JPH0227325A - Light wavelength converter - Google Patents

Light wavelength converter

Info

Publication number
JPH0227325A
JPH0227325A JP63177813A JP17781388A JPH0227325A JP H0227325 A JPH0227325 A JP H0227325A JP 63177813 A JP63177813 A JP 63177813A JP 17781388 A JP17781388 A JP 17781388A JP H0227325 A JPH0227325 A JP H0227325A
Authority
JP
Japan
Prior art keywords
light
lens
conical lens
shg element
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63177813A
Other languages
Japanese (ja)
Inventor
Shinichi Mizuguchi
水口 信一
Tatsuo Ito
達男 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63177813A priority Critical patent/JPH0227325A/en
Priority to KR1019890006031A priority patent/KR930011823B1/en
Priority to US07/347,817 priority patent/US5005938A/en
Publication of JPH0227325A publication Critical patent/JPH0227325A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the size and cost of the above converter and to facilitate optical axis adjustment by providing a circular conical lens provided coaxially with a light guide to the exit end of an SHG element. CONSTITUTION:SH light 31 is obtd. in the direction coaxial with the SHG element 4 by providing the circular conical lens 41 the central axis of which is aligned to the central axis of a waveguide 2 provided to the SHG element 4. Since a cylindrical part 42 is provided to the circular conical lens 41, the alignment to align the optical axis centers at the time of assembling the circular conical lens 41 together with lenses 6, 7 and a semiconductor laser 5 to a housing is facilitated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体レーザー光を用いて光メモリー装置やレ
ーザープリンタ等に利用される光波長変換装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical wavelength conversion device that uses semiconductor laser light and is used in optical memory devices, laser printers, and the like.

従来の技術 従来より、非線形光学効果を応用した第二高調波発生(
以下SHGと略す)により、レーザー光の波長を%に変
換することは(例えば特開昭61−72222号公報等
)知られている。
Conventional technology Conventionally, second harmonic generation (
It is known to convert the wavelength of a laser beam into % by using SHG (hereinafter abbreviated as SHG) (for example, Japanese Patent Application Laid-open No. 72222/1983).

第7図、第8図、第9図は従来の光波長変換装置を示す
もので、1は非線型光学結晶基板、2は非線型光学結晶
基板1に設けられた光導波路、3は光入射部である。4
は光波長変換素子(以下SHG素子と記す)で非線型光
学結晶基板1および光導波路2より構成される。また5
は半導体レーザー、eはコリメートレンズ、7はフォー
カスレンズであり、半導体レーザー6の光をコリメート
レンズ6、フォーカスレンズ7によシ集光した光8を光
入射部3に導入すると、光導波路2における非線形光学
効果によシ波長変換された第二高調波(以下SH光と略
す)9が得られる。なお18は光導波路2を通過した一
次光である。
7, 8, and 9 show conventional optical wavelength conversion devices, in which 1 is a nonlinear optical crystal substrate, 2 is an optical waveguide provided on the nonlinear optical crystal substrate 1, and 3 is a light input. Department. 4
is an optical wavelength conversion element (hereinafter referred to as SHG element), which is composed of a nonlinear optical crystal substrate 1 and an optical waveguide 2. Also 5
is a semiconductor laser, e is a collimating lens, and 7 is a focus lens. When the light 8 that has been focused from the semiconductor laser 6 through the collimating lens 6 and the focus lens 7 is introduced into the light incidence section 3, the A second harmonic (hereinafter abbreviated as SH light) 9 whose wavelength is converted by the nonlinear optical effect is obtained. Note that 18 is the primary light that has passed through the optical waveguide 2.

ここでSHHO2、いわゆるチェレンコフ放射光と呼ば
れ、第9図に示すような三日月形状の拡散光1oとなる
。このSHHO2、第9図に示すように導波路2とy方
向に角Aをなして出射し、また!方向に角Bの拡がりを
有している。なお、三日月光の厚さ方向には、はぼ平行
光となっている。
Here, SHHO2 is called Cherenkov radiation, and becomes a crescent-shaped diffused light 1o as shown in FIG. As shown in FIG. 9, this SHHO2 is emitted while making an angle A with the waveguide 2 in the y direction, and! It has an extent of angle B in the direction. Note that the crescent moon light is almost parallel light in the thickness direction.

