JPH02270325A - Nitridation of silicon - Google Patents

Nitridation of silicon

Info

Publication number
JPH02270325A
JPH02270325A JP9107489A JP9107489A JPH02270325A JP H02270325 A JPH02270325 A JP H02270325A JP 9107489 A JP9107489 A JP 9107489A JP 9107489 A JP9107489 A JP 9107489A JP H02270325 A JPH02270325 A JP H02270325A
Authority
JP
Japan
Prior art keywords
silicon
reaction chamber
hydrazine
nitride film
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9107489A
Other languages
Japanese (ja)
Inventor
Shigeichi Yamamoto
山本 茂市
Masatoshi Utaka
正俊 右高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9107489A priority Critical patent/JPH02270325A/en
Publication of JPH02270325A publication Critical patent/JPH02270325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To directly convert silicon to nitride with ease at low temperature and form an interface having good electrical properties between the silicon nitride film and the silicon by a method wherein the nitridation is carried out with hydrazine as an indispensable constituent of nitrogen source. CONSTITUTION:Silicon is converted to nitride using hydrazine as an indispensable constituent of nitrogen source. For example, after mounting a cleaned up single crystal silicon substrate 1 on a substrate holding bed 3 in a reaction chamber 2, nitrogen is led in from a gas feed pipe 4 to be blown into a hydrazine reservoir 5 kept at the temperature of 25 deg.C and then a mixture of nitrogen and hydrazine is led into the reaction chamber 2 through a flow meter 6 at the rate of 25ml per minute to be substituted for the inside air. Next, a vacuum pump 8 is actuated to keep the pressure inside the reaction chamber at 0.5Torr and then the chamber 2 is heated by a heater with the substrate holding bed 3 built-therein at the set up temperature of 250 deg.C. Finally, a low pressure mercury lamp 10 is lighted with the reaction chamber 2 kept as it is so that the reaction chamber 2 may be irradiated with the light through a synthetic quartz window 11 for nitridation of the surface of the single crystal silicon substrate 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、シリコンの窒化方法に係り、特にシリコンの
直接窒化によるシリコン窒化膜の形成底およびシリコン
窒化膜とシリコンとの良好な界面形成法に関するもので
ある。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for nitriding silicon, and in particular to a method for forming a bottom of a silicon nitride film by direct nitriding of silicon and a method for forming a good interface between a silicon nitride film and silicon. It is related to.

(従来の技術) シリコン窒化膜およびシリコン窒化膜とシリコンとの界
面は、一般にシリコン上にシリコン窒化膜を化学的気相
成長などにより付着して形成されている。一方、シリコ
ンの直接窒化膜を形成させる方法としては、1200〜
1300℃における窒素(N2)ガスによる長時間の熱
窒化が行われており、非晶質の非常に薄いシリコン窒化
膜が形成されている1例えば、ジャーナル・オブ・エレ
クトロケミカル・ソサイエティ 第25巻 1978年
 448ページ (T、Ito、 S、Hijiya、
 T。
(Prior Art) A silicon nitride film and an interface between the silicon nitride film and silicon are generally formed by depositing a silicon nitride film on silicon by chemical vapor deposition or the like. On the other hand, as a method for directly forming a silicon nitride film,
Long-term thermal nitridation using nitrogen (N2) gas at 1300°C is carried out to form a very thin amorphous silicon nitride film1. For example, Journal of Electrochemical Society Vol. 25 1978 Year 448 pages (T, Ito, S, Hijiya,
T.

Nozakl、 H,Arakawa、 M、5hln
oda、 and Y、Fuklkawa: J、 E
lectrochem、 Soc、、 125.448
 (1978)、 )これらのシリコン窒化膜は、高い
絶縁性および高いち密性を有し、不揮発メモリ用ゲート
絶縁膜、シリコン集積回路の眉間絶縁膜や保護膜等に使
用されている。
Nozakl, H., Arakawa, M., 5hln.
Oda, and Y, Fuklkawa: J, E
lectrochem, Soc, 125.448
(1978), ) These silicon nitride films have high insulating properties and high density, and are used for gate insulating films for nonvolatile memories, glabellar insulating films, protective films, etc. of silicon integrated circuits.

