JPH022700Y2 - - Google Patents

Info

Publication number
JPH022700Y2
JPH022700Y2 JP1982147162U JP14716282U JPH022700Y2 JP H022700 Y2 JPH022700 Y2 JP H022700Y2 JP 1982147162 U JP1982147162 U JP 1982147162U JP 14716282 U JP14716282 U JP 14716282U JP H022700 Y2 JPH022700 Y2 JP H022700Y2
Authority
JP
Japan
Prior art keywords
pressure
oil passage
oil
input shaft
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982147162U
Other languages
Japanese (ja)
Other versions
JPS5951675U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14716282U priority Critical patent/JPS5951675U/en
Publication of JPS5951675U publication Critical patent/JPS5951675U/en
Application granted granted Critical
Publication of JPH022700Y2 publication Critical patent/JPH022700Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本案はパワーステアリング装置の改良に係り、
ステアリングハンドルに連結された入力軸と、操
舵輪に連結された出力軸と、上記入力軸と上記出
力軸とをを連結するトーシヨンバーと、上記出力
軸に連結されたパワーシリンダと、油圧源と同パ
ワーシリンダとを連通する高圧油路に介装される
とともに上記入力軸と上記出力軸との回転角度差
に応じて上記パワーシリンダに選択的に配油せし
める油路切換用ロータリー弁と、同油路切換用ロ
ータリー弁の下流側に位置するとともに上記入力
軸と上記トーシヨンバーとの間に配設された減圧
通路と、上記入力軸の外周面とバルブハウジング
との間に形成されて上記パワーシリンダの油圧を
オイルタンクに戻す低圧油路と、上記入力軸と上
記出力軸との間に配設されて両者の相対捩り変位
を規制せしめる複数の反力ピストンと、上記高圧
油路から上記各反力ピストンの反力増大側チヤン
バーに分岐された分岐油路と、同分岐油路に介装
されるとともに一定車速以上の走行時に開作動さ
れる油路開閉弁と、同油路開閉弁の下流側に配設
されて作動油の圧力を略一定に保持する圧力制御
弁と、上記入力軸に形成されて上記減圧通路と上
記低圧油路とを連通する細孔と、上記減圧通路に
発生したパイロツト油圧を上記圧力制御弁のパイ
ロツト油圧室に伝達せしめるとともに上記反力ピ
ストンの反力減少側チヤンバーに連通せしめる油
路と、上記入力軸と上記バルブハウジングとの間
のうち上記低圧油路の外側に配設されたオイルシ
ールとを具えていることを特徴とするもので、そ
の目的とする処は、入力軸の周りに生ずるフリク
シヨンを増加させない。シールの信頼性を向上で
きる。さらに反力ピストンの有効作用圧力を滑ら
かに変化させることができる改良されたパワース
テアリング装置を供する点にある。
[Detailed explanation of the invention] This invention relates to the improvement of a power steering device,
An input shaft connected to a steering handle, an output shaft connected to a steering wheel, a torsion bar connecting the input shaft and the output shaft, a power cylinder connected to the output shaft, and a hydraulic power source. an oil passage switching rotary valve that is interposed in a high-pressure oil passage that communicates with the power cylinder and selectively distributes oil to the power cylinder according to the rotation angle difference between the input shaft and the output shaft; A pressure reducing passage located downstream of the road switching rotary valve and arranged between the input shaft and the torsion bar, and a pressure reducing passage formed between the outer peripheral surface of the input shaft and the valve housing of the power cylinder. A low-pressure oil passage that returns hydraulic pressure to the oil tank, a plurality of reaction force pistons disposed between the input shaft and the output shaft to regulate relative torsional displacement between the two, and each of the reaction forces from the high-pressure oil passage. A branch oil passage branched to the chamber on the reaction force increasing side of the piston, an oil passage opening/closing valve installed in the branching oil passage and opened when the vehicle is running at a certain speed or higher, and the downstream side of the oil passage opening/closing valve. a pressure control valve disposed in the input shaft to maintain the pressure of the hydraulic oil at a substantially constant level, a pore formed in the input shaft to communicate the pressure reduction passage with the low pressure oil passage, and a pilot valve formed in the pressure reduction passage. An oil passage that transmits hydraulic pressure to the pilot hydraulic chamber of the pressure control valve and communicates with the reaction force reduction side chamber of the reaction piston, and an outer side of the low pressure oil passage between the input shaft and the valve housing. It is characterized by having an oil seal disposed therein, and its purpose is not to increase the friction generated around the input shaft. Seal reliability can be improved. Another object of the present invention is to provide an improved power steering device that can smoothly change the effective working pressure of the reaction piston.

