JPH02273431A - Solenoid relay - Google Patents
Solenoid relayInfo
- Publication number
- JPH02273431A JPH02273431A JP9392789A JP9392789A JPH02273431A JP H02273431 A JPH02273431 A JP H02273431A JP 9392789 A JP9392789 A JP 9392789A JP 9392789 A JP9392789 A JP 9392789A JP H02273431 A JPH02273431 A JP H02273431A
- Authority
- JP
- Japan
- Prior art keywords
- armature
- thin plate
- magnetic thin
- operation piece
- movable contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011810 insulating material Substances 0.000 claims 1
- 238000003466 welding Methods 0.000 abstract description 7
- 239000012774 insulation material Substances 0.000 abstract 1
- 230000014759 maintenance of location Effects 0.000 abstract 1
- 238000007747 plating Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
Landscapes
- Electromagnets (AREA)
Abstract
Description
この発明は、プリント配線基板に搭載される小型の電磁
継電器に関する。The present invention relates to a small electromagnetic relay mounted on a printed wiring board.
プリント配線基板搭載用の電磁継電器は直流操作専用の
ものが多いが、直流操作用の電磁継電器はアーマチュア
吸着時の電磁石の保持力が強いため、復帰電圧が低くな
るという問題がある。そして、その対策としては、電磁
石とアーマチュアの接極面との間にギャップを設けるこ
とが知られている。そこで、従来は非磁性金属板を鉄心
又はアーマチュアにスポット溶接するか、鉄心及びアー
マチュアの下地めっきとして銅めっきを厚く施すなどし
ていた。Many electromagnetic relays mounted on printed wiring boards are dedicated to DC operation, but electromagnetic relays for DC operation have a problem in that the return voltage is low because the electromagnet has a strong holding force when the armature is attracted. As a countermeasure against this problem, it is known to provide a gap between the electromagnet and the armature's armature. Conventionally, therefore, a non-magnetic metal plate was spot welded to the iron core or armature, or a thick copper plating was applied as a base plating for the iron core and armature.
しかし、非磁性金属板をスポット溶接する方法はスポッ
ト溶接設備が必要となり、また非磁性金属板は薄いため
スポット溶接時の発熱で変形するという欠点があった。
一方、銅めっきを厚くする方法は、めっき工数が増加す
るとともに、鉄心やアーマチュアがめっきの過程で変形
するという欠点があった。
この発明は、特別の設備を必要とせず、また部品の変形
を伴わないようにして復帰電圧を高めた電磁継電器を提
供することを目的とするものである。However, the method of spot welding non-magnetic metal plates requires spot welding equipment, and since non-magnetic metal plates are thin, they have the disadvantage of being deformed by the heat generated during spot welding. On the other hand, the method of increasing the thickness of the copper plating has the disadvantage that the number of plating steps increases and that the iron core and armature are deformed during the plating process. An object of the present invention is to provide an electromagnetic relay that does not require special equipment and has an increased return voltage without causing deformation of parts.
上記目的を達成するために、この発明は、電磁石に吸着
されるアーマチュアの接極面の近くに可動接点ばねと接
触する絶縁物の作動片が嵌め込まれた電磁継電器におい
て、アーマチュアと作動片との間に接極面に被さる非磁
性薄板を挟み込むものとする。In order to achieve the above object, the present invention provides an electromagnetic relay in which an insulating actuating piece that contacts a movable contact spring is fitted near the armature's armature that is attracted to an electromagnet. A non-magnetic thin plate covering the armature surface is sandwiched between them.
電磁石に吸着された状態でも非磁性薄板により接極面に
ギャップが生じ、保持力が低下して復帰電圧が高くなる
。非磁性薄板はアーマデユアと作動片との間に挟み込ま
れて保持されるため、スボッI−溶接やめっきなどが不
要となる。Even when the magnet is attracted to an electromagnet, a gap is created on the armature surface due to the non-magnetic thin plate, reducing the holding force and increasing the return voltage. Since the non-magnetic thin plate is sandwiched and held between the armadure and the actuating piece, there is no need for sub-I welding or plating.
