JPH0227129A - Device for controlling air intake quantity of engine - Google Patents

Device for controlling air intake quantity of engine

Info

Publication number
JPH0227129A
JPH0227129A JP17515288A JP17515288A JPH0227129A JP H0227129 A JPH0227129 A JP H0227129A JP 17515288 A JP17515288 A JP 17515288A JP 17515288 A JP17515288 A JP 17515288A JP H0227129 A JPH0227129 A JP H0227129A
Authority
JP
Japan
Prior art keywords
engine
deceleration
time
control
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17515288A
Other languages
Japanese (ja)
Inventor
Yoshiharu Ueki
義治 植木
Akio Inoue
井上 秋夫
Hiroaki Yamada
山田 博昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP17515288A priority Critical patent/JPH0227129A/en
Publication of JPH0227129A publication Critical patent/JPH0227129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To carry out proper deceleration control whether at the time of cold engine or warm engine by setting the controlled variable of an intake air quantity which is increased by a decelerating-time correcting means, to be smaller as an engine temperature is lower. CONSTITUTION:In a controller 4, the control map of a decelerating-time correcting quantity by means of an idling engine-speed control valve 3 is formed with the two of an engine speed and an engine cooling water temperature at the point of time when a throttle valve is totally closed as parameters. In this case, the correcting quantity is set to be smaller as the cooling water temperature is lower. Thereby, a control for gradually reducing an intake air quantity at the time of deceleration can be always properly carried out irrespective of engine temperature, enabling favorable engine behavior without a shock while giving a proper decelerating feeling can be achieved irrespective of engine temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はエンジンの吸入空気量制御装置に関し、特に
、減速時のエンジン挙動を良好にするための技術に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine intake air amount control device, and particularly to a technique for improving engine behavior during deceleration.

(従来の技術) 良く知られているように、最近の電子制御式エンジンで
は次のようなアイドル回転数の制御が行なわれている。
(Prior Art) As is well known, in recent electronically controlled engines, the idle speed is controlled in the following manner.

第1図に示すように、スロットル弁1をバイパスするバ
イパス吸気通路2にアイドルスピード制御弁3と称する
電磁弁がある。スロットル弁1が全開状態のときには、
コントローラ4がエンジンの各種の状態情報に基づいて
目標アイドル回転数を決定し、実回転数が目標回転数に
一致するように前記制御弁3の開度(バイパス吸気通路
の実効流路)を調整する。これをアイドル回転数のフィ
トバック制御手段と称する。
As shown in FIG. 1, a solenoid valve called an idle speed control valve 3 is provided in a bypass intake passage 2 that bypasses a throttle valve 1. When the throttle valve 1 is fully open,
The controller 4 determines the target idle rotation speed based on various engine status information, and adjusts the opening degree of the control valve 3 (effective flow path of the bypass intake passage) so that the actual rotation speed matches the target rotation speed. do. This is called an idle rotation speed fitback control means.

また、スロットル弁1が全開状態に変化した直後には次
のように減速時補正手段(ダッシュポット補正手段)が
働く。エンジン回転数Neが設定値NADP(例えば1
000 ppm )より高い状態でスロットル弁1が全
開になったとき、ただちに前記フィードバック制御手段
だけで吸入空気量を制御したのでは、減速ショックが非
常に大きくなる。
Immediately after the throttle valve 1 changes to the fully open state, the deceleration correction means (dashpot correction means) operates as follows. When the engine speed Ne is the set value NADP (for example, 1
If the intake air amount is immediately controlled only by the feedback control means when the throttle valve 1 is fully opened in a state where the intake air amount is higher than 000 ppm, the deceleration shock will be extremely large.

そこでスロットル弁1が全開になった直後には、前記フ
ィードバック制御手段によって求まる制御弁3の開度(
基本制御量)よりも−時的に開度を増やす。この増量分
を減速時補正量GDPと称する。
Therefore, immediately after the throttle valve 1 is fully opened, the opening degree of the control valve 3 (
Increase the opening degree from time to time (basic control amount). This increased amount is referred to as the deceleration correction amount GDP.