次に本案のパワーステアリング装置を第1,
2、図に示す一実施例により説明すると、1aが
エンジン、1bが同エンジン1aにより駆動され
るオイルポンプ、2が油路切換用ロータリー弁、
3がパワーシリンダ、4がタンク、5が上記油路
切換用ロータリー弁2の周りに設けた複数の反力
ピストン、6が同ピストン5の背後に形成したチ
ヤンバー、8が上記オイルポンプ1bと上記油路
切換弁2との間の高圧油路、9が上記油路切換弁
2と上記タンク4との間の低圧油路、7が同低圧
油路9の途中に設けた細孔、8′が上記高圧油路
8の途中から上記反力ピストン5のチヤンバー6
へ延びた分岐油路、10が分岐油路8′の途中に
介装した油路開閉弁で、これを第3図により具体
的に説明すると、21がバルブハウジング、22
がスプール、23がスプール22を左方へ付勢す
るスプリング、24がソレノイド、25が同ソレ
ノイド24側のロツド、25′が同ロツド25の
先端に設けたスリツト、26がプラグ、27,2
8がOリング、29が上記バルブハウジング21
の溝に嵌挿したスナツプリング、30,31,3
2がチヤンバー、33が上記スプール22に設け
た油路で、停車時及び低速走行時には、車速セン
サー(図示せず)からの信号に基いてソレノイド
24に通電され、ロツド25を介しスプール22
が第3図の位置から右方へ移動して、分岐油路
8′が遮断され、また中・高速走行時には、車速
センサーからの信号に基いてソレノイド24への
通電が止まり、スプール22がスプリング23の
反力により左方へ移動して、圧力制御弁11への
油路が開放されるようになつている。また第1,
2,4図の11が上記油路開閉弁10の下流側の
分岐油路8′に介装した圧力制御弁で、これを同
第2,4図により具体的に説明すると、21がバ
ルブハウジング、13がスプール、14が同スプ
ール13を左方へ付勢するスプリング、15が上
記弁本体12に設けた作動油の入口、16が上記
バルブハウジング21に設けた作動油の出口、1
7が上記バルブハウジング21に設けた排油孔
で、同排油孔17は油路9′を介し上記低圧油路
9に接続されている。また18a,18b,18
c,18dが上記スプール13により形成された
バルブハウジング21内のチヤンバー、19aが
上記スプール13に設けた連通孔、19bが同ス
プール13に設けた細孔で、チヤンバー18cが
低圧油路9′を介して細孔7よりも下流のタンク
4側低圧油路9に、チヤンバー18dが低圧油路
9″を介して細孔7よりも上流の油路切換弁2側
低圧油路9に、それぞれ接続されている。次に前
記油路切換用ロータリー弁2を第1図により具体
的に説明すると、35が前記バルブハウジング2
1に設けたラツクサポート、36がラツク、37
が同ラツク36に噛合したピニオン、39が入力
軸、38が同入力軸39と上記ピニオン37とを
連結するトーシヨンバー、40が上記入力軸39
の周りに取付けたバルブボデイ、41,42,4
3が同バルブボデイ40の外周面に設けた環状
溝、44が上記環状溝41から半径方向内方へ延
びた複数の油路、45が上記バルブボデイ40の
内周面に軸方向に沿い設けた複数の油路で、同各
油路45は上記環状溝42に連通している。また
同各油路45の間には同様の油路(図示せず)が
あり、これが上記環状溝41と上記環状溝43と
を連通している。また46が上記入力軸39を半
径方向に貫通した複数の油路、47,48が上記
環状溝42,43からバルブハウジング21壁を
貫通して前記シリンダ3へ延びた油路、49が上
記トーシヨンバー38と上記入力軸39との間に
形成されたチヤンバーで、オイルポンプ1bから
の圧油が高圧油路8→環状溝41→油路44→油
路45→油路46→チヤンバー49→低圧油路9
→タンク4→オイルポンプ1bに循環するよう
に、またハンドル(図示せず)を右に切つて、入
力軸39を右に回転すると、入力軸39の油路4
6が軸方向45の間に設けた軸方向油路(図示せ
ず)に連通し、オイルポンプ1bからの圧油が高
圧油路8→環状溝41→油路44→油路45→環
状溝42→油路47を経てシリンダ3の一方へ送
られて、同シリンダ3が右方へ作動する一方、シ
リンダ3の他方の油が油路48→環状溝43→油
路44(図示せず)→軸方向油路45の間に設け
た軸方向油路→油路46→チヤンバー49→低圧
油路9を経てタンク4へ戻されるように、またハ
ンドルを左に切つて、入力軸39を左に回転する
と、入力軸39の油路46が軸方向油路45に連
通し、オイルポンプ1bからの圧油が高圧油路8
→環状溝41→油路44(図示せず)→軸方向油
路45の間に設けた軸方向油路→環状溝43→油
路48を経てシリンダ3の他方へ送られて、同シ
リンダ3が左方へ作動する一方、シリンダ3の一
方の油が油路47→環状溝42→軸方向油路45
→油路46→チヤンバー49→低圧油路9を経て
タンク4へ戻されるようになつている。また第2
図の50,51はオイルシール、52,53はベ
アリング、54は前記圧力制御弁11の軸線上に
設けたキヤツプ、55が同キヤツプ54側のパイ
プに設けた穴である。なお同穴55はパイプ内に
圧力の高まりが発生しないようにするために設け
た油逃し穴で、圧力制御弁11とパイプとの間に
は隙間があり、特に設ける必要はないが、圧力制
御弁11が上昇して上記隙間が閉ざされたときに
問題になるので、設けているにすぎない。また5
6が前記ピニオン37のラジアル荷重を支承する
ジヤーナル軸受、57が同ジヤーナル軸受56の
下側に形成したチヤンバーで、同チヤンバー57
が油路58と開閉弁10のチヤンバー32(第3
図参照)と油路33とチヤンバー31とを介して
低圧油路9′に連通している。なお同チヤンバー
57は開閉弁10内を介さずに低圧油路9′に連
通させてもよい。
Next, the power steering device of the present invention is installed in the first place.
2. To explain with one embodiment shown in the figure, 1a is an engine, 1b is an oil pump driven by the engine 1a, 2 is a rotary valve for switching oil passages,
3 is a power cylinder, 4 is a tank, 5 is a plurality of reaction pistons provided around the oil passage switching rotary valve 2, 6 is a chamber formed behind the piston 5, and 8 is the oil pump 1b and the above. A high pressure oil passage between the oil passage switching valve 2, 9 a low pressure oil passage between the oil passage switching valve 2 and the tank 4, 7 a small hole provided in the middle of the low pressure oil passage 9, and 8'. is from the middle of the high pressure oil passage 8 to the chamber 6 of the reaction piston 5.
10 is an oil passage opening/closing valve interposed in the middle of the branch oil passage 8', and this will be explained in detail with reference to FIG. 3. 21 is a valve housing, 22
is a spool, 23 is a spring that urges the spool 22 to the left, 24 is a solenoid, 25 is a rod on the solenoid 24 side, 25' is a slit provided at the tip of the rod 25, 26 is a plug, 27, 2
8 is an O-ring, 29 is the above-mentioned valve housing 21
Snap spring inserted into the groove of 30, 31, 3
2 is a chamber, and 33 is an oil passage provided in the spool 22. When the vehicle is stopped or running at low speed, the solenoid 24 is energized based on a signal from a vehicle speed sensor (not shown), and the spool 22 is connected to the spool 22 via a rod 25.
moves to the right from the position shown in Fig. 3, and the branch oil passage 8' is blocked, and when driving at medium or high speeds, the energization to the solenoid 24 is stopped based on the signal from the vehicle speed sensor, and the spool 22 is released from the spring. It moves to the left by the reaction force of 23, and the oil passage to the pressure control valve 11 is opened. Also, the first
Reference numeral 11 in Figures 2 and 4 is a pressure control valve installed in the branch oil passage 8' on the downstream side of the oil passage opening/closing valve 10. To explain this in detail with reference to Figures 2 and 4, 21 is a valve housing. , 13 is a spool, 14 is a spring that biases the spool 13 to the left, 15 is a hydraulic oil inlet provided in the valve body 12, 16 is a hydraulic oil outlet provided in the valve housing 21, 1
