wall 26 with a partial connecting passage 25 is installed in this passage 6. These passages 5, 8 are connected to a cooling water passage at the discharge side of a pump 1 via cooling water ducts 27, 28 and a passage selector valve 34, and this passage selector valve 34 is selected so as to lead a flow of cooling water the exhaust port side cooling water duct 28 at time of partial load driving but to the intake port side cooling water duct 27 at time of the high load driving, respectively.

Description

【発明の詳細な説明】 産業−1−の利用分野 本発明は、内燃機関の冷却装置に関する。[Detailed description of the invention] Application field of industry-1- The present invention relates to a cooling device for an internal combustion engine.

従来の技術 従来の内燃機関の冷却装置と17では、例えば第3図及
び第4図に示すようなしのがある、(実開昭61−15
6126号公報、特開昭62−107220号公報等参
照)。
BACKGROUND OF THE INVENTION Conventional cooling systems for internal combustion engines include those shown in FIGS. 3 and 4, for example.
6126, JP-A-62-107220, etc.).

すなわち、第3図に示す従来例にあっては、冷却水は、
冷却水ポンプlにより加圧されて、シリンダヘッド2の
吸気ポート3下側にある冷却水人口4からシリンダヘッ
ド2に流入j2、吸気ポート側冷却水通路5、燃焼室上
側冷却水通路6を通り、排気ポート7側へ流れ、排気ポ
ート側冷却水通路路8からシリンダブロック9内の冷却
水通路 l。
That is, in the conventional example shown in FIG. 3, the cooling water is
It is pressurized by the cooling water pump l and flows into the cylinder head 2 from the cooling water population 4 located below the intake port 3 of the cylinder head 2, passes through the intake port side cooling water passage 5, and the combustion chamber upper cooling water passage 6. , flows toward the exhaust port 7 side, and flows from the exhaust port side cooling water passageway 8 to the cooling water passageway in the cylinder block 9 l.

を通り、シリンダブロック9を冷却1.て、シリンダブ
ロック側冷却水出口11から流出17、ラジェータI2
を通り冷却水温度を下げ、再び冷却水ポンプlにより加
圧されて冷却水人口4よリシリンダヘッドに流入すると
いう循環を繰返して内燃機関を冷却している。
cooling the cylinder block 9.1. Outflow 17 from the cylinder block side cooling water outlet 11, radiator I2
The internal combustion engine is cooled by repeating a cycle in which the temperature of the cooling water is lowered through the cooling water pump 1, the cooling water is pressurized again by the cooling water pump 1, and the cooling water flows into the cylinder head through the cooling water pump 4.

また従来、第4図に示したような内燃機関の冷却装置が
知られている6(特開昭62−107220号公報参照
)これは、吸気ポート3の下方を(M切って気筒配列方
向に延在4゛る吸気ボ・−1・下側冷却水通路13と排
気ポート7の下側を横切って気筒配列方向に延在する排
気ポート下側冷却水通路14と、吸気ポート3側と排気
ポート7側との間の燃焼室上部を気筒配列方向に延在す
る燃焼室上側冷却水通路16とが名々互いに区分12て
独立jまた冷却水通路がシリンダヘッド2に設けられて
いる。シリンダヘッド2の両端部には、3つの各冷却水
通路13.14j 6の配列方向に、即ち気筒配列方向
に直交する方向に延在する弁室19及び20が設けられ
ている。弁室19及び20にはそれぞれ、冷却水流路切
り換え弁21及び22が設けられている。
Furthermore, a cooling system for an internal combustion engine as shown in FIG. 4 has been known (see Japanese Patent Laid-Open No. 62-107220), in which the lower part of the intake port 3 is cut (M) in the cylinder arrangement direction. The intake port-1 lower cooling water passage 13 extends 4 inches, the exhaust port lower cooling water passage 14 extends in the cylinder arrangement direction across the lower side of the exhaust port 7, and the intake port 3 side and the exhaust A combustion chamber upper cooling water passage 16 extending in the cylinder arrangement direction between the upper part of the combustion chamber and the port 7 side is divided into sections 12 and independent from each other, and the cooling water passage is provided in the cylinder head 2. Valve chambers 19 and 20 are provided at both ends of the head 2 and extend in the direction in which the three cooling water passages 13, 14j 6 are arranged, that is, in a direction perpendicular to the direction in which the cylinders are arranged. 20 are provided with cooling water flow path switching valves 21 and 22, respectively.