従来技術では、減速時補正量GDPはスロットル弁1が
全開になった時点のエンジン回転数Neによって決定さ
れ、第3図のグラフのように回転数Neが高いほど補正
量GDPが大きくなるように制御マツプが作成されてい
る。スロットル弁1が全開になった時点で前記制御マツ
プを引き、そのときのNeに対応したGDPを求め(こ
れがGDPイニシャル値である)、それを前記基本制御
量に加えて制御弁3を駆動する。このあと補正量GDP
は時間とともに減少させ、最終的にはゼロにする。以上
の制御手順を第2図のフローチャートに整理して示して
いる。
In the conventional technology, the correction amount GDP during deceleration is determined by the engine rotation speed Ne at the time when the throttle valve 1 is fully opened, and as shown in the graph of FIG. 3, the correction amount GDP becomes larger as the rotation speed Ne becomes higher. A control map has been created. When the throttle valve 1 is fully opened, draw the control map, find the GDP corresponding to Ne at that time (this is the GDP initial value), add it to the basic control amount, and drive the control valve 3. . After this, the correction amount GDP
decreases over time and eventually reaches zero. The above control procedure is summarized and shown in the flowchart of FIG.

このように減速時補正手段によって減速直後の吸入空気
量をある程度ゆっくりと減少させることで、減速ショッ
クを少なくしている(特開昭5560636号公報参照
)。なお、減速時補正量GDPが適正値より大きいと、
減速直後の吸入空気量が過多になり、充分な減速感、エ
ンジン冷却水温が得られないことになり、これらの点か
らGDPの適正値を決める。
In this way, by reducing the amount of intake air immediately after deceleration slowly by the deceleration correction means, deceleration shock is reduced (see Japanese Patent Laid-Open No. 5560636). Note that if the deceleration correction amount GDP is larger than the appropriate value,
Immediately after deceleration, the amount of intake air becomes excessive, making it impossible to obtain a sufficient feeling of deceleration and engine cooling water temperature.The appropriate value of GDP is determined from these points.

ところで、前述のアイドル回転数のフィードバック制御
手段は、冷間時のアイドリングを安定化するために、エ
ンジン冷却水温が低いほど目標アイドル回転数を高く設
定する。したがって、このフィードバック制御手段は、
バイパス吸気通路2の実効流路をエンジン温度が低いほ
ど大きくする冷間時補正手段を内在している。
By the way, the above-mentioned idle speed feedback control means sets the target idle speed higher as the engine cooling water temperature is lower, in order to stabilize idling when the engine is cold. Therefore, this feedback control means:
It includes a cold-time correction means that increases the effective flow path of the bypass intake passage 2 as the engine temperature decreases.

また旧来から実用されている技術であるが、第1図に示
すように、バイパス吸気通路2には制御弁3と並列にサ
ーモワックス式空気弁5が設けられている。この空気弁
5はエンジン冷却水の熱を受けて膨張するワックスによ
り開閉するもので、冷却水温が高くなるにつれて閉じる
。つまり、この空気弁5もバイパス吸気通路2の実効流
路をエンジン温度が低いほど大きくする冷間時補正手段
の一つである。なお、ヒーターバイメタル式の空気弁も
同じ目的で使用されている。
Furthermore, as shown in FIG. 1, a thermowax air valve 5 is provided in the bypass intake passage 2 in parallel with the control valve 3, which is a technology that has been in practical use for a long time. This air valve 5 is opened and closed by wax that expands upon receiving heat from the engine coolant, and closes as the coolant temperature increases. In other words, this air valve 5 is also one of cold-time correction means that increases the effective flow path of the bypass intake passage 2 as the engine temperature decreases. Note that heater bimetallic air valves are also used for the same purpose.