Reference numeral 7 denotes an oil drain hole provided in the valve housing 21, and the oil drain hole 17 is connected to the low pressure oil path 9 via an oil path 9'. Also 18a, 18b, 18
c and 18d are chambers in the valve housing 21 formed by the spool 13, 19a is a communication hole provided in the spool 13, 19b is a small hole provided in the spool 13, and the chamber 18c connects the low pressure oil path 9'. The chamber 18d is connected to the low pressure oil passage 9 on the tank 4 side downstream of the fine hole 7 through the low pressure oil passage 9, and the chamber 18d is connected to the low pressure oil passage 9 on the oil passage switching valve 2 side upstream of the fine hole 7 through the low pressure oil passage 9''. Next, the oil passage switching rotary valve 2 will be explained in detail with reference to FIG. 1. 35 is the valve housing 2.
Rack support provided at 1, 36 is easy, 37
is a pinion meshed with the rack 36, 39 is an input shaft, 38 is a torsion bar connecting the input shaft 39 and the pinion 37, and 40 is the input shaft 39.
Valve body installed around 41, 42, 4
3 is an annular groove provided on the outer peripheral surface of the valve body 40, 44 is a plurality of oil passages extending radially inward from the annular groove 41, and 45 is a plurality of oil passages provided along the axial direction on the inner peripheral surface of the valve body 40. Each oil passage 45 communicates with the annular groove 42 . Further, there is a similar oil passage (not shown) between each of the oil passages 45, which communicates the annular groove 41 and the annular groove 43. 46 is a plurality of oil passages passing through the input shaft 39 in the radial direction; 47 and 48 are oil passages extending from the annular grooves 42 and 43 through the wall of the valve housing 21 to the cylinder 3; and 49 is the torsion bar. 38 and the input shaft 39, the pressure oil from the oil pump 1b is routed through the high pressure oil passage 8 → annular groove 41 → oil passage 44 → oil passage 45 → oil passage 46 → chamber 49 → low pressure oil. Road 9
→Tank 4→Oil pump 1b When turning the handle (not shown) to the right and rotating the input shaft 39 to the right, the oil passage 4 of the input shaft 39
6 communicates with an axial oil passage (not shown) provided in the axial direction 45, and the pressure oil from the oil pump 1b flows through the high pressure oil passage 8 → annular groove 41 → oil passage 44 → oil passage 45 → annular groove. 42→oil is sent to one side of the cylinder 3 via oil passage 47, and the same cylinder 3 operates to the right, while oil from the other cylinder 3 is sent to oil passage 48→annular groove 43→oil passage 44 (not shown). → Axial oil passage provided between the axial oil passages 45 → Oil passage 46 → Chamber 49 → Turn the handle to the left so that the oil is returned to the tank 4 via the low pressure oil passage 9, and turn the input shaft 39 to the left. When the input shaft 39 rotates, the oil passage 46 of the input shaft 39 communicates with the axial oil passage 45, and the pressure oil from the oil pump 1b flows into the high pressure oil passage 8.
→ Annular groove 41 → Oil passage 44 (not shown) → Axial oil passage provided between axial oil passages 45 → Annular groove 43 → Oil is sent to the other side of the cylinder 3 via oil passage 48 operates to the left, while the oil on one side of the cylinder 3 flows from oil passage 47 → annular groove 42 → axial oil passage 45
→ Oil passage 46 → Chamber 49 → Low pressure oil passage 9 and then returned to tank 4. Also the second
In the figure, 50 and 51 are oil seals, 52 and 53 are bearings, 54 is a cap provided on the axis of the pressure control valve 11, and 55 is a hole provided in a pipe on the side of the cap 54. Note that the hole 55 is an oil relief hole provided to prevent pressure buildup within the pipe, and there is a gap between the pressure control valve 11 and the pipe, and although it is not necessary to provide it, the pressure control valve This is only provided because it will become a problem when the valve 11 rises and the gap is closed. Also 5
6 is a journal bearing that supports the radial load of the pinion 37; 57 is a chamber formed on the lower side of the journal bearing 56;
is the oil passage 58 and the chamber 32 (third
(see figure), an oil passage 33, and a chamber 31, which communicate with a low-pressure oil passage 9'. Note that the chamber 57 may be communicated with the low pressure oil passage 9' without going through the on-off valve 10.