冷却水流路は、内燃機関の負荷または回転数によって、
吸気ポート下側冷却水通路13と排気ポート下側冷却水
通路14とを冷却水が流れる順序が選択的に変更される
。部分負荷時及びアイドル時にはメカニカルオクタン価
の向」二のために冷却水が吸気ポート下側冷却水通路1
3から排気ポート下側冷却水通路14へ流れるようにさ
れ、これに対i−高負荷運転時には排気ガス温度を下げ
るために冷却水が排気ポート下側冷却水通路14から吸
気ポート下側冷却水通路13へ流れるように流路を切り
換える。これにJ−り部分負荷時及びアイドル時におり
るメカニカルオクタン価の向上と、高負荷運転時におけ
る排気ガス温度の低下とを両立するように17たちので
ある。
The cooling water flow path changes depending on the load or rotation speed of the internal combustion engine.
The order in which the cooling water flows through the intake port lower cooling water passage 13 and the exhaust port lower cooling water passage 14 is selectively changed. At partial load and at idle, cooling water flows through the intake port lower cooling water passage 1 due to the mechanical octane rating.
3 to the exhaust port lower cooling water passage 14, whereas during high load operation, cooling water flows from the exhaust port lower cooling water passage 14 to the intake port lower cooling water in order to lower the exhaust gas temperature during high load operation. The flow path is switched so that it flows to the path 13. In addition, J-17 is designed to improve the mechanical octane number during partial load and idle, and reduce the exhaust gas temperature during high load operation.

発明が解決しJ−うとする課題 しかしながら、これら従来の内燃機関の冷却装置におい
ては、部分負荷時及びアイドリング時には、吸気ポート
側領域が排気ポート側領域よりら先に冷却されるので、
温度の低い冷却水によって吸気ポート側領域が他の部分
に比して強力に冷却されて1−よい、吸気混合気の燃料
の気化が悪化]2、吸気ポート壁への燃料付着量が増加
して(2まうので、混合気が希薄になり燃焼が悪化し、
燃費も悪化する。しかも第4図に示した従来例において
は、高負荷運転時に、排気ポート側領域から吸気ポート
側領域に冷却水を流して冷却している。しかj2内燃機
関が高負荷運転状態にあるときは、吸気ポート側よりも
排気ポート側の燃焼室内の温度が高くなるので、燃焼室
内の混合気は排気ポート側に比べ吸気ポート側の火炎伝
播は遅くなり、吸気ポート近傍の混合気の未燃焼部分が
自己着火を起こ17燃焼室壁の局所的温度上昇を招き、
ノッキングが発生ずる可能性が最も大きくなる。このた
め高負荷運転時におIJるノッキングの発生を防止する
ことができない。
Problems to be Solved by the Invention However, in these conventional cooling systems for internal combustion engines, the intake port side region is cooled before the exhaust port side region during partial load and idling.
The area on the intake port side is cooled more strongly than other parts by the low-temperature cooling water, 1- Good, the vaporization of the fuel in the intake air-fuel mixture is worsened. 2. The amount of fuel adhering to the intake port wall increases. (2), the air-fuel mixture becomes lean and combustion worsens,
Fuel efficiency also worsens. Furthermore, in the conventional example shown in FIG. 4, during high-load operation, cooling water is flowed from the exhaust port side region to the intake port side region for cooling. However, when the internal combustion engine is operating under high load, the temperature inside the combustion chamber on the exhaust port side is higher than on the intake port side, so the flame propagation of the air-fuel mixture in the combustion chamber is less on the intake port side than on the exhaust port side. 17 The unburned part of the air-fuel mixture near the intake port self-ignites, causing a local temperature rise on the combustion chamber wall.
The possibility of knocking occurring is greatest. For this reason, it is not possible to prevent the occurrence of IJ knocking during high-load operation.

