JPH02269701A - Photopolymerization resin - Google Patents

Photopolymerization resin

Info

Publication number
JPH02269701A
JPH02269701A JP9082189A JP9082189A JPH02269701A JP H02269701 A JPH02269701 A JP H02269701A JP 9082189 A JP9082189 A JP 9082189A JP 9082189 A JP9082189 A JP 9082189A JP H02269701 A JPH02269701 A JP H02269701A
Authority
JP
Japan
Prior art keywords
monomer
particles
refractive index
polymerization
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9082189A
Other languages
Japanese (ja)
Inventor
Tetsuya Ara
荒 哲哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Co Ltd
Original Assignee
Delphi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Co Ltd filed Critical Delphi Co Ltd
Priority to JP9082189A priority Critical patent/JPH02269701A/en
Publication of JPH02269701A publication Critical patent/JPH02269701A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To produce a photopolymerization resin quickly in such a manner that the polymerizability is uniform throughout the part to be polymerized by diffusing particles of a transparent body having a specified refractive index in the monomer before the polymerization of a photopolymerizable monomer. CONSTITUTION:This resin is formed by diffusing particles of a transparent body which lowly absorbs the light for polymerization and has a refractive index lying between that of the monomer and that of the polymer as a filler in the monomer for the photopolymerization resin and polymerizing the mixture. When particles of fluorite (CaF2) of a particle diameter of 10-20mum are diffused as the above transparent body in the monomer in a volume ratio in a range of 10-20% in the production of, for example, an acrylic photopolymerization resin, a good result can be attained. According to the kind of the photopolymerization resin, particles of MgF2, LiF, BaF2 or the like can also be used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光重合樹脂の重合過程が迅速かつ、どの箇所
も均一に進行するための構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a structure that allows the polymerization process of a photopolymerized resin to proceed quickly and uniformly at all locations.

(従来の技術) 従来、第2図に示すように光重合樹脂1のモノマーに、
紫外線光源3より光りを照射して重合させることが行な
われており、この方法は、重合促進剤を用いる方法より
も重合速度が速く、特に接着を目的として多く用いられ
ている。
(Prior art) Conventionally, as shown in FIG. 2, monomers of photopolymerized resin 1 were
Polymerization is carried out by irradiating light from an ultraviolet light source 3, and this method has a faster polymerization rate than a method using a polymerization accelerator, and is often used especially for the purpose of adhesion.

(発明が解決しようとする課題) 従来、光重合樹脂1のモノマーに光りを照射する場合、
第2図でに示すように、片側から照射する場合が多い。
(Problem to be solved by the invention) Conventionally, when the monomer of the photopolymerized resin 1 is irradiated with light,
As shown in FIG. 2, irradiation is often performed from one side.

光りはモノマーに吸収されて重合を促進させるが、重合
が進むにつれて光りの透過率が低下し、光源3に近い表
層は光りが強いが、光源3から遠い深い部分では光りか
弱くなり1重合が十分行なわれないという不都合が生ず
る場合があった。
Light is absorbed by the monomer and promotes polymerization, but as polymerization progresses, the transmittance of the light decreases.The light is strong in the surface layer near light source 3, but the light is weak in deep areas far from light source 3, and one polymerization is sufficient. There were cases where the inconvenience of not being carried out occurred.

(課題を解決するための手段) 本発明は前記課題を解決するためなされたもので、本発
明による光重合樹脂は、光の透過率の良い透明体で、し
かもモノマーの屈折率と重合が完了したポリマーの屈折
率の大略中間の値の屈折率を有する粒子を、あらかじめ
モノマーに混合し、拡散させておくようにしたものであ
る。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and the photopolymerized resin according to the present invention is a transparent body with good light transmittance, and the refractive index of the monomer and the polymerization are completed. Particles having a refractive index approximately intermediate in value to the refractive index of the polymer are mixed with the monomer in advance and allowed to diffuse.