以下、第1図及び第2図に基づいてこの発明の詳細な説
明する。ここで、第111(A)はアーマチュアの分解
斜視図、第1図CB)は第1図(A)のアーマチュアを
反対側から見た組立状態の斜視図、第1図(C)は第1
図(B)のC−C線に沿う断面図、第2図は第1図のア
ーマチュアを用いた電磁継電器の分解斜視図である。
まず、第2図において、1はモールド樹脂からなる基板
で、この基板1には固定接点2を有する固定接点ばね3
、及び可動接点4を有する可動接点ばね5が固着されて
いる。6及び7はそれぞれ固定接点ばね3及び可動接点
ばね5と一体の接点端子である。
8ば明確には図示されていないが鉄板から打ち抜ぬかれ
た門形鉄心で、その両脚先端8a及び8bが基板1の取
付穴9及び10にそれぞれ圧入されて基板1」−に支持
される。門形鉄心8の胴部にはモールド樹脂からなる巻
枠11に巻線された励磁コイル】2が圧入されている。
励磁コイル12の巻線の両端は、巻枠11に固着された
コイル端子】3及び14にそれぞれ接続されている。コ
イル端子13及び14は基板1への門形鉄心8の取り付
は時に、基板1にあけられた穴15及び16にそれぞれ
挿通され、その先端が基板1の底面から突出する。
17はやばり鉄板から逆門形に打し抜かれたアーマチュ
アで、図示の通り門形鉄心8の両脚を橋絡するように、
門形鉄心1の側面に沿って配置される。アーマチュア1
7は一端下部の支持軸18が基板1の軸受穴19に差し
込まれ、支持軸18を中心に旋回自在に基板1に支持さ
れる。その際、他端下部の脚片20が基板1の角穴21
に隙間を介して嵌め込まれ、アーマチュア17の旋回範
囲が規制されるようになっている。アーマチュア17の
胴部には絶縁物からなる作動片22が弾性的に嵌め込ま
れている。この作動片22はアーマチュア17が基板1
に支持された状態で、可動接点ばね5の背面に接触する
ようになっている。
23ばケースで、門形鉄心8及びアーマチュア17が取
り付けられた基板1に被嵌され、基板1の両側釜2個の
溝24とこれに対応するケース23の突起23aとの保
合により固定される。
このような構成において、励磁コイル12に直流の励磁
電流が流されると、アーマチュア17は支持軸18を支
点に旋回して門形鉄心8に吸着される。その際、作動片
22を介して可動接点ばね5を押し、接点2,4間を閉
成させる。励磁コイル12の励磁が解かれると、アーマ
チュア17は可動接点ばね5のばね力により図示状態に
復帰する。
第1図は上記チーマチ1フ1フ部分を詳細に示したもの
である。第1図において、作動片22は両側壁でアーマ
チュア17を抱くようにコ字状断面になっており、両側
壁の先端にアーマチュア17の裏面に係合する一対の突
条25が形成されている。更に、作動片22のアーマチ
ュア17との対向面には、アーマチュア17の穴26に
密に挿入される円柱状の突起27が形成されている。
さて、アーマチュア17と作動片22との間には非磁性
薄板2Bが挟み込まれる。非磁性Tm板28は非磁性の
金属板からなるもので、幅はアーマチュア17の胴部と
ほぼ同しで、作動片22の突起27を密に挿通させる穴
29があけられている。
そして、第1図(I3)及び(C)に示すように、非磁
性薄板28は、作動片22とアーマチュア17との間に
挟み込まれた状態で、その先端がアーマチュア17の接
極面17aに被さるようになっている。
したがって、上に述べたよ・うにアーマチュア17が門
形鉄心8に吸着された場合には、門形鉄心8とアーマチ
ュア17の接極面17aとの間には非磁性薄板28の厚
さに相当するギャップが生じ、電磁石の保持力が低下し
て復帰電圧が高くなる。
非磁性薄板28は突起27と穴29との嵌合で位置決め
されて、アーマチュア17と作動片22との間に挟まれ
て保持される。非磁性薄板28の装着には溶接その他の
固着手段を必要とせず、組立作業の中で挟め込みだけで
簡単に固定することができる。Hereinafter, the present invention will be explained in detail based on FIGS. 1 and 2. Here, No. 111 (A) is an exploded perspective view of the armature, FIG.
FIG. 2 is an exploded perspective view of an electromagnetic relay using the armature shown in FIG. 1. First, in FIG. 2, 1 is a board made of molded resin, and this board 1 has a fixed contact spring 3 having a fixed contact 2.