(発明が解決しようとする課題) 前述した従来の減速時補正手段では、エンジンがある程
度以上暖まっている運転状態において、ショックのない
適切な減速感が得られるように減速時補正量GDPの制
御マツプを作成している。そのためエンジン冷間時また
は半暖機時においては、減速時補正量GDPが大きすぎ
、充分な減速感が得られないという問題があった。
(Problem to be Solved by the Invention) The conventional deceleration correction means described above has a control map for the deceleration correction amount GDP so that an appropriate feeling of deceleration without shock can be obtained in an operating state where the engine is warmed up to a certain level. is being created. Therefore, when the engine is cold or semi-warmed up, the deceleration correction amount GDP is too large, causing a problem in that a sufficient sense of deceleration cannot be obtained.

冷間時には前述した冷間時補正手段によって基本となる
吸入空気量が増やされているので、温間時と同じ減速時
補正量GDPを加えたのでは吸入空気量が過多になり、
充分に減速しない。なお、反対に冷間時に合わせてGD
Pの制御マツプを作成したのでは、温間時に減速ショッ
クをなくすことかできなくなる。
When the vehicle is cold, the basic amount of intake air is increased by the cold time correction means described above, so adding the same deceleration correction amount GDP as when it is warm will result in an excessive amount of intake air.
Not slowing down enough. In addition, on the contrary, GD according to the cold time
If a control map for P is created, it will be impossible to eliminate deceleration shock during warm conditions.

この発明は上述した従来の問題点に鑑みてなされたもの
で、その目的は、冷間時でも温間時でも適切な減速制御
を行なえるようにしたエンジンの吸入空気量制御装置を
提供することにある。
This invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide an engine intake air amount control device that can perform appropriate deceleration control in both cold and warm conditions. It is in.

(課題を解決するための手段) そこでこの発明では、エンジンに供給される吸入空気量
をエンジン温度が低いほど大きくする冷間時補正手段と
、エンジンの減速状態を検出したときに前記吸入空気量
を一時的に大きくする減速時補正手段とを備えたエンジ
ンの吸入空気量制御装置において、前記減速時補正手段
により大きくする吸入空気量の制御量をエンジン温度が
低いほど小さく設定した。
(Means for Solving the Problems) Therefore, the present invention provides a cold time correction means that increases the amount of intake air supplied to the engine as the engine temperature decreases, and a cold time correction means that increases the amount of intake air supplied to the engine when a deceleration state of the engine is detected. In this engine intake air amount control device, the control amount of the intake air amount, which is increased by the deceleration correction means, is set to be smaller as the engine temperature becomes lower.

(作 用) 前記本発明の構成においては、前記減速時補正手段によ
る前記バイパス吸気通路の実効流路の制御M(前述の減
速時補正量GDPに対応する)は冷間時の方が温間時よ
り小さくなる。したがって前記冷間時補正手段の特性と
総合される結果、冷間時でも減速直後の吸入空気量が過
大になることはない。
(Function) In the configuration of the present invention, the control M of the effective flow path of the bypass intake passage by the deceleration correction means (corresponding to the deceleration correction amount GDP described above) is warmer in the cold state. smaller than time. Therefore, as a result of combining the characteristics of the cold-time correction means, the amount of intake air immediately after deceleration does not become excessive even when the engine is cold.

(実 施 例) 従来技術では第3図に示すように、スロ・ソトル弁1が
全閉になった時点のエンジン回転数Neをパラメータと
して減速時補正量GDPの制御マ・ツブを作成していた
(Example of implementation) In the conventional technology, as shown in Fig. 3, a control module for the correction amount GDP during deceleration is created using the engine rotational speed Ne at the time when the throttle sotol valve 1 is fully closed as a parameter. Ta.

これに対して本発明の一実施例装置の場合、第4図に示
すように、スロットル弁1が全閉になった時点のエンジ
ン回転数Neとエンジン冷却水温Teとの2つをパラメ
ータとして減速時補正fiGDPの制御マツプを作成し
ている。ここで、冷却水温Teか低いほど補正量GDP
が小さくなる関係に設定しである。
On the other hand, in the case of the device according to the embodiment of the present invention, as shown in FIG. A control map for time-corrected fiGDP is being created. Here, the lower the cooling water temperature Te, the lower the correction amount GDP.
The relationship is set such that .