しかし電気的に良好なシリコン窒化膜とシリコンとの界
面が形成できないことと、高温長時間の熱処理を必要と
することの為に、電界効果トランジスタ等のゲート絶縁
膜にはまだ実用化されていない。
However, it has not yet been put into practical use as gate insulating films for field-effect transistors, etc., because it cannot form an electrically good interface between silicon nitride and silicon, and because it requires heat treatment at high temperatures and for a long time. .

(発明が解決しようとする問題点) 前述したシリコン上にシリコン窒化膜およびシリコン窒
化膜とシリコンとの界面を形成する付着法においては、
特にシリコン窒化膜とシリコンとの界面が電気的に良好
な状態に形成できないという問題点がある。また、熱に
よってシリコンの直接窒化膜を形成させる方法において
は、高温で長時間行うということに問題点がある。
(Problems to be Solved by the Invention) In the above-described deposition method for forming a silicon nitride film on silicon and an interface between the silicon nitride film and silicon,
In particular, there is a problem that the interface between the silicon nitride film and silicon cannot be formed in a good electrical state. Further, in the method of directly forming a silicon nitride film using heat, there is a problem in that the process is performed at high temperatures for a long time.

(問題を解決するための手段) 本発明に係る前述の問題点を解決するための手段は、ヒ
ドラジン(N2H4)を窒素源の必須成分としてシリコ
ンを熱、光、プラズマ等のエネルギーを用いて窒化する
ことにより、シリコン窒化膜およびシリコン窒化膜とシ
リコンとの良好な界面を形成することである。
(Means for solving the problem) A means for solving the above-mentioned problems related to the present invention is to nitride silicon using energy such as heat, light, plasma, etc. using hydrazine (N2H4) as an essential component of the nitrogen source. By doing so, a good interface between the silicon nitride film and the silicon nitride film and silicon is formed.

所で、商業的に入手可能なヒドラジンの純度は約98%
であり、不純物として特定物質が存在する0本発明に係
るヒドラジンを用いるシリコンの窒化において、前述の
商業的に入手可能なヒドラジン中の特定物質の存在が問
題となる場合には、この特定物質を極力含まない高純度
物質の単独またはそれらの混合物を用いて放電によって
ヒドラジンを生成して、シリコンの窒化に使用する。
By the way, the purity of commercially available hydrazine is about 98%.
In the nitriding of silicon using hydrazine according to the present invention, if the presence of a specific substance in the commercially available hydrazine mentioned above poses a problem, the specific substance is present as an impurity. Hydrazine is generated by electric discharge using one or a mixture of high-purity substances that contain as little as possible, and is used for nitriding silicon.

(作用) 本発明によるヒドラジンを用いた窒化を行うことにより
、容易に低温でシリコンを直接窒化することができる。
(Function) By performing nitriding using hydrazine according to the present invention, silicon can be directly nitrided easily at low temperatures.

しかも電気的に良好なシリコン窒化膜およびシリコン窒
化膜とシリコンとの界面が形成できる。
Moreover, an electrically good silicon nitride film and an interface between the silicon nitride film and silicon can be formed.

また放電によりヒドラジンまたはヒドラジンを含む混合
物を生成して、それらを用いたシリコンの窒化を行うこ
とにより、シリコンの窒化におけるヒドラジン以外の不
純物の影響を低減できる。
Further, by generating hydrazine or a mixture containing hydrazine by electric discharge and nitriding silicon using the hydrazine, the influence of impurities other than hydrazine on silicon nitridation can be reduced.

(実施例) 実施例1 第1図に本発明を応用した実施例を説明するための断面
図を示す。
(Example) Example 1 FIG. 1 shows a sectional view for explaining an example to which the present invention is applied.