しかしながら、このような拡散光10のままのSHHO
2は使いにくいため、従来は第1o図に示す光束整形手
段全付加することにより、平行光を得ていた。
However, the SHHO with such diffused light 10
2 is difficult to use, so conventionally parallel light has been obtained by adding all the beam shaping means shown in FIG. 1o.

第10図で、12.14はシリンドリカル凸レンズ、1
3はシリンドリカル凹レンズである。
In Figure 10, 12.14 is a cylindrical convex lens, 1
3 is a cylindrical concave lens.

以下その動作について説明する。まず囚示しないSHG
素子から出たSHHO2、シリンドリカル凸レンズ12
で第9図に示す。第10図X方向の拡がりをコリメート
し、光束15となる。次にシリンドリカル凹レンズ13
により、三日月光の厚さ方向を拡大してY方向の拡散光
束16を得る。
The operation will be explained below. SHG that does not expose prisoners first
SHHO2 from the element, cylindrical convex lens 12
This is shown in Figure 9. The spread in the X direction in FIG. 10 is collimated to become a light beam 15. Next, the cylindrical concave lens 13
As a result, the thickness direction of the crescent moon light is expanded to obtain a diffused light beam 16 in the Y direction.

次にシリンドリカル凸レンズ14により、Y方向の拡が
9をコリメートして、平行光17を得る。
Next, the beam 9 in the Y direction is collimated by the cylindrical convex lens 14 to obtain parallel light 17.

発明が解決しようとする課題 しかしながら、上記のような構成では、ンリンドリカル
レンズ3枚を必要とすることやシリンドリカル凸レンズ
12,14で平行光金得ようとすると、それぞれの焦点
距離を調節する必要がある。
Problems to be Solved by the Invention However, the above configuration requires three cylindrical lenses, and when trying to obtain parallel light with the cylindrical convex lenses 12 and 14, it is necessary to adjust the focal length of each lens. There is.

さらに上記構成は、本来、点光源の場合に有効で、チェ
レンコフ放射光のような導波路の長さが光源となってい
るような線状光源に対しては近似的にしか有効でないと
いう課題を有していた。
Furthermore, the above configuration is originally effective for point light sources, but has the problem that it is only approximately effective for linear light sources such as Cherenkov synchrotron radiation, where the light source is the length of a waveguide. had.

本発明は上記課題に鑑み、導波路型SHG素子により得
られるチェレンコフ放射光をより平行性の優れた平行光
にし、かつ従来よりもコンパクトで低価格な光束整形手
段を備えた光波長変換装置を提供するものである。
In view of the above-mentioned problems, the present invention provides an optical wavelength conversion device that converts Cerenkov radiation obtained by a waveguide type SHG element into parallel light with better parallelism, and is equipped with a beam shaping means that is more compact and inexpensive than conventional ones. This is what we provide.

課題を解決するための手段 上記目的を達成するために本発明の光波長変換装置は、
半導体レーザーと、半導体レーザーの光を集光し、SH
G素子に設けられた光導波路に入射する手段と、SHG
素子の出射端において、0M記先光導波路同軸に設けら
れた円錐状レンズとからなる光束整形手段を備えたもの
である。
Means for Solving the Problems In order to achieve the above objects, the optical wavelength conversion device of the present invention comprises:
Semiconductor laser and the light of the semiconductor laser are focused and SH
means for inputting the light into the optical waveguide provided in the G element;
At the output end of the element, a beam shaping means is provided, which comprises a conical lens provided coaxially with the 0M optical waveguide.

作   用 本発明は上記した構成によって、三日月状のチェレンコ
フ放射光をリング状の平行光として取り出すことができ
る。
Operation The present invention can extract crescent-shaped Cerenkov radiation light as ring-shaped parallel light with the above-described configuration.

実施例 本発明の具体的実施例について説明する前に、その−船
釣な動作原理について詳細に説明する。
Embodiments Before describing specific embodiments of the present invention, the principle of operation thereof will be explained in detail.