次に前記パワーステアリング装置の作用を説明
する。エンジン1aにより駆動されるオイルポン
プ1bの吐出流量はエンジン回転数に応じて第5
図のように変化する。即ち、停車時から低速走行
時にかけては急速に増加し、中速走行時には急速
に減少し、高速走行時には減少した一定値に保持
される(なおこのオイルポンプ1bについて必要
ならば実願昭57−4939号明細書(実開昭58−
109585号)を参照されたい)。上記のようにオイ
ルポンプ1bから吐出される作動油の流量が急速
に増加する停車時から低速走行時にかけては、分
岐油路8′の途中に設けた油路開閉弁10が閉じ
られている。そのためオイルポンプ1bから吐出
された作動油の全てが油路切換用ロータリー弁2
を介してパワーシリンダ3へ導かれて、油路切換
用ロータリー弁2の周りの反力ピストン5に反力
が生ぜず、同油路切換用ロータリー弁2によるか
じ取り操作が軽快に行なわれる。一方、上記のよ
うにオイルポンプ1bから吐出される作動油の流
量が急速に減少して一定値に保持される中速走行
時から高速走行時にかけては、分岐油路8′の途
中に設けた油路開閉弁10が開かれる。そのため
オイルポンプ1bから吐出された作動油の一部が
油路開閉弁10を経て圧力制御弁11へ導かれ
る。この作動油は走行状態の如何により圧力が80
Kg/cm2〜60Kg/cm2程度の間で変化しており、上限
値付近の作動油が入口15からチヤンバー18
a,18bへ入つて(細孔19aを通過する流量
よりも多くの作動油がチヤンバー18a,18b
へ入つて)、チヤンバー18a,18bとチヤン
バー18cとの差圧が、18a,18b>18c
になつたときには、同差圧により、スプール13
がスプリング14に抗し右方へ移動し、入口15
の開口面積を減少させて、流量を絞る(第4図参
照)し、下限値付近の作動油が入口15からチヤ
ンバー18a内へ入つたときには、スプール13
がスプリング14により左方へ移動し、入口15
の開口面積を増大させて、流量をふやす。つま
り、分岐油路8′を流れる作動油の圧力如何にか
かわらず出口16から出る作動油の圧力(流量)
をほぼ一定に保持する。一方、細孔7よりも上流
の油路切換用ロータリー弁2側低圧回路9の作動
油の圧力は、2〜4Kg/cm2程度の範囲ではある
が、第6図のように中速走行時から高速走行時に
かけて急速に減少して、高速走行時には一定値に
保持される。そのためチヤンバー18d内の圧力
が中速走行時よりも高速走行時に低下して、スプ
リング14のスプール押し戻し力が相対的に大き
くなり、その分だけチヤンバー18a,18b内
の圧力が上昇する。即ち、チヤンバー18a,1
8b内の圧力をPa、チヤンバー18c内の圧力
をPc、チヤンバー18d内の圧力をPd、Aをπ/4 (D2−d2)、Dをスプール13の大径、dをスプ
ール13の小径(チヤンバー18dの直径)、a
=n/4d2とすると、チヤンバー18aの圧力Pa は、 Pa=R/A+Pc−Pda/A で表わされ、(R/A+Pc)がほぼ一定のため、Pd が小さくなると、Paが大きくなる。結果的にチ
ヤンバー18a,18bの圧力を油路開閉弁10
とで車速に応じコントロールできる。なお反力ピ
ストン5の反力とは、出力軸(ピニオン)37と
入力軸39との間に配設された反力ピストン5の
反力増大側チヤンバーに供給される油圧と、反力
減少側チヤンバーに供給される油圧との差により
発生している力であり、トーシヨンバー38の作
用力とともに入力軸39に作用する抵抗となる
力、即ち、入力軸39を操作するのに必要な力で
ある。また細孔7は、入力軸39に形成されてい
るが、その上流側に位置する減圧通路49には、
パワーシリンダ3から排出される低圧の作動油が
供給されており、低圧油路9″、及び圧力制御弁
11のパイロツト油圧室18dには、減圧通路4
9と実質的に同一の油圧が作用している。この油
圧は、ポンプ吐出量に対応しており、結果的に極
く低圧(2〜4Kg/cm2)になる。また上記細孔7
の下流側に位置する低圧油路9には、略大気圧の
油圧が作用している。また圧力制御弁11は、高
圧油路8の作動油を略一定の制御油圧として反力
ピストン5の反力増大側チヤンバーに供給せしめ
るとともに、パイロツト油圧室には、上記減圧通
路49の油圧、即ち、ポンプ流量に応じた油圧が
供給され、結果としてエンジン回転数によく対応
した油圧が反力ピストン5の反力増大側チヤンバ
ーに供給されて、適切な反力が得られる。また入
力側39はバルブハウジング(バルブボデイ)4
0に対してベアリング52により支持され、オイ
ルシール50により油密に保持されている。この
ベアリング52の直下には、低圧油路9が配設さ
れており、オイルシール50に対して作用する圧
力が低く、オイルシール50が入力軸39の周り
に生じる摩擦力が小さくなる。従つて操作感及び
オイルシール50の耐久性が向上する。
Next, the operation of the power steering device will be explained. The discharge flow rate of the oil pump 1b driven by the engine 1a varies according to the engine speed.
Changes as shown in the figure. That is, it increases rapidly from a stop to when driving at low speed, decreases rapidly when driving at medium speed, and is maintained at a constant value when driving at high speed. Specification No. 4939 (Utility Model No. 58-
109585)). As described above, from when the vehicle is stopped to when the vehicle is running at low speed, when the flow rate of the hydraulic oil discharged from the oil pump 1b increases rapidly, the oil passage opening/closing valve 10 provided in the middle of the branch oil passage 8' is closed. Therefore, all of the hydraulic oil discharged from the oil pump 1b is transferred to the oil passage switching rotary valve 2.
is guided to the power cylinder 3 via the oil passage switching rotary valve 2, so that no reaction force is generated in the reaction piston 5 around the oil passage switching rotary valve 2, and the steering operation using the oil passage switching rotary valve 2 is performed easily. On the other hand, as mentioned above, when the flow rate of the hydraulic oil discharged from the oil pump 1b rapidly decreases and is maintained at a constant value from medium speed to high speed driving, a branch oil passage 8' is provided midway. The oil passage opening/closing valve 10 is opened. Therefore, a part of the hydraulic oil discharged from the oil pump 1b is guided to the pressure control valve 11 via the oil passage opening/closing valve 10. This hydraulic oil has a pressure of 80% depending on the driving condition.
It varies between about Kg/cm 2 and 60 Kg/cm 2 , and hydraulic oil near the upper limit is flowing from inlet 15 to chamber 18.
a, 18b (more hydraulic fluid than the flow rate passing through the pores 19a) flows into the chambers 18a, 18b.
), the differential pressure between chambers 18a, 18b and chamber 18c is 18a, 18b>18c.