前もって洗浄した単結晶シリコン基板(1) i−反応
室(2)内の基板支持台(3)に取り付けた後、以下の
手順で単結晶シリコンの窒化を行った。
After attaching the previously cleaned single crystal silicon substrate (1) to the substrate support stand (3) in the i-reaction chamber (2), the single crystal silicon was nitrided according to the following procedure.

まず、送ガス管(4)から窒*(N2)を導入して。First, introduce nitrogen* (N2) from the gas supply pipe (4).

温度を25℃に保ったヒドラジン留め(5)中に吹き込
み、窒素とヒドラジンとの混合物を、流量計(6)を通
して毎分25m1の割合で反応室(2)内に導入して内
部の空気を該混合物で置換した0次いで該混合物の流量
を前述のように保持したまま真空ポンプ(8)を作動し
て、反応室(2)内を圧力0.5  Torrに保持し
た。基板支持台(3)は内蔵したヒータ(9)により加
熱して温度を250℃に設定した0次いで該状態に保持
したまま、低圧水銀ランプ(10)を点灯し、その光を
合成石芙窓(11)を通して反応室(2)内に10分間
照射した0以上のようにして単結晶シリコン基板(1)
表面の窒化を行った。
A mixture of nitrogen and hydrazine was introduced into the reaction chamber (2) at a rate of 25 ml per minute through a flow meter (6) to remove the air inside the hydrazine tank (5), which was kept at a temperature of 25°C. The vacuum pump (8) was operated while the flow rate of the mixture was maintained as described above, and the pressure inside the reaction chamber (2) was maintained at 0.5 Torr. The substrate support stand (3) was heated with a built-in heater (9) and the temperature was set at 250°C.Then, while maintaining this state, a low-pressure mercury lamp (10) was turned on, and the light was passed through a synthetic stone window. The single crystal silicon substrate (1) was irradiated for 10 minutes through (11) into the reaction chamber (2).
The surface was nitrided.

次いで得られたシリコン窒化膜とシリコンとの界面の電
気的特性を評価するために、以下のようにしてM I 
S (Metal In5ulator Sem1co
nductor)素子を形成した。即ち、前述のように
してシリコンの窒化を行った単結晶シリコン基板上と、
比較としてシリコンの窒化を行わなかった単結晶シリコ
ン基板表面上に、それぞれ新たに13.56  MHz
高周波放電プラズマ励起により、モノシラン(SiHs
)と(N H3)を使用して化学的気相堆積によりシリ
コン窒化膜を1100n成膜した。
Next, in order to evaluate the electrical characteristics of the interface between the obtained silicon nitride film and silicon, M I
S (Metal In5lator Sem1co
(inductor) element was formed. That is, on a single crystal silicon substrate on which silicon was nitrided as described above,
For comparison, each new 13.56 MHz
By high-frequency discharge plasma excitation, monosilane (SiHs)
) and (NH3) to form a 1100 nm silicon nitride film by chemical vapor deposition.

その後アルミニウム(Al)を真空蒸着してMIS素子
を形成した。
Thereafter, aluminum (Al) was vacuum deposited to form a MIS element.

これらのMIS素子を用いて、シリコン窒化膜とシリコ
ンの界面電荷密度を測定した。その結果、シリコンの窒
化を行った場合の界面電荷密度はlXl0”cm−2で
あり、シリコンの窒化を行わなかった場合の界面電荷密
度に対して約10分の1に低減し、シリコンの窒化によ
り良好なシリコン窒化膜とシリコンとの界面が形成され
た。
Using these MIS elements, the interfacial charge density between the silicon nitride film and silicon was measured. As a result, the interfacial charge density when silicon is nitrided is lXl0"cm-2, which is approximately one-tenth of the interfacial charge density when silicon is not nitrided. As a result, a good interface between the silicon nitride film and silicon was formed.