第6図、第6図に於いて、9は三日月形のSH光(チェ
レンコフコーン)、21は円錐状レンズでちって、SH
HO2円錐状レンズ21の回転対称軸は一致させである
。以上のように構成された光束整形手段について、その
動作を説明する。第5図に於いて、角aはチェレンコフ
放射角であり、チェレンコフ放射のメカニズムにより決
まる定数である。角βは円錐状レンズ21の底面に入射
するチェレンコフ放射光9の入射角、角γはこれに対応
する出射角、角δは円錐状レンズ21の側面への入射角
、角εはこれに対応する出射角、角4は円錐状レンズ2
1の側面で屈折したチェレンコフ放射光と側面とのなす
角、そして角(は円錐状レンズ21の頂角の半角である
In Fig. 6, 9 is a crescent-shaped SH light (Cherenkov cone), 21 is a conical lens, and SH
The rotational symmetry axes of the HO2 conical lens 21 are aligned. The operation of the light beam shaping means configured as described above will be explained. In FIG. 5, angle a is the Cherenkov radiation angle, which is a constant determined by the Cherenkov radiation mechanism. The angle β is the angle of incidence of the Cherenkov radiation 9 entering the bottom surface of the conical lens 21, the angle γ is the corresponding output angle, the angle δ is the angle of incidence on the side surface of the conical lens 21, and the angle ε corresponds to this. The exit angle, corner 4, is the conical lens 2.
The angle between the Cherenkov radiation beam refracted by the side surface of the conical lens 21 and the side surface, and the angle () are half angles of the apex angle of the conical lens 21.

ここで、チェレンコフ放射光の伝わる媒質を空気中でそ
の屈折率を1、円錐状Vンズ21の屈折率をnとすると
、第6図と簡単な幾何の定理と、屈折の法則とから、 α−β Slnβ=nsin7 n Sinδ=SlnE ε+ζ=− これらの式を円錐状レンズ21から出たSH光11が、
円錐状レンズ21の回転対称軸に平行になるという条件
、即ち γ+δ=ε ζ=η という条件式の下で、αとηについて解くと、となる。
Here, if the refractive index of the medium through which the Cherenkov radiation is transmitted is 1 in air, and the refractive index of the conical V-lens 21 is n, then from Fig. 6, the simple geometric theorem, and the law of refraction, α −β Slnβ=nsin7 n Sinδ=SlnE ε+ζ=− Using these equations, the SH light 11 emitted from the conical lens 21 is
Solving for α and η under the condition that they are parallel to the axis of rotational symmetry of the conical lens 21, that is, γ+δ=ε ζ=η, gives the following equation.

従って、頂角2αのチェレンコフコーンが与えられた時
、(1)式の関係を満たすnとηが存在すれば、第5図
に於いて、チェレンコフ放射光9はすべて、円錐状レン
ズ21の回転対称軸に平行となり、結果、第6図中の図
形を回転対称軸の周りに回転させて得られる第6図の立
体構造に於いても、すべてのチェレンコフ放射光は回転
対称軸に平行、即ち平行光となる。nとηの例としては
、我々の実験の場合、ニオブ酸リチウム(L z Nb
O5)基板表面に形成した導波路に波長860 nmの
レーザ光を入射さセた場合、αとして、63°の放射角
となる。この時、例えば硝材LaK14(n=1,71
6at波長=430nm)  を用いるとη−33°が
得られる。さて、ここで得られた平行光はリング状の平
行光であるので、従来例のように、光束径を拡大・縮小
するには、球面凹凸レンズの対を共焦点位置にセットし
て、その光軸を第6図の円錐状レンズ21の回転対称軸
に一致させれば良い。
Therefore, when a Cherenkov cone with an apex angle of 2α is given, if n and η exist that satisfy the relationship of equation (1), all the Cherenkov radiation 9 in FIG. As a result, even in the three-dimensional structure of Fig. 6 obtained by rotating the figure in Fig. 6 around the axis of rotational symmetry, all the Cherenkov radiation is parallel to the axis of rotational symmetry, i.e. It becomes parallel light. As an example of n and η, in the case of our experiments, lithium niobate (L z Nb
O5) When a laser beam with a wavelength of 860 nm is incident on a waveguide formed on the substrate surface, the radiation angle is 63°, where α is taken as α. At this time, for example, the glass material LaK14 (n=1,71
6at wavelength = 430 nm), η-33° is obtained. Now, since the parallel light obtained here is a ring-shaped parallel light, in order to expand or reduce the diameter of the luminous flux, as in the conventional example, a pair of spherical concave and convex lenses is set at the confocal position, and the The optical axis may be made to coincide with the axis of rotational symmetry of the conical lens 21 shown in FIG.