, and a movable contact spring 5 having a movable contact 4 is fixed. 6 and 7 are contact terminals integrated with the fixed contact spring 3 and the movable contact spring 5, respectively. Although not clearly shown in the figure, 8 is a gate-shaped iron core punched out of a steel plate, and its leg tips 8a and 8b are press-fitted into mounting holes 9 and 10 of the board 1, respectively, and supported by the board 1''. . An excitation coil 2 wound around a winding frame 11 made of molded resin is press-fitted into the body of the portal core 8. Both ends of the winding of the excitation coil 12 are connected to coil terminals 3 and 14 fixed to the winding frame 11, respectively. When the portal core 8 is attached to the substrate 1, the coil terminals 13 and 14 are inserted into holes 15 and 16, respectively, made in the substrate 1, and their tips protrude from the bottom surface of the substrate 1. 17 is an armature punched out of a steel plate in the shape of a reverse gate, as shown in the figure, so as to bridge both legs of the gate-shaped iron core 8.
It is arranged along the side surface of the portal core 1. Armature 1
7 has a support shaft 18 at the lower end thereof inserted into a bearing hole 19 of the substrate 1, and is supported by the substrate 1 so as to be able to freely rotate around the support shaft 18. At that time, the leg piece 20 at the bottom of the other end is connected to the square hole 20 of the board 1.
The armature 17 is fitted through a gap so that the rotation range of the armature 17 is restricted. An actuation piece 22 made of an insulator is elastically fitted into the body of the armature 17. This actuating piece 22 has an armature 17 connected to the base plate 1.
The movable contact spring 5 comes into contact with the back surface of the movable contact spring 5 while being supported by the movable contact spring 5. The case 23 is fitted onto the board 1 to which the portal core 8 and the armature 17 are attached, and is fixed by engagement between the grooves 24 of the two hooks on both sides of the board 1 and the corresponding protrusions 23a of the case 23. Ru. In such a configuration, when a DC excitation current is applied to the excitation coil 12, the armature 17 pivots about the support shaft 18 and is attracted to the portal core 8. At this time, the movable contact spring 5 is pushed through the operating piece 22 to close the contacts 2 and 4. When the excitation coil 12 is de-energized, the armature 17 returns to the illustrated state due to the spring force of the movable contact spring 5. FIG. 1 shows the above-mentioned team 1 and 1 in detail. In FIG. 1, the actuating piece 22 has a U-shaped cross section so as to hold the armature 17 on both side walls, and a pair of protrusions 25 that engage with the back surface of the armature 17 are formed at the tips of both side walls. . Furthermore, a cylindrical protrusion 27 that is tightly inserted into a hole 26 of the armature 17 is formed on the surface of the actuating piece 22 facing the armature 17 . Now, a non-magnetic thin plate 2B is sandwiched between the armature 17 and the actuating piece 22. The non-magnetic Tm plate 28 is made of a non-magnetic metal plate, has a width almost the same as the body of the armature 17, and has a hole 29 through which the protrusion 27 of the actuating piece 22 is inserted tightly. As shown in FIGS. 1(I3) and (C), the non-magnetic thin plate 28 is sandwiched between the actuating piece 22 and the armature 17, with its tip touching the polarized surface 17a of the armature 17. It is designed to be covered. Therefore, when the armature 17 is attracted to the portal core 8 as described above, there is a gap between the portal core 8 and the polarized surface 17a of the armature 17 that corresponds to the thickness of the non-magnetic thin plate 28. A gap is created, the holding force of the electromagnet decreases, and the return voltage increases. The non-magnetic thin plate 28 is positioned by fitting the protrusion 27 and the hole 29, and is held between the armature 17 and the actuating piece 22. The non-magnetic thin plate 28 does not require welding or other fixing means to attach, and can be easily fixed by simply being inserted during assembly work.
この発明によれば、非磁性薄板をアーマチュアと作動片
との間に挾み込みによって保持させることにより簡単な
構成で復帰電圧を高め、スポット溶接設備を不要とする
とともに、めっき工数を低減することができる。According to this invention, by holding a non-magnetic thin plate between the armature and the actuating piece, the return voltage is increased with a simple configuration, spot welding equipment is not required, and the number of plating steps is reduced. I can do it.