第1図に示したエンジン制御系の構成、および第2図に
示した減速時補正手段による制御手順は従来と基本的に
同じである。また先に詳述した冷間時補正手段の動作は
本実施例においてもまったく同じであり、これについて
は再説明しない。
The configuration of the engine control system shown in FIG. 1 and the control procedure by the deceleration correction means shown in FIG. 2 are basically the same as in the prior art. Further, the operation of the cold time correction means described in detail above is exactly the same in this embodiment, and will not be explained again.

第2図において、ステップ201でエンジンの各種状態
情報をコントローラ4に読み込む。スロットル弁1が全
閉のときにオンになるアイドルスイッチID5wがオン
であり、かつエンジン回転数NeがNIDP(例えば1
000 rpm )以上であると、ステップ202→2
03→204と進む。アイドルスイッチID5wがオフ
からオンに反転した初回の処理では、フラグFIDPは
リセット“0”されており、ステップ204→205(
FIDPをセットする)→206と進む。このステップ
206で第4図の制御マツプを引く。つまりステップ2
01で得たエンジン回転数Neおよび冷却水温Teに該
当する減速時補正量GDPを引き出す。このGI)Pか
イニンヤル値となり、その後は一定時間ごとにGDPか
ら一定値△GDPを減じていき(ステップ208)、G
DPがゼロになった時点で減速時補正か終る。
In FIG. 2, various engine status information is read into the controller 4 in step 201. The idle switch ID5w, which is turned on when the throttle valve 1 is fully closed, is on, and the engine speed Ne is NIDP (for example, 1
000 rpm) or more, step 202→2
Proceed as 03 → 204. In the first processing when the idle switch ID5w is reversed from off to on, the flag FIDP is reset to "0" and steps 204→205 (
Set FIDP) → Proceed to 206. In this step 206, the control map shown in FIG. 4 is drawn. That is step 2
The deceleration correction amount GDP corresponding to the engine speed Ne and cooling water temperature Te obtained in step 01 is extracted. This GI)P becomes the initial value, and thereafter, a constant value △GDP is subtracted from GDP at regular intervals (step 208), and G
The deceleration correction ends when DP reaches zero.

(発明の効果) 以上詳細に説明したように、この発明の装置にあっては
、減速時補正手段による吸入空気量の増量分がエンジン
冷間時には温間時より小さくなるので、この特性と冷間
時補正手段との特性がうまくミックスされ、減速時に吸
入空気量を徐々に減らす制御がエンジン温度に関係なく
常に適切に行なわれ、ショックかなく適当な減速感のあ
る良好なエンジン挙動がエンジン温度に関係なく実現さ
れる。
(Effects of the Invention) As explained in detail above, in the device of the present invention, the increase in intake air amount by the deceleration correction means is smaller when the engine is cold than when the engine is warm. The characteristics are well mixed with the time correction means, and the control to gradually reduce the amount of intake air during deceleration is always performed appropriately regardless of the engine temperature, resulting in good engine behavior with an appropriate deceleration feeling without shock. will be realized regardless of.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例および従来技術に共通するエン
ジン制御系の概略図、第2図は本発明の実施例および従
来技術に共通する減速時制御手段のフローチャート、第
3図は従来技術における減速時補正量の制御マツプ概念
図、第4図は本発明の実施例における減速時補正量の制
御マツプ概念図である。 1・・・・・スロットル弁 2・・・・・・バイパス吸気通路 3・・・・・・アイドルスピード制御弁4・・・・・・
コントローラ
FIG. 1 is a schematic diagram of an engine control system common to the embodiment of the present invention and the prior art, FIG. 2 is a flowchart of the deceleration control means common to the embodiment of the present invention and the prior art, and FIG. 3 is a prior art FIG. 4 is a conceptual diagram of a control map for the correction amount during deceleration in an embodiment of the present invention. 1... Throttle valve 2... Bypass intake passage 3... Idle speed control valve 4...
controller