When the pressure reaches the spool 13 due to the same pressure difference
moves to the right against the spring 14, and the entrance 15
The opening area of the spool 13 is reduced to throttle the flow rate (see Fig. 4), and when hydraulic oil near the lower limit enters the chamber 18a from the inlet 15, the spool 13
is moved to the left by the spring 14, and the entrance 15
Increase the flow rate by increasing the opening area. In other words, regardless of the pressure of the hydraulic oil flowing through the branch oil passage 8', the pressure (flow rate) of the hydraulic oil exiting from the outlet 16 is
is held almost constant. On the other hand, the pressure of the hydraulic oil in the low pressure circuit 9 on the side of the rotary valve 2 for oil path switching upstream of the pore 7 is in the range of about 2 to 4 kg/ cm2 , but as shown in Fig. 6, when running at medium speed, It rapidly decreases from 2000 to 2000 when driving at high speed, and is maintained at a constant value during high speed driving. Therefore, the pressure within the chamber 18d is lower during high-speed running than during medium-speed running, and the force of the spring 14 to push back the spool becomes relatively large, and the pressure within the chambers 18a and 18b increases by that amount. That is, chamber 18a,1
The pressure in the chamber 18b is Pa, the pressure in the chamber 18c is Pc, the pressure in the chamber 18d is Pd, A is π/4 (D 2 - d 2 ), D is the large diameter of the spool 13, and d is the small diameter of the spool 13. (diameter of chamber 18d), a
=n/ 4d2 , the pressure Pa in the chamber 18a is expressed as Pa=R/A+Pc-Pda/A, and since (R/A+Pc) is approximately constant, as Pd decreases, Pa increases. As a result, the pressure in the chambers 18a, 18b is reduced to the oil passage opening/closing valve 10.
It can be controlled according to the vehicle speed. Note that the reaction force of the reaction piston 5 refers to the hydraulic pressure supplied to the reaction force increasing side chamber of the reaction force piston 5 disposed between the output shaft (pinion) 37 and the input shaft 39, and the reaction force decreasing side. This is a force generated due to the difference between the hydraulic pressure supplied to the chamber and the force acting as a resistance that acts on the input shaft 39 together with the acting force of the torsion bar 38, that is, the force necessary to operate the input shaft 39. . Further, although the pore 7 is formed in the input shaft 39, the decompression passage 49 located upstream thereof has a
Low-pressure hydraulic oil discharged from the power cylinder 3 is supplied, and the low-pressure oil passage 9'' and the pilot hydraulic chamber 18d of the pressure control valve 11 are supplied with the pressure reducing passage 4.
Substantially the same hydraulic pressure as 9 is acting. This oil pressure corresponds to the pump discharge amount, resulting in an extremely low pressure (2 to 4 Kg/cm 2 ). Also, the above pore 7
Hydraulic pressure at approximately atmospheric pressure acts on the low-pressure oil passage 9 located downstream of. Further, the pressure control valve 11 supplies the hydraulic oil in the high pressure oil passage 8 as a substantially constant control oil pressure to the reaction force increasing side chamber of the reaction force piston 5, and also supplies the oil pressure in the pressure reduction passage 49 to the pilot oil pressure chamber. , a hydraulic pressure corresponding to the pump flow rate is supplied, and as a result, a hydraulic pressure corresponding to the engine rotational speed is supplied to the reaction force increasing side chamber of the reaction force piston 5, and an appropriate reaction force is obtained. In addition, the input side 39 is the valve housing (valve body) 4
0 by a bearing 52, and is kept oil-tight by an oil seal 50. A low-pressure oil passage 9 is disposed directly below this bearing 52, so that the pressure acting on the oil seal 50 is low, and the frictional force generated by the oil seal 50 around the input shaft 39 is reduced. Therefore, the operational feeling and the durability of the oil seal 50 are improved.