実施例2 第2図に本発明を応用した実施例を説明するための断面
図を示す、前もって洗浄した単結晶シリコン基板(12
)を反応室(13)内の基板支持台(14)に取り付け
た後、以後の手順で単結晶シリコンの窒化を行った。
Example 2 FIG. 2 shows a cross-sectional view for explaining an example to which the present invention is applied. A previously cleaned single crystal silicon substrate (12
) was attached to the substrate support stand (14) in the reaction chamber (13), and then the single crystal silicon was nitrided in the following steps.

まず始めに、送ガス管(15)からアンモニア(NI(
3)を導入して、流量計(16)を通して毎分25 m
 lの割合で反応室(13)内に導入して内部の空気を
アンモニアで置換した0次いでアンモニアの流量は変え
ずに、真空ポンプ(18)を作動して1反応室(13)
内を圧力0.5Torrに保持した。そして基板支持台
(14)を、ヒーター(19)により加熱して温度を2
50℃にした1次いで13.56 高周波を放電電極(
20および21)に印加すると同時に、低圧水銀ランプ
(22)を点灯し、その光を合成石英窓(23)を通し
て反応室(13)内に10分間照射した。
First of all, ammonia (NI) is introduced from the gas pipe (15).
3) through the flow meter (16) at 25 m/min.
1 of the reaction chamber (13) to replace the internal air with ammonia.Next, without changing the flow rate of ammonia, the vacuum pump (18) was operated to fill one reaction chamber (13).
The internal pressure was maintained at 0.5 Torr. Then, the substrate support stand (14) is heated by the heater (19) to a temperature of 2.
13.56 High frequency was applied to the discharge electrode (
20 and 21), the low-pressure mercury lamp (22) was turned on, and the light was irradiated into the reaction chamber (13) for 10 minutes through the synthetic quartz window (23).

以上のようにして単結晶シリコン基板(12)表面の窒
化を行った。
As described above, the surface of the single crystal silicon substrate (12) was nitrided.

次いで、実施例1と同様にしてMIS素子を形成して、
シリコン窒化膜とシリコンとの界面電荷密度を測定した
。その結果、シリコンの窒化を行った場合の界面電荷密
度は5 X 10 Iac m−2であり、シリコンの
窒化を行わなかった場合の界面電荷密度に対して約20
分の1に低減し、シリコンの窒化により良好なシリコン
窒化膜とシリコンとの界面が形成された。
Next, a MIS element was formed in the same manner as in Example 1,
The interfacial charge density between the silicon nitride film and silicon was measured. As a result, the interfacial charge density when silicon is nitrided is 5 × 10 Iac m−2, which is about 20
The silicon nitride film was reduced to one-fold, and a good interface between the silicon nitride film and silicon was formed by nitriding the silicon.

(発明の効果) 以上のように本発明を用いれば、電気的特性に優れたシ
リコン窒化膜および、またはシリコン窒化膜とシリコン
との良好な界面が形成される。猶実施例では光励起によ
る窒化について述べたが、励起方法は熱、プラズマなど
があり、これらを用いても本質的な違いはないことは勿
論である。
(Effects of the Invention) As described above, by using the present invention, a silicon nitride film with excellent electrical characteristics and/or a good interface between the silicon nitride film and silicon can be formed. In the embodiment, nitriding by optical excitation has been described, but excitation methods include heat, plasma, etc., and it goes without saying that there is no essential difference even if these are used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、本発明を応用した実施例を説明
するための断面概略図である。 (1)単結晶基板 (2)反応室 (3)基板支持台 (4)送ガス管 (5)ヒドラジン留め (6)流量計 (7)ガス排出管 (8)真空ポンプ (9)ヒーター (1o)低圧水銀ランプ (11)合成石英窓 (12)単結晶シリコン基板 (13)反応室 (14)基板支持台 (15)送ガス管 (16)流量計 (17)ガス排出管 (18)真空ポンプ (19)ヒーター (20)放電電極 (21)放電電極 (22)低圧水銀ランプ (23)合成石英窓
FIGS. 1 and 2 are schematic cross-sectional views for explaining an embodiment to which the present invention is applied. (1) Single crystal substrate (2) Reaction chamber (3) Substrate support stand (4) Gas supply pipe (5) Hydrazine clamp (6) Flow meter (7) Gas discharge pipe (8) Vacuum pump (9) Heater (1o ) Low pressure mercury lamp (11) Synthetic quartz window (12) Single crystal silicon substrate (13) Reaction chamber (14) Substrate support stand (15) Gas supply pipe (16) Flow meter (17) Gas discharge pipe (18) Vacuum pump (19) Heater (20) Discharge electrode (21) Discharge electrode (22) Low pressure mercury lamp (23) Synthetic quartz window