回はこの発明の実施例を示し、第1図(A)はチーマチ
1アの分解斜視図、第1図(B)は第1図(A)のアー
マチュアを反対側から見た組立状態の斜視図、第1図(
C)は第1図(B)のCC線に沿・う断面図、第2図は
第1図のアーマチュアを用いた電磁継電器の分解斜視図
である。
5・・・可動接点ばね、17・・・アーマチュア、22
・・・作動片、2B・・・非磁性薄板。1(A) is an exploded perspective view of the armature 1A, and FIG. 1(B) is a perspective view of the armature in FIG. 1(A) in an assembled state seen from the opposite side. Figure, Figure 1 (
C) is a sectional view taken along line CC in FIG. 1(B), and FIG. 2 is an exploded perspective view of an electromagnetic relay using the armature shown in FIG. 1. 5... Movable contact spring, 17... Armature, 22
... Operating piece, 2B... Non-magnetic thin plate.
Claims (1)
可動接点ばねと接触する絶縁物の作動片が嵌め込まれた
電磁継電器において、アーマチュアと作動片との間に接
極面に被さる非磁性薄板を挟み込んだことを特徴とする
電磁継電器。1) In an electromagnetic relay in which an actuating piece of insulating material that contacts a movable contact spring is fitted near the armature's armature surface that is attracted by an electromagnet, a non-magnetic thin plate is placed between the armature and the actuating piece and covers the armature surface. An electromagnetic relay characterized by sandwiching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9392789A JPH0719527B2 (en) | 1989-04-13 | 1989-04-13 | Electromagnetic relay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9392789A JPH0719527B2 (en) | 1989-04-13 | 1989-04-13 | Electromagnetic relay |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5088081A Division JP2604534B2 (en) | 1993-03-23 | 1993-03-23 | Electromagnetic relay |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02273431A true JPH02273431A (en) | 1990-11-07 |
JPH0719527B2 JPH0719527B2 (en) | 1995-03-06 |
Family
ID=14096069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9392789A Expired - Lifetime JPH0719527B2 (en) | 1989-04-13 | 1989-04-13 | Electromagnetic relay |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0719527B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0612960A (en) * | 1993-03-23 | 1994-01-21 | Fuji Electric Co Ltd | Electromagnetic relay |
CN104205284A (en) * | 2012-04-09 | 2014-12-10 | 欧姆龙株式会社 | Electromagnetic relay |
JP2017033806A (en) * | 2015-08-03 | 2017-02-09 | パナソニックIpマネジメント株式会社 | Electromagnetic relay |
-
1989
- 1989-04-13 JP JP9392789A patent/JPH0719527B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0612960A (en) * | 1993-03-23 | 1994-01-21 | Fuji Electric Co Ltd | Electromagnetic relay |
CN104205284A (en) * | 2012-04-09 | 2014-12-10 | 欧姆龙株式会社 | Electromagnetic relay |
EP2838101A4 (en) * | 2012-04-09 | 2015-12-23 | Omron Tateisi Electronics Co | Electromagnetic relay |
US9401256B2 (en) | 2012-04-09 | 2016-07-26 | Omron Corporation | Electromagnetic relay |
JP2017033806A (en) * | 2015-08-03 | 2017-02-09 | パナソニックIpマネジメント株式会社 | Electromagnetic relay |
Also Published As
Publication number | Publication date |
---|---|
JPH0719527B2 (en) | 1995-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5608366A (en) | Electronmagnetic device | |
WO2007020836A1 (en) | Relay | |
JP2502989Y2 (en) | Electromagnetic relay | |
US4700165A (en) | DC electromagnet equipped with a voltage surge damping device | |
JPH02273431A (en) | Solenoid relay | |
US3673529A (en) | Magnetic actuator | |
WO2007020839A1 (en) | Relay | |
JP2604534B2 (en) | Electromagnetic relay | |
JPS63292535A (en) | Electric switching device | |
CA1192242A (en) | Electromagnetic relay | |
US3633135A (en) | Electromagnetic relay | |
KR101974970B1 (en) | Electromagnetic contactor | |
JP2836390B2 (en) | Electromagnet device | |
JPS6025802Y2 (en) | Polar electromagnetic relay | |
JP2539734Y2 (en) | Electromagnetic relay | |
JPS5812414Y2 (en) | electromagnet device | |
JPS60130068A (en) | Terminal unit | |
JPH04136845U (en) | electromagnetic relay | |
JP2532848Y2 (en) | Electromagnetic relay | |
JP2522448Y2 (en) | Electromagnetic relay device | |
JPH0622964Y2 (en) | Electromagnetic device | |
JPH0140164Y2 (en) | ||
CA1234851A (en) | Monostable type relay | |
JPH10255635A (en) | Electromagnetic microrelay | |
JPH0438495Y2 (en) |