以上のように本案のパワーステアリング装置で
は、高速走行時、オイルポンプ1bから高圧油路
8を経て油路切換用ロータリー弁2へほぼ一定の
流量の作動油が供給される一方、その一部が分岐
油路8′へ導かれるので、同油路切換用ロータリ
ー弁2の入力トルク−圧力特性が第8図の破線の
ようになる。しかも上記分岐油路8′へ導かれた
作動油が油路開閉弁10圧力制御弁11を介し反
力ピストン5へ送られて同部分に反力が生じるの
で、同油路切換用ロータリー弁2の入力トルク−
圧力特性が第8図の一点鎖線のようになつて、高
速走行時の同油路切換用ロータリー弁2の入力ト
ルク−圧力特性が大幅に改善される。また高圧油
路8と反力ピストン5のチヤンバー6とをつなぐ
分岐油路8′に油路開閉弁10と圧力制御弁11
とを、低圧油路9に細孔7を、それぞれ介装する
一方、圧力制御弁11のチヤンバー18cを細孔
7よりも下流のタンク4側低圧油路9に、圧力制
御弁11のチヤンバー18dをオリフイス7より
も上流の油路切換用ロータリー弁2側低圧油路9
に、それぞれ接続すればよく、装置の構造を複雑
化させない。また上記のように構成されており、
チヤンバー18a,18bの圧力(油路切換用ロ
ータリー弁2の反力)を油路開閉弁10とで車速
に応じコントロールできて、中速走行時から高速
走行時にかけての油路切換用ロータリー弁2によ
るかじ取り操作を安定時に行なえる効果がある
が、さらに本案では、ベアリング52の直下のチ
ヤンバーが低圧であり、そのためオイルシール5
0に作用する圧力も低くて、入力軸39の周りに
生ずるフリクシヨンを増加させない。またオイル
シール50に作用する圧力が低いので、シールの
信頼性を向上できる。またオイルポンプ1bの吐
出流量は第5図のように高速走行時に少なく、低
速走行時に多くなるように設定されている。この
ときのチヤンバー49内の圧力は細孔7により、
またチヤンバー6内の圧力は圧力制御弁11によ
り、第6図のように変化する。ここで反力ピスト
ン5に作用する油圧力はその差圧(第9図の斜線
部参照)であつて、反力ピストン5への有効作用
圧力(最終的にはハンドルの手応え)をポンプ流
量に応じて滑らかに変化させることができる効果
を有し、パワーステアリング装置に適用して非常
に有益である。
As described above, in the power steering device of the present invention, when driving at high speed, a substantially constant flow of hydraulic oil is supplied from the oil pump 1b to the oil passage switching rotary valve 2 via the high pressure oil passage 8, while a portion of the hydraulic oil is supplied to the oil passage switching rotary valve 2. Since the oil is guided to the branch oil passage 8', the input torque-pressure characteristic of the oil passage switching rotary valve 2 becomes as shown by the broken line in FIG. Moreover, the hydraulic oil guided to the branch oil passage 8' is sent to the reaction piston 5 via the oil passage opening/closing valve 10 and the pressure control valve 11, and a reaction force is generated in the same portion, so that the oil passage switching rotary valve 2 input torque of −
The pressure characteristics become as shown by the dashed line in FIG. 8, and the input torque-pressure characteristics of the oil passage switching rotary valve 2 during high-speed running are greatly improved. In addition, an oil passage opening/closing valve 10 and a pressure control valve 11 are provided in a branch oil passage 8' connecting the high pressure oil passage 8 and the chamber 6 of the reaction piston 5.
A small hole 7 is inserted in the low pressure oil passage 9, and a chamber 18c of the pressure control valve 11 is inserted into the low pressure oil passage 9 on the tank 4 side downstream of the hole 7, and a chamber 18d of the pressure control valve 11 is inserted into the low pressure oil passage 9 on the tank 4 side downstream of the small hole 7. The low pressure oil passage 9 on the rotary valve 2 side for oil passage switching upstream of the orifice 7
It is only necessary to connect them to each other, without complicating the structure of the device. It is also configured as above,
The pressure in the chambers 18a, 18b (reaction force of the rotary valve 2 for switching oil passages) can be controlled according to the vehicle speed with the oil passage opening/closing valve 10, and the rotary valve 2 for switching oil passages can be used from medium speed to high speed driving. This has the effect of allowing steering operations to be performed during stable conditions, but in addition, in this case, the chamber directly below the bearing 52 is under low pressure, so the oil seal 5
The pressure acting on the input shaft 39 is also low and does not increase the friction occurring around the input shaft 39. Furthermore, since the pressure acting on the oil seal 50 is low, the reliability of the seal can be improved. Further, as shown in FIG. 5, the discharge flow rate of the oil pump 1b is set to be low when the vehicle is traveling at high speeds and to be large when the vehicle is traveling at low speeds. At this time, the pressure inside the chamber 49 is due to the pores 7.
Further, the pressure inside the chamber 6 changes as shown in FIG. 6 by the pressure control valve 11. Here, the hydraulic pressure acting on the reaction piston 5 is the differential pressure (see the shaded area in Fig. 9), and the effective acting pressure on the reaction piston 5 (ultimately the response of the handle) is the pump flow rate. It has an effect that can be smoothly changed depending on the situation, and is very useful when applied to a power steering device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本案に係るパワーステアリング装置の
一実施例を示す縦断側面図、第2図はその油圧回
路図、第3図は油路開閉弁の一実施例を示す縦断
側面図、第4図は圧力制御弁の一実施例を示す縦
断側面図、第5図はオイルポンプの吐出流量特性
を示す説明図、第6図は細孔の上流圧を説明図、
第7図は圧力制御弁のチヤンバー(出入口側圧力
室)の圧力を示す説明図、第8図は圧力−入力ト