Claims (1)

【特許請求の範囲】 1)ヒドラジンを窒素源の必須成分とするこを特徴とす
るシリコンの窒化方法 2)上記方法において、放電により生成したヒドラジン
を使用することを特徴とする窒化方法
[Claims] 1) A silicon nitriding method characterized in that hydrazine is an essential component of the nitrogen source 2) A nitriding method characterized in that the above method uses hydrazine produced by electric discharge
JP9107489A 1989-04-11 1989-04-11 Nitridation of silicon Pending JPH02270325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9107489A JPH02270325A (en) 1989-04-11 1989-04-11 Nitridation of silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9107489A JPH02270325A (en) 1989-04-11 1989-04-11 Nitridation of silicon

Publications (1)

Publication Number Publication Date
JPH02270325A true JPH02270325A (en) 1990-11-05

Family

ID=14016359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9107489A Pending JPH02270325A (en) 1989-04-11 1989-04-11 Nitridation of silicon

Country Status (1)

Country Link
JP (1) JPH02270325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468688A (en) * 1993-11-01 1995-11-21 Georgia Tech Research Corporation Process for the low temperature creation of nitride films on semiconductors
JP2008010801A (en) * 2005-08-17 2008-01-17 Kobe Steel Ltd Source/drain electrode, thin-film transistor substrate and manufacture method thereof, and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468688A (en) * 1993-11-01 1995-11-21 Georgia Tech Research Corporation Process for the low temperature creation of nitride films on semiconductors
JP2008010801A (en) * 2005-08-17 2008-01-17 Kobe Steel Ltd Source/drain electrode, thin-film transistor substrate and manufacture method thereof, and display device

Similar Documents

Publication Publication Date Title
JPS59128281A (en) Manufacture of silicon carbide coated matter
JP2003332333A (en) Low-temperature deposition method of insulation film
US5045346A (en) Method of depositing fluorinated silicon nitride
Dows et al. Infrared spectra of intermediate species in the formation of ammonium azide from hydrazoic acid
JPH0685391B2 (en) Deposited film formation method
KR930010711B1 (en) Thin Film Formation Method
JPS58158915A (en) Thin film producing device
JPH02270325A (en) Nitridation of silicon
JPH059735A (en) Vapor synthesis of diamond
KR900007050B1 (en) Method manufacturing a semiconductor device
JPH02232371A (en) Thin-film forming device
JPS6140770Y2 (en)
JPS60190564A (en) Preparation of silicon nitride
JPS62253771A (en) Formation of thin film
RU2040072C1 (en) Method for production of thin films of silicon dioxide
JPS6221868B2 (en)
WO2003005432A1 (en) Method and apparatus for forming film having low dielectric constant, and electronic device using the film
KR0160543B1 (en) Method for depositing high quality silicon nitride films
JPH01312073A (en) Formation of bn film
JP2615409B2 (en) Synthesis of boron nitride by pyrolysis
JPS5893242A (en) Formation of nitride film
JPS61234533A (en) Fabrication of silicon nitride coating
JPH02270323A (en) Hybrid exciting cvd process and manufacture of fet thereby
JPH0752721B2 (en) Jig for semiconductor wafer heat treatment
JPS60255699A (en) Member for producing semiconductor si single crystal and production thereof