以上述べた通り、従来の内燃機関の冷却装置にあっては
、部分負荷運転時及びアイドル時の混合気燃料の気化の
悪化、及び高負荷運転時におけるノッキングの発生を防
止することができないという問題点があった。
As mentioned above, conventional cooling systems for internal combustion engines have the problem of not being able to prevent the deterioration of vaporization of the fuel mixture during partial load operation and idling, and the occurrence of knocking during high load operation. There was a point.

本発明は、このような従来の問題点に着目1.てなされ
たものであり、内燃機関が部分負荷運転時びアイドル時
には、排気ポート側領域から吸気ポート側領域へ冷却水
を流し、また高負荷運転時には、吸気ポート側領域から
排気ポート側領域へ冷却水を流すようにすることにより
、上記問題点を解決することを目的としている。
The present invention focuses on such conventional problems as follows: 1. When the internal combustion engine is operating at partial load or idling, cooling water flows from the exhaust port side area to the intake port side area, and during high load operation, cooling water flows from the intake port side area to the exhaust port side area. The purpose is to solve the above problems by allowing water to flow.

課題を解決するための手段 このため本発明は、内燃機関のシリンダヘッド内に互い
に連通し、かっ気筒配列方向に延在する、吸気ポート側
冷却水通路と排気ポート側冷却水通路と燃焼室上側冷却
水通路とを備えた内燃機関の冷却装置において、燃焼室
」二側冷却水通路内に設けられ吸気ポート側と排気ポー
ト側との間の冷却水の流れを制限する隔壁と、吸気ポー
ト側冷却水通路と排気ポート側冷却水通路とにそれぞれ
接続した冷却水導管と、これら2つの冷却水導管のうち
内燃機関が部分負荷運転時及びアイドル時には排気ポー
ト側冷却水通路に接続する冷却水導管へ、高負荷運転時
には吸気ポート側冷却水通路に接続する冷却水導管へ冷
却水の流れを切り換える冷却水通路切り換え手段とを設
けた。
Means for Solving the Problems Therefore, the present invention provides a cooling water passage on the intake port side, a cooling water passage on the exhaust port side, and an upper side of the combustion chamber, which communicate with each other in the cylinder head of an internal combustion engine and extend in the cylinder arrangement direction. In a cooling device for an internal combustion engine having a cooling water passage, a partition wall provided in the cooling water passage on the second side of the combustion chamber and restricting the flow of cooling water between the intake port side and the exhaust port side; A cooling water conduit connected to the cooling water passage and the exhaust port side cooling water passage, respectively, and a cooling water conduit of these two cooling water conduits connected to the exhaust port side cooling water passage when the internal combustion engine is operating at partial load or idle. Furthermore, a cooling water passage switching means is provided for switching the flow of cooling water to a cooling water conduit connected to the intake port side cooling water passage during high load operation.

作用 機関の負荷が部分負荷状格やアイドリング状態のときに
は、冷却水通路切換弁により冷却水を排気ポート側冷却
水導管に流1−1排気ポートを吸気ポートより先に冷却
する。排気ポート側を冷却した冷却水は、隔壁間の−・
都連通路を通って吸気ポート側へ流れ吸気ポート側を冷
却する。
When the operating engine is in a partial load state or in an idling state, the cooling water passage switching valve allows cooling water to flow into the exhaust port side cooling water conduit, cooling the exhaust port 1-1 before the intake port. The cooling water that cooled the exhaust port side is
It flows through the interconnection passage to the intake port side and cools the intake port side.

一方機関の負荷が高負荷状態のときには、冷却水流路切
換弁により冷却水を吸気ポート側冷却水導管に流l11
、吸気ポート側を先に冷却する。吸気ポート側を冷却し
た冷却水は、隔壁間の一部連通路を通って排気ポート側
へ流れ、排気ポート側を冷却する。
On the other hand, when the engine load is high, the cooling water flow path switching valve flows the cooling water to the intake port side cooling water conduit l11.
, cool the intake port side first. The cooling water that has cooled the intake port side flows to the exhaust port side through a partial communication path between the partition walls, and cools the exhaust port side.