ルク特性を示す説明図、第9図は反力ピストン背
面側の圧力変化を示す説明図である。 1a……エンジン、1b……オイルポンプ、2
……油路切換弁、3……パワーシリンダ、4……
タンク、5……反力ピストン、6……チヤンバ
ー、7……細孔、8……高圧油路、8′……分岐
油路、9……低圧油路、10……油路開閉弁、1
1……圧力制御弁、18c……チヤンバー、21
……バルブハウジング、38……トーシヨンバ
ー、39……入力軸、40……バルブボデイ。
FIG. 1 is a longitudinal side view showing an embodiment of the power steering device according to the present invention, FIG. 2 is a hydraulic circuit diagram thereof, FIG. 3 is a longitudinal side view showing an embodiment of the oil passage opening/closing valve, and FIG. is a longitudinal side view showing one embodiment of the pressure control valve, FIG. 5 is an explanatory diagram showing the discharge flow rate characteristics of the oil pump, FIG. 6 is an explanatory diagram showing the upstream pressure of the pore,
Fig. 7 is an explanatory diagram showing the pressure in the chamber (inlet/outlet side pressure chamber) of the pressure control valve, Fig. 8 is an explanatory diagram showing the pressure-input torque characteristics, and Fig. 9 is an explanatory diagram showing the pressure change on the back side of the reaction piston. It is an explanatory diagram. 1a...Engine, 1b...Oil pump, 2
...Oil passage switching valve, 3...Power cylinder, 4...
Tank, 5... Reaction piston, 6... Chamber, 7... Pore, 8... High pressure oil passage, 8'... Branch oil passage, 9... Low pressure oil passage, 10... Oil passage opening/closing valve, 1
1...Pressure control valve, 18c...Chamber, 21
... Valve housing, 38 ... Torsion bar, 39 ... Input shaft, 40 ... Valve body.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ステアリングハンドルに連結された入力軸と、
操舵輪に連結された出力軸と、上記入力軸と上記
出力軸とを連結するトーシヨンバーと、上記出力
軸に連結されたパワーシリンダと、油圧源と同パ
ワーシリンダとを連通する高圧油路に介装される
とともに上記入力軸と上記出力軸との回転角度差
に応じて上記パワーシリンダに選択的に配油せし
める油路切換用ロータリー弁と、同油路切換用ロ
ータリー弁の下流側に位置するとともに上記入力
軸と上記トーシヨンバーとの間に配設された減圧
通路と、上記入力軸の外周面とバルブハウジング
との間に形成されて上記パワーシリンダの油圧を
オイルタンクに戻す低圧油路と、上記入力軸と上
記出力軸との間に配設されて両者の相対捩り変位
を規制せしめる複数の反力ピストンと、上記高圧
油路から上記各反力ピストンの反力増大側チヤン
バーに分岐された分岐油路と、同分岐油路に介装
されるとともに一定車速以上の走行時に開作動さ
れる油路開閉弁と、同油路開閉弁の下流側に配設
されて作動油の圧力を略一定に保持する圧力制御
弁と、上記入力軸に形成されて上記減圧通路と上
記低圧油路とを連通する細孔と、上記減圧通路に
発生したパイロツト油圧を上記圧力制御弁のパイ
ロツト油圧室に伝達せしめるとともに上記反力ピ
ストンの反力減少側チヤンバーに連通せしめる油
路と、上記入力軸と上記バルブハウジングとの間
のうち上記低圧油路の外側に配設されたオイルシ
ールとを具えていることを特徴としたパワーステ
アリング装置。
an input shaft connected to the steering handle;
An output shaft connected to a steering wheel, a torsion bar that connects the input shaft and the output shaft, a power cylinder connected to the output shaft, and a high-pressure oil passage that communicates the hydraulic power source and the power cylinder are interposed. an oil passage switching rotary valve that selectively distributes oil to the power cylinder according to the rotation angle difference between the input shaft and the output shaft; and a rotary valve located downstream of the oil passage switching rotary valve. a pressure reducing passage disposed between the input shaft and the torsion bar; and a low-pressure oil passage formed between the outer peripheral surface of the input shaft and the valve housing to return the hydraulic pressure of the power cylinder to the oil tank; A plurality of reaction force pistons are disposed between the input shaft and the output shaft to restrict relative torsional displacement between the two, and the high pressure oil passage is branched into a reaction force increasing side chamber of each of the reaction force pistons. A branch oil passage, an oil passage opening/closing valve that is installed in the branching oil passage and is operated to open when the vehicle is running at a certain speed or above, and an oil passage opening/closing valve that is installed downstream of the oil passage opening/closing valve to reduce the pressure of the hydraulic oil. A pressure control valve that maintains a constant pressure, a pore formed in the input shaft that communicates the pressure reduction passage with the low pressure oil passage, and a pilot oil pressure generated in the pressure reduction passage into the pilot oil pressure chamber of the pressure control valve. an oil passage for communicating with the reaction force reduction side chamber of the reaction piston; and an oil seal disposed outside the low pressure oil passage between the input shaft and the valve housing. A power steering device characterized by:
JP14716282U 1982-09-30 1982-09-30 power steering device Granted JPS5951675U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14716282U JPS5951675U (en) 1982-09-30 1982-09-30 power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14716282U JPS5951675U (en) 1982-09-30 1982-09-30 power steering device