以上のように、チェレンコフコーンの頂角と硝材の屈折
率より決まる頂角をもつ円錐状レンズの回転対称軸をチ
ェレンコフコーンの回転対称軸に一致させて設けること
により、チェレンコフ放射光を平行光化することができ
る。
As described above, by aligning the rotational symmetry axis of the conical lens with the apex angle determined by the apex angle of the Cerenkov cone and the refractive index of the glass material to the rotational symmetry axis of the Cerenkov cone, the Cherenkov radiation light is made into parallel light. can do.

以下本発明の一実施例における光波長変換装置について
図面を参照しながら説明する。
An optical wavelength conversion device according to an embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例を示すものである。同図
において、第7図と同一物には同一番号を付し説明を省
略する。
FIG. 1 shows a first embodiment of the invention. In this figure, the same parts as in FIG. 7 are given the same numbers and their explanations will be omitted.

まず、円錐状レンズ41をSHG素子4に設けられた光
導波路2と中心軸を合わせて設けることによって、SH
G素子4と同軸方向にSH光31が得られる。
First, by providing the conical lens 41 with its central axis aligned with the optical waveguide 2 provided in the SHG element 4, the SH
SH light 31 is obtained coaxially with the G element 4.

ここで円錐状レンズ41に円筒部42を設けたのは、図
示しない筐体に半導体レーザー6やレンズ6.7と共に
円錐状レンズ41を組み立てる際に光軸中心を一致させ
るアライメントが容易に行えるようにしたものである。
The reason why the cylindrical portion 42 is provided on the conical lens 41 is to facilitate alignment of the optical axis centers when assembling the conical lens 41 together with the semiconductor laser 6 and lens 6.7 in a housing (not shown). This is what I did.

次に第2の実施例について第2図を参照して説明する。Next, a second embodiment will be described with reference to FIG. 2.

第7図と同一物には同一番号を付し説明を省略する。4
3は円錐状中心軸を通る断面で切断し平面を構成した円
錐状レンズであり、44はSHG素子4と共に、円錐状
レンズ43を固着する基板であυ、ガラス、セラミック
、金属など材質は任意で、表面が平河でおればよい。
Components that are the same as those in FIG. 7 are given the same numbers and their explanations will be omitted. 4
3 is a conical lens cut along a cross section passing through the central axis of the conical shape to form a flat surface; 44 is a substrate to which the conical lens 43 is fixed together with the SHG element 4; υ is made of any material such as glass, ceramic, metal, etc. So, the surface should be plain.

基板44にSHG素子4の光導波路面を接着し、先導波
路2と円錐状レンズ43の光軸を合致させる。第5図か
らも明らかなように円錐状レンズは中心軸を通る断面で
2分された一方で十分機能を果すことができ、SH光3
1を得ることができる。
The optical waveguide surface of the SHG element 4 is bonded to the substrate 44, and the optical axes of the leading waveguide 2 and the conical lens 43 are aligned. As is clear from Fig. 5, the conical lens is divided into two parts by the cross section passing through the central axis, but it can function sufficiently, and the SH light 3
1 can be obtained.

第2の実施例では、円錐状レンズ43が光軸を通る断面
で切断されているために、SHG素子4の光導波路2と
のアライメントが容易になるという効果がある。さらに
SHG素子4と円錐状レンズ43が一体的に固着される
ため、温度、振動等による光軸の狂いが少ないという効
果もある。
In the second embodiment, since the conical lens 43 is cut along the cross section passing through the optical axis, there is an effect that alignment of the SHG element 4 with the optical waveguide 2 is facilitated. Furthermore, since the SHG element 4 and the conical lens 43 are integrally fixed, there is also the effect that the deviation of the optical axis due to temperature, vibration, etc. is reduced.