実施例 以下、本発明を図面に基づいて説明する。第1図及び第
2図は、本発明の一実施例を示す図で。
EXAMPLES Hereinafter, the present invention will be explained based on the drawings. FIG. 1 and FIG. 2 are diagrams showing one embodiment of the present invention.

第1図は全体構成の概斃を示j7、第2図は主要部を示
す斜視図である。なお第2図の矢印は冷却水の流れを示
す。
Fig. 1 shows an overview of the overall configuration, and Fig. 2 is a perspective view showing the main parts. Note that the arrows in FIG. 2 indicate the flow of cooling water.

まず構成を説明する。なお従来例と同一構成部分には、
同一の符号を付]7て説明を省略する。
First, the configuration will be explained. The same components as the conventional example include:
The same reference numerals are given]7, and the explanation will be omitted.

シリンダヘッド2には各燃焼室毎に2つの吸気ポート3
と2つの排気ポート7が設0られている。
The cylinder head 2 has two intake ports 3 for each combustion chamber.
and two exhaust ports 7 are provided.

吸気ポート3の下側には気筒配列方向に延在する吸気ポ
ート側冷却水通路5と、排気ポート7の下側には気筒配
列方向に延0:する排気ポート側冷却水通路8と、吸気
ポート3側と排気ポート7側との間の燃焼室」三方を横
切って点火プラグホール15を取り囲んで気筒配列方向
に延在する燃焼室]二側冷却水通路6とが各々連通1、
て設置3られている。燃焼室上側冷却水通路6には、吸
気ポート側冷却水通路3側から排気ポート側冷却水通路
8側の方向またはその逆方向の冷却水の流れを制限する
べく、−都連通路25を有する隔壁2Gが設けられてい
る。
Below the intake port 3, there is an intake port side cooling water passage 5 extending in the cylinder arrangement direction, and below the exhaust port 7 there is an exhaust port side cooling water passage 8 extending in the cylinder arrangement direction. A combustion chamber between the port 3 side and the exhaust port 7 side (a combustion chamber extending in the cylinder arrangement direction surrounding the spark plug hole 15 across three sides) is in communication with the second side cooling water passage 6, respectively.
It is installed 3 times. The upper cooling water passage 6 of the combustion chamber has a connecting passage 25 in order to restrict the flow of cooling water from the intake port side cooling water passage 3 side to the exhaust port side cooling water passage 8 side or the opposite direction. A partition wall 2G is provided.

ここで、隔壁2Gは、冷却水流の圧力勾配を考慮して、
−都連通路25等を通って各気筒に流れる冷却水量を一
定にするため一冷却水人口27゜28から出口29方向
に向けて少しずつ小さく形成されている。
Here, the partition wall 2G takes into consideration the pressure gradient of the cooling water flow.
- In order to keep the amount of cooling water flowing to each cylinder through the interconnection passage 25 etc. constant, the cooling water volume is gradually decreased from the cooling water population 27° 28 toward the exit 29.

また、シリンダヘッド2の気筒配列方向の一端には、吸
気ポート側冷却水導萱27と排気ポート側冷却水導管2
8とが設けられており、シリンダヘッド2の他方端には
冷却水出口29が一箇所設けられている。この冷却水出
口29側のシリンダブロック9の側端面下方には、シリ
ンダブロック側冷却水入口30が設けられている。また
シリンダブロック9の他端上面には、シリンダブロック
9内を冷却1.た冷却水がシリンダヘッド2側に流れ込
む連通孔3■が設けられている。
Further, at one end of the cylinder head 2 in the cylinder arrangement direction, an intake port side cooling water conduit 27 and an exhaust port side cooling water conduit 2 are provided.
8, and one cooling water outlet 29 is provided at the other end of the cylinder head 2. A cylinder block side cooling water inlet 30 is provided below the side end surface of the cylinder block 9 on the cooling water outlet 29 side. Further, on the upper surface of the other end of the cylinder block 9, there is a cooling 1. A communication hole 3 is provided through which cooling water flows into the cylinder head 2 side.