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンに供給される吸入空気量をエンジン温度
が低いほど大きくする冷間時補正手段と、エンジンの減
速状態を検出したときに前記吸入空気量を一時的に大き
くする減速時補正手段とを備えたエンジンの吸入空気量
制御装置において、前記減速時補正手段により大きくす
る吸入空気量の制御量をエンジン温度が低いほど小さく
設定したことを特徴とするエンジンの吸入空気量制御装
置。
(1) Cold-time correction means for increasing the amount of intake air supplied to the engine as the engine temperature is lower; and deceleration-time correction means for temporarily increasing the amount of intake air when a deceleration state of the engine is detected. An intake air amount control device for an engine, characterized in that the control amount of the intake air amount that is increased by the deceleration correction means is set to be smaller as the engine temperature becomes lower.
JP17515288A 1988-07-15 1988-07-15 Device for controlling air intake quantity of engine Pending JPH0227129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17515288A JPH0227129A (en) 1988-07-15 1988-07-15 Device for controlling air intake quantity of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17515288A JPH0227129A (en) 1988-07-15 1988-07-15 Device for controlling air intake quantity of engine

Publications (1)

Publication Number Publication Date
JPH0227129A true JPH0227129A (en) 1990-01-29

Family

ID=15991181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17515288A Pending JPH0227129A (en) 1988-07-15 1988-07-15 Device for controlling air intake quantity of engine

Country Status (1)

Country Link
JP (1) JPH0227129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918144A2 (en) 1997-11-19 1999-05-26 Kawasaki Jukogyo Kabushiki Kaisha Muffler for small general-purpose engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115260A (en) * 1984-06-29 1986-01-23 Nec Corp Data processor
JPS63100244A (en) * 1986-10-17 1988-05-02 Toyota Motor Corp Suction air amount control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115260A (en) * 1984-06-29 1986-01-23 Nec Corp Data processor
JPS63100244A (en) * 1986-10-17 1988-05-02 Toyota Motor Corp Suction air amount control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918144A2 (en) 1997-11-19 1999-05-26 Kawasaki Jukogyo Kabushiki Kaisha Muffler for small general-purpose engine
US6044926A (en) * 1997-11-19 2000-04-04 Kawasaki Jukogyo Kabushiki Kaisha Muffler for small general-purpose engine

Similar Documents

Publication Publication Date Title
JPS6153544B2 (en)
JPH0246780B2 (en)
JPH0227129A (en) Device for controlling air intake quantity of engine
JPS585452A (en) Control method of idle speed in electronically controlled engine
JP2002047981A (en) Idle speed controller of internal combustion engine
JP2780200B2 (en) Idle speed control device for internal combustion engine
JPH02308942A (en) Idle rotating speed control device
JPS6278446A (en) Idle speed controlling method
JPH0223240A (en) Fuel control device of engine
JPH0739689Y2 (en) Turbo heater
JP3629844B2 (en) Engine fuel supply control device
JP2671459B2 (en) Engine idle speed control device
JP2654593B2 (en) Idle speed control device for internal combustion engine
JP3178878B2 (en) Idle speed control method
KR100273525B1 (en) Idle speed control system and method according to air conditioning system operating state
JP3340575B2 (en) Carburetor control method
JPS59185843A (en) Idle revolution speed controller
JPH0316500B2 (en)
JP3790972B2 (en) Auxiliary air amount control method for internal combustion engine
JPH0295740A (en) Idling speed controller for internal combustion engine
JPS63268924A (en) Intake device for engine
JPH05214995A (en) Idle rotating speed control method for internal combustion engine
JPS6095148A (en) Opening control device for throttle valve
JPH0874641A (en) Idle speed control device for engine
JPH03194146A (en) Idle engine speed controller of engine