第3図は第3の実施例の構成図である。同図において第
7図と同一物には同一番号を付し説明を省略する。本実
施例においては、円錐状レンズ45はSHG素子4の出
力端に光学的に透明な接着剤により固着してあり、平行
光46が得られる。
FIG. 3 is a block diagram of the third embodiment. In this figure, the same parts as those in FIG. 7 are given the same numbers and their explanations will be omitted. In this embodiment, a conical lens 45 is fixed to the output end of the SHG element 4 with an optically transparent adhesive, and parallel light 46 is obtained.

これによって、光波長変換装置が、よシ小径化できると
いう効果が生まれる。さらに第2の実施例と同様、温度
、振動等による光軸の狂いが少なくなるという効果もあ
る。
This produces the effect that the optical wavelength conversion device can be made much smaller in diameter. Furthermore, similar to the second embodiment, there is also the effect that deviation of the optical axis due to temperature, vibration, etc. is reduced.

第4図は第4の実施例を示した構成図である。FIG. 4 is a configuration diagram showing a fourth embodiment.

同図において第7図と同一物には同一の番号を付し説明
を省略する。本実施例においては、SHG素子4の先端
47を半円錐状に成形して、円錐状レンズを一体化した
ものであシ、平行光4日を得ることができる。この円錐
状は、作用の説明の項で述べたと同じ考え方により、詳
しい計算は省略するが、チェレンコフコーンの頂角を2
α、光束整形部47の頂角を2θとすると、光学結晶の
屈折率をnとして、 なる関係が成立する時、導波路2を回転対称軸として発
生するチェレンコフコーンは、平行光として外部に出て
くる。
In this figure, the same parts as in FIG. 7 are given the same numbers, and their explanations will be omitted. In this embodiment, the tip 47 of the SHG element 4 is formed into a semi-conical shape and a conical lens is integrated therein, so that four parallel lights can be obtained. This conical shape is based on the same idea as described in the explanation of the action, and although detailed calculations are omitted, the apex angle of the Cherenkov cone is
α, the apex angle of the beam shaping unit 47 is 2θ, and the refractive index of the optical crystal is n. When the following relationship holds true, the Cerenkov cone generated with the waveguide 2 as the axis of rotational symmetry is output to the outside as parallel light. It's coming.

以上のように、光束整形部47を光学結晶基板1から削
り出すことにより、回転対称軸の位置合わせ調整の必要
がなくなり、又、部品点数を減らし、さらに第2〜第3
の実施例と同様の温度、振動に対する効果を得ることが
出来る。
As described above, by cutting out the beam shaping part 47 from the optical crystal substrate 1, there is no need to adjust the alignment of the rotational symmetry axis, the number of parts is reduced, and the second to third
The same effects on temperature and vibration as in the embodiment can be obtained.

なお第1の実施例で、円錐状レンズ41に円筒部42を
設けたが、他の光軸合わせの手段を用いることによって
、円筒部分がなくとも構わない。
In the first embodiment, the conical lens 41 is provided with the cylindrical portion 42, but the cylindrical portion may be omitted by using other optical axis alignment means.

又、円錐の頂角等、実際に光の通らない部分は切断され
た形であっても何ら支障ない。
Further, there is no problem even if the portion where light does not actually pass, such as the apex angle of the cone, is cut off.

また第2の実施例で、円錐状レンズ43を中心軸を通る
平面で切断したが、必らずしも中心軸を通らなくとも、
中心軸を平行な平面であっても構わない。
Further, in the second embodiment, the conical lens 43 is cut along a plane passing through the central axis, but it is not necessary to cut through the central axis.
The central axis may be a parallel plane.