シリンダヘッド2に流れ込む冷却水通路はシリンダヘッ
ド2の冷却水入口手前において、冷却水流路切換弁34
を介して2本に分かれており、それぞ11、吸気ポート
側冷却水人口27と排気ポート側冷却水人口28とに連
通している。
The cooling water passage flowing into the cylinder head 2 is connected to a cooling water flow path switching valve 34 in front of the cooling water inlet of the cylinder head 2.
It is divided into two via 11, and communicates with the intake port side cooling water population 27 and the exhaust port side cooling water population 28, respectively.

なお、32は冷却水の温度が低い場合には冷却水をラジ
ェータ12に通さずバイパス通路33に通す、流路切換
弁の働きを兼ねる感温弁、31はシリンダブロック9と
シリンダヘッド2とを連通ずる連通穴である。
In addition, 32 is a temperature-sensitive valve that also functions as a flow path switching valve, which allows the cooling water to pass through the bypass passage 33 instead of the radiator 12 when the temperature of the cooling water is low; 31 is a temperature-sensitive valve that connects the cylinder block 9 and the cylinder head 2; It is a communicating hole.

次に作用を説明する。Next, the action will be explained.

内燃機関が部分負荷状態やアイドリング状態時において
は、冷却水流路切換弁34により冷却水を排気ポート側
冷却水導管28に流し、排気ポート7を吸気ポート3よ
り先に冷却し、排気ポート7側を冷却した冷却水は、シ
リンダ ヘッド2内の一部連通路27を通って吸気ポー
ト3側を冷却する。
When the internal combustion engine is in a partial load state or in an idling state, the cooling water flow switching valve 34 causes cooling water to flow into the exhaust port side cooling water conduit 28, cooling the exhaust port 7 before the intake port 3, and cooling the exhaust port 7 side. The cooling water cools the intake port 3 side through a partial communication passage 27 in the cylinder head 2.

また、内燃機関が高負荷状態運転時においては、冷却水
流路切換弁34により冷却水を吸気ポート側冷却水導管
27に流し、吸気ポート3を先に冷却し、その後−都連
通路25を通って排気ポート7を冷却する。
Furthermore, when the internal combustion engine is operating under a high load, the cooling water flow switching valve 34 causes the cooling water to flow into the intake port side cooling water conduit 27 to cool the intake port 3 first, and then to pass through the intercity passage 25. to cool the exhaust port 7.

冷却水流路切換弁34は、内燃機関の吸入負圧或は回転
数や冷却水温度などの大小より図示1.ないコントロー
ルユニットにより制御されて作動し、流路を切り換える
The cooling water flow path switching valve 34 is operated as shown in FIG. It operates under the control of a separate control unit and switches the flow path.

内燃機関が部分負荷状態やアイドリング状態時において
は、先に排気ポート7を冷却することにより、冷却水が
暖められ、この高温の冷却水が吸気ポート3側に流れる
ので、吸気ポート3の壁温か上昇し、混合気燃料の気化
が促進され、吸気ポート壁への燃料付着を抑制できる。
When the internal combustion engine is in a partial load state or in an idling state, the cooling water is warmed by cooling the exhaust port 7 first, and this high-temperature cooling water flows to the intake port 3 side, so that the wall temperature of the intake port 3 decreases. This increases the vaporization of the fuel mixture and suppresses fuel adhesion to the intake port wall.

これにより、良好な燃焼状態が得られ、燃費が向上する
This provides good combustion conditions and improves fuel efficiency.

内燃機関が高Q荷状態にあるとΔは、吸気ボー1−3側
よりt)排気ポート7側の燃焼室内の温度が高くなるの
で、燃焼室内の混合気は、排気ポート7側に比べ吸気ポ
ート3側の火炎伝播は遅くなる。
When the internal combustion engine is in a high Q load state, Δ is higher than the temperature in the combustion chamber on the exhaust port 7 side than on the intake port 1-3 side, so the air-fuel mixture in the combustion chamber is higher than that on the Flame propagation on the port 3 side becomes slower.