Publications (2)

Publication Number Publication Date
JPS5951675U JPS5951675U (en) 1984-04-05
JPH022700Y2 true JPH022700Y2 (en) 1990-01-23

Family

ID=30327339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14716282U Granted JPS5951675U (en) 1982-09-30 1982-09-30 power steering device

Country Status (1)

Country Link
JP (1) JPS5951675U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112469A (en) * 1984-06-26 1986-01-20 Toyoda Mach Works Ltd Steering force control device in power steering unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027529B2 (en) * 1971-09-10 1975-09-08
JPS52140129A (en) * 1976-05-15 1977-11-22 Nissan Motor Co Ltd Steering force control system for power steering device
JPS5387433A (en) * 1977-01-07 1978-08-01 Nissan Motor Co Ltd Apparatus for controlling steering force of power steering system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344181Y2 (en) * 1973-07-09 1978-10-24

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027529B2 (en) * 1971-09-10 1975-09-08
JPS52140129A (en) * 1976-05-15 1977-11-22 Nissan Motor Co Ltd Steering force control system for power steering device
JPS5387433A (en) * 1977-01-07 1978-08-01 Nissan Motor Co Ltd Apparatus for controlling steering force of power steering system

Also Published As

Publication number Publication date
JPS5951675U (en) 1984-04-05

Similar Documents

Publication Publication Date Title
US4420934A (en) Automotive vehicle hydraulic system
US4445818A (en) Apparatus for supplying hydraulic fluid
JPH0329626B2 (en)
JPH09249136A (en) Flow control device
JPS61247575A (en) Steering force control device in power steering device
US4678052A (en) Power steering apparatus
JPH022700Y2 (en)
JPH0215742Y2 (en)
US4422834A (en) Power steering pump
JPH023983Y2 (en)
JPH023982Y2 (en)
JPH05248454A (en) Control type rotation difference sensing coupling
JPH0437026Y2 (en)
EP0689985B1 (en) Power steering apparatus
JPS6114990B2 (en)
JPH0124664B2 (en)
JPH0137973Y2 (en)
JPS6327556B2 (en)
JPS6335898Y2 (en)
JPS6340365Y2 (en)
JPH0139661Y2 (en)
JPS6358139B2 (en)
JPS61201902A (en) Control device of positive displacement pump
JPH0137974Y2 (en)
JPH0321332Y2 (en)