またすべての実施例では半導体レーザーの光を集光し、
光導波路に入射するためにコリメートレンズとフォーカ
スレンズを用いたが、必うスシモ2個でなくとも、従来
知られているように一個のレンズで集光と導波路への導
入を行わすことも可能である。又、以上の説明では平行
光を得ることを目的として説明したが、チェレンコフ放
射光が通過する回転対称面とチェレンコフ放射光のなす
角を変化させることによって、チェレンコフ放射光を収
束又は拡散させることも可能である。また第4の実施例
では、導波路2は光学結晶1の表面に形成されるとした
が、内部にあっても構°わない。
In addition, in all examples, the light of the semiconductor laser is focused,
Although we used a collimating lens and a focus lens to input the light into the optical waveguide, it is not necessary to use two lenses; it is also possible to condense and introduce the light into the waveguide with a single lens, as is conventionally known. It is possible. Furthermore, although the purpose of the above explanation was to obtain parallel light, it is also possible to converge or diffuse the Cherenkov radiation by changing the angle between the rotationally symmetric plane through which the Cherenkov radiation passes and the Cherenkov radiation. It is possible. Further, in the fourth embodiment, the waveguide 2 is formed on the surface of the optical crystal 1, but it may be formed inside the optical crystal 1.

その場合、光束整形部47は半円錐状ではなく、円錐状
になる。
In that case, the beam shaping section 47 does not have a semi-conical shape but a conical shape.

発明の効果 以上のように本発明は半導体レーザーと、半導体レーザ
ーの光を集光し、SHG素子に設けられた光導波路に入
射する手段と、SHG素子の出射端において、前記光導
波路を同軸に設けられた円錐状レンズを設けることによ
り、導波路型SHG素子から出射される三日月状の拡散
光を、導波路と同軸でかつ平行光もしくは収束光や拡散
光に整形することができる。又、平行光を得るために従
来例では3ケのシリンドリカルレンズが必要であっれも
のが一個の円錐状レンズで済むために小形。
Effects of the Invention As described above, the present invention includes a semiconductor laser, a means for condensing the light of the semiconductor laser and inputting it into an optical waveguide provided in an SHG element, and a means for coaxially disposing the optical waveguide at the output end of the SHG element. By providing the conical lens, the crescent-shaped diffused light emitted from the waveguide type SHG element can be shaped into parallel light, convergent light, or diffused light that is coaxial with the waveguide. In addition, in order to obtain parallel light, three cylindrical lenses are required in the conventional example, but the conventional example requires only one conical lens, so it is compact.

低価格化が実現でき、さらに光軸調整も容易になるとい
う効果も有する。
It also has the effect of reducing costs and making optical axis adjustment easier.

【図面の簡単な説明】[Brief explanation of the drawing]

W、1図は本発明の第1の実施例の光波長変換装置の構
成図、第2図は本発明の第2の実施例の構成図、第3図
は本究明の第3の実施例の構成図、第4図は本発明の第
4の実施例の構成図、第5図。 第6図は円錐状レンズの動作を説明する説明図、第7図
は従来例の光波長変換装置の構成図、第8図は導波路型
SHG素子の断面図、第9図は導波路型SHG素子がら
のSH光の形状の説明図1第10図は従来の平行光を得
るための構成図である。 1・・・・・・非線型光学結晶基板、2・・・・・・光
導波路、4・・・・・・SHG素子、5・・・・・・半
導体レーザー、6・・・・・・コリメートレンズ、7・
・・・・・フォーカスレンズ、41.43,45.47
・・・・・・円錐状レンズ。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第1
図 2−  九専濱か +イーーー円9丁」欠し、ス 乙 第 4 図 手 第 図 第 因 第 図 第 図 第 図 連
W, Fig. 1 is a block diagram of an optical wavelength conversion device according to a first embodiment of the present invention, Fig. 2 is a block diagram of a second embodiment of the present invention, and Fig. 3 is a block diagram of a third embodiment of the present invention. FIG. 4 is a block diagram of a fourth embodiment of the present invention, and FIG. 5 is a block diagram of the fourth embodiment of the present invention. Fig. 6 is an explanatory diagram explaining the operation of a conical lens, Fig. 7 is a configuration diagram of a conventional optical wavelength conversion device, Fig. 8 is a cross-sectional view of a waveguide type SHG element, and Fig. 9 is a waveguide type SHG element. Explanation of the shape of SH light from an SHG element FIG. 1 FIG. 10 is a block diagram for obtaining conventional parallel light. 1... Nonlinear optical crystal substrate, 2... Optical waveguide, 4... SHG element, 5... Semiconductor laser, 6... Collimating lens, 7.
...Focus lens, 41.43, 45.47
・・・・・・Conical lens. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1st
Figure 2 - Kusen Hamaka + E-Yen 9-cho” missing, 4th figure, 4th figure, 4th figure, 2nd figure