このため燃焼速度が遅い吸気ボー1−3近傍の混合気の
未燃焼部分が自己着火を起こ1.燃焼室壁の局所的温度
」二昇を招き、ノブキングが発生し易くなる。従って、
吸気ポート3側から先に低温の冷却水に十り冷却すれば
、吸気ポート3の壁温が低下するので、燃焼室内混合気
の未燃焼部分の自己着火を抑えノッキングの発生を抑制
することによって機関出力を向上させることができる。
As a result, the unburned portion of the air-fuel mixture near the intake bow 1-3, where the combustion speed is slow, self-ignites.1. This causes the local temperature of the combustion chamber wall to rise, making knob king more likely to occur. Therefore,
If the intake port 3 side is sufficiently cooled with low-temperature cooling water first, the wall temperature of the intake port 3 will decrease, which will suppress the self-ignition of the unburned portion of the air-fuel mixture in the combustion chamber and suppress the occurrence of knocking. Engine output can be improved.

土た、燃焼室」二側冷却水通路6に設けた隔壁2Gによ
って、吸気ポート側冷却水通路5側と、排気ポート側冷
却水通路8側との冷却水の混流が制限されるので、冷却
の効果は一段と向−トする。
The partition wall 2G provided in the second side cooling water passage 6 of the combustion chamber restricts the mixed flow of cooling water between the intake port side cooling water passage 5 side and the exhaust port side cooling water passage 8 side, so cooling The effects of this will be further improved.

発明の詳細 な説明したように、本発明の内燃機関の冷却装置により
ば、部分負荷時やアイドリング時に排気ポートを先に冷
却し、それによって暖められた冷却水により吸気ポート
を暖めることができるので、燃料の気化が促進され、吸
気ポート側への燃利付着肴が低減され、燃焼室内の混合
気の空燃比が目標どうりに得られ、燃焼が良好になり、
燃費が向上する。
As described in detail, according to the internal combustion engine cooling device of the present invention, the exhaust port is first cooled during partial load or idling, and the coolant thus warmed can warm the intake port. , fuel vaporization is promoted, fuel adhesion to the intake port side is reduced, the air-fuel ratio of the air-fuel mixture in the combustion chamber is achieved as per the target, and combustion is improved.
Fuel efficiency improves.

高負荷運転時においては、吸気ポート側を先に低温の冷
却水によって冷却することにより、吸気ポート近傍の燃
焼室壁の局所的温度上昇が防止されるので、ノッキング
の発生が抑制され、内燃機関の山ツノを向」二さ(1′
ることができる。
During high-load operation, cooling the intake port side first with low-temperature cooling water prevents a local temperature rise on the combustion chamber wall near the intake port, suppressing the occurrence of knocking and reducing the internal combustion engine. 1'
can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概要を示す全体構成図、第
2図は第1図の要部を示す斜視図、第3図は従来例を示
す断面図、第4図は他の従来例を示す平面図である。 2・・・シリンダヘッド、3・・・吸気ポート、5・・
・吸気ポート側冷却水通路、6・・・燃焼室」二側冷却
水通路、7・・・排気ポート、8・・・排気ポート側冷
却水通路、25・・・−都連通路、26・・・隔壁、2
7・・・吸気ポート側冷却水導管、28・・・排気ポー
ト冷却水導管、29・・・冷却水出口。
Fig. 1 is an overall configuration diagram showing an overview of an embodiment of the present invention, Fig. 2 is a perspective view showing the main parts of Fig. 1, Fig. 3 is a sectional view showing a conventional example, and Fig. 4 is a diagram showing another example. FIG. 2 is a plan view showing a conventional example. 2... Cylinder head, 3... Intake port, 5...
・Intake port side cooling water passage, 6...Combustion chamber'' second side cooling water passage, 7...Exhaust port, 8...Exhaust port side cooling water passage, 25...-Tokyo connection passage, 26.・・Bulkhead, 2
7...Intake port side cooling water conduit, 28...Exhaust port cooling water conduit, 29...Cooling water outlet.