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザーと、その光を集光し波長変換素子に設け
られた光導波路に導入する手段と、波長変換素子の出射
端部において、前記光導波路と同軸に設けられた円錐状
レンズとからなる光波長変換装置。
A light beam consisting of a semiconductor laser, a means for condensing the light and introducing it into an optical waveguide provided in a wavelength conversion element, and a conical lens provided coaxially with the optical waveguide at the output end of the wavelength conversion element. Wavelength conversion device.
JP63177813A 1988-05-06 1988-07-15 Light wavelength converter Pending JPH0227325A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63177813A JPH0227325A (en) 1988-07-15 1988-07-15 Light wavelength converter
KR1019890006031A KR930011823B1 (en) 1988-05-06 1989-05-04 Optical wave length convertical apparatus
US07/347,817 US5005938A (en) 1988-05-06 1989-05-04 Optical wavelength convertical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63177813A JPH0227325A (en) 1988-07-15 1988-07-15 Light wavelength converter

Publications (1)

Publication Number Publication Date
JPH0227325A true JPH0227325A (en) 1990-01-30

Family

ID=16037537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63177813A Pending JPH0227325A (en) 1988-05-06 1988-07-15 Light wavelength converter

Country Status (1)

Country Link
JP (1) JPH0227325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281035A (en) * 1988-09-19 1990-03-22 Hitachi Ltd Secondary higher harmonic generator and information processor using the same
US5520534A (en) * 1992-12-25 1996-05-28 Kawasaki Seitetsu Kabushiki Kaisha Heating apparatus including plurality of regenerative burner units and operating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287531A (en) * 1988-05-14 1989-11-20 Sumitomo Electric Ind Ltd Light source unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287531A (en) * 1988-05-14 1989-11-20 Sumitomo Electric Ind Ltd Light source unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281035A (en) * 1988-09-19 1990-03-22 Hitachi Ltd Secondary higher harmonic generator and information processor using the same
US5520534A (en) * 1992-12-25 1996-05-28 Kawasaki Seitetsu Kabushiki Kaisha Heating apparatus including plurality of regenerative burner units and operating method

Similar Documents

Publication Publication Date Title
JP5678354B2 (en) REFLAXICON apparatus and assembly method thereof
JPH0412039B2 (en)
US5058981A (en) Light source device
JPH02503131A (en) One-piece collimator
EP0342523B1 (en) Generation of parallel second harmonic light rays using an optical fiber
KR930011823B1 (en) Optical wave length convertical apparatus
JPH06235847A (en) Device and method for reflecting optical coupling of optical fiber
JP2001503161A (en) Axial gradient index coupler
JPH0227325A (en) Light wavelength converter
US20140063836A1 (en) Laser Lighting Device
JPS59200211A (en) Optical multibranching device
JPS62180343A (en) Projection optical device
JPS60205420A (en) Semiconductor laser pen
JP2605796B2 (en) Beam shaping device
JPS5945966B2 (en) Magneto-optic optical deflector beam recombiner
JPH0394238A (en) Fiber type light wavelength converting device
JPH0227326A (en) Light wavelength converter
EP0483952A2 (en) Laser wavelength converter
JP3555888B2 (en) Self-guided optical circuit
JP7154669B1 (en) Narrow beam generator
JPH0695027A (en) Optical system for uniform illumination
JPH0659211A (en) Lens for shaping luminous flux section and higher harmonic generator with the same
JPH0235424A (en) Optical wavelength converting element
JPH0318833A (en) Higher harmonic wave generating element and higher harmonic wave generator
JPH02218332A (en) Monolithic,catadioptric device