Claims (1)

【特許請求の範囲】[Claims] (1)内燃機関のシリンダヘッド内に互いに連通しかつ
気筒配列方向に延在する吸気ポート側冷却水通路と排気
ポート側冷却水通路と燃焼室上側冷却水通路とを備えた
内燃機関の冷却装置において、吸気ポート側冷却水通路
と排気ポート側冷却水通路とに各々接続した冷却水導管
と、これら2つの冷却水導管のうち内燃機関が部分負荷
運転時及びアイドル時には排気ポート側冷却水通路に接
続する冷却水導管へ、高負荷運転時には吸気ポート側冷
却水通路に接続する冷却水導管へ冷却水の流れを切り換
える冷却水流路切り換え手段とを設けたことを特徴とす
る内燃機関の冷却装置。
(1) A cooling system for an internal combustion engine that includes an intake port side cooling water passage, an exhaust port side cooling water passage, and a combustion chamber upper cooling water passage that communicate with each other and extend in the cylinder arrangement direction in the cylinder head of the internal combustion engine. , a cooling water conduit connected to the intake port side cooling water passage and an exhaust port side cooling water passage, respectively, and one of these two cooling water conduits connected to the exhaust port side cooling water passage when the internal combustion engine is operating at partial load or when idling. A cooling device for an internal combustion engine, characterized in that a cooling water flow switching means is provided for switching the flow of cooling water to a cooling water pipe connected to a cooling water pipe connected to an intake port side cooling water passage during high-load operation.
JP9665989A 1989-04-17 1989-04-17 Cooling system for internal combustion engine Pending JPH02275011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9665989A JPH02275011A (en) 1989-04-17 1989-04-17 Cooling system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9665989A JPH02275011A (en) 1989-04-17 1989-04-17 Cooling system for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH02275011A true JPH02275011A (en) 1990-11-09

Family

ID=14170960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9665989A Pending JPH02275011A (en) 1989-04-17 1989-04-17 Cooling system for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH02275011A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445447A1 (en) * 2003-02-06 2004-08-11 HONDA MOTOR CO., Ltd. Cylinder head of an internal combustion engine
JP2016094873A (en) * 2014-11-13 2016-05-26 トヨタ自動車株式会社 Cylinder head
JP2016094872A (en) * 2014-11-13 2016-05-26 トヨタ自動車株式会社 Cylinder head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445447A1 (en) * 2003-02-06 2004-08-11 HONDA MOTOR CO., Ltd. Cylinder head of an internal combustion engine
US6981473B2 (en) 2003-02-06 2006-01-03 Honda Motor Co., Ltd. Cylinder head for an internal combustion engine
JP2016094873A (en) * 2014-11-13 2016-05-26 トヨタ自動車株式会社 Cylinder head
JP2016094872A (en) * 2014-11-13 2016-05-26 トヨタ自動車株式会社 Cylinder head

Similar Documents

Publication Publication Date Title
US4993227A (en) Turbo-charged engine
US7918216B2 (en) Exhaust gas recirculation device
US4212270A (en) Cooling system for an internal combustion engine
US20050087154A1 (en) Cylinder head with integrated exhaust manifold
JPS63605B2 (en)
JPS6257825B2 (en)
US10161290B2 (en) Cooling system for an internal combustion engine
JP2009062836A (en) Cylinder head of internal combustion engine
JPH02275011A (en) Cooling system for internal combustion engine
JP3240795B2 (en) EGR gas cooling structure
JP2021161979A (en) Egr system of engine
GB1514635A (en) Auxiliary combustion chamber internal combustion engine and intake manifold system thereof
JPH0124333Y2 (en)
US10072605B2 (en) Internal combustion engine
JPH0213132B2 (en)
JP2000161146A (en) Egr device of multiple cylinder engine
JPS60233314A (en) Aspiration control device for internal-combustion engine
JP2010031685A (en) Spark ignition internal combustion engine
WO2004111400A1 (en) Exhaust manifold and internal combustion engine comprising an exhaust manifold
JPH06330812A (en) Cylinder head for internal combustion engine
JPS59224414A (en) Cooling device for internal-combustion engine with turbo charger
EP4253736A1 (en) Vehicle and engine thereof
JPH0650147A (en) Cylinder head cooling mechanism of engine
KR100844565B1 (en) Exhaust gas recirculation system for v8 type diesel engine
JPH01117916A (en) Cooler of water cooling type engine