(作用) 本発明によれば、モノマーに照射された光は、モノマー
に分散された透明粒子の中を通過するものもあるので、
モノマーの吸収が増加しても、吸収を受ける程度が少な
いので、深部まで達成する光が増加し、深部の重合も浅
部と同様均一に進行する。
(Function) According to the present invention, some of the light irradiated to the monomer passes through the transparent particles dispersed in the monomer.
Even if the absorption of the monomer increases, the degree of absorption is small, so the amount of light reaching the deep part increases, and polymerization in the deep part progresses as uniformly as in the shallow part.

更に、透明粒子の屈折率はモノマーの屈折率とポリマー
の屈折率の中間の値に設定しであるので、透明粒子とモ
ノマーの境界で生ずる光の反射を低減できる特徴がある
Furthermore, since the refractive index of the transparent particles is set to a value intermediate between the refractive index of the monomer and the refractive index of the polymer, it has the characteristic that reflection of light occurring at the boundary between the transparent particles and the monomer can be reduced.

(実施例) 第1図は本発明による一実施例を説明する模式図であっ
て、1はアクリル系の光重合樹脂、2は螢石(CaF2
)の粒子、3は紫外線光源、Lは光である。一般に光重
合に用いる光りは短波長領域が効率が良く、紫外線が多
く用いられている。
(Example) FIG. 1 is a schematic diagram illustrating an example according to the present invention, in which 1 is an acrylic photopolymerized resin, 2 is a fluorite (CaF2
) particles, 3 is an ultraviolet light source, and L is light. Generally, the light used for photopolymerization is efficient in the short wavelength region, and ultraviolet rays are often used.

本発明では、紫外線領域で透過率の優れた材料として螢
石(Ca F2)を用い、その透過領域は波長0.1F
mから12Pmである。
In the present invention, fluorite (CaF2) is used as a material with excellent transmittance in the ultraviolet region, and its transmission region is at a wavelength of 0.1F.
m to 12Pm.

又、その屈折率は、光りの波長0.22B+で1.48
110.0.3B+で1.45402.0.4*w+で
1.44185の値を有する。
Also, its refractive index is 1.48 at the wavelength of light 0.22B+.
110.0.3B+ has a value of 1.45402.0.4*w+ and 1.44185.

使用する光の波長0.4B+で、光重合樹脂のモノマー
の屈折率を1.48と仮定すれば、CaF、の屈折率1
.44であるから、CaF、と樹脂との境界面での反射
率は次のようになる。
Assuming that the wavelength of the light used is 0.4B+ and the refractive index of the monomer of the photopolymerized resin is 1.48, the refractive index of CaF is 1.
.. 44, the reflectance at the interface between CaF and resin is as follows.

即ち、屈折率ntt n、の物質の境界面の反射率Rは
、良く知られているように R=((nt  nz)/ (nz+nz))”で表さ
れる。
That is, the reflectance R of the boundary surface of a substance with a refractive index ntt n is expressed as R=((nt nz)/(nz+nz))'', as is well known.

七ツマ−と螢石の境界面での反射率 Rm=0.02% ポリマーと螢石の境界面での反射率 Rp=0.019%となる。Reflectance at the interface between Nanatsuma and Fluorite Rm=0.02% Reflectance at the interface between polymer and fluorite Rp=0.019%.

比較のためにn=1.52の硝子の粒子を用いた場合は モノマーと硝子の境界面での反射率 Rm=0.17% ポリマーと硝子の境界面での反射率 Rp=0.02% となり、特にモノマーの場合1反射率の減少が顕著であ
る。
For comparison, when using glass particles with n=1.52, the reflectance at the monomer-glass interface Rm = 0.17% The reflectance at the polymer-glass interface Rp = 0.02% In particular, in the case of monomers, the decrease in 1 reflectance is remarkable.

以上のように、透明粒子2をモノマーに混合分散した場
合、境界面における光りの反射による損失が少ないこと
は、深部まで光りが進行する利点が得られる。
As described above, when the transparent particles 2 are mixed and dispersed in a monomer, there is less loss due to reflection of light at the boundary surface, which has the advantage that the light travels deep.

実用的には、螢石の粒子の径が10〜204mのものを
、容積比10〜20%混合2分散させ、重合用光りを0
.4〜Q、3pmの波長を使用することにより、深部ま
で十分重合させることができた。
Practically, fluorite particles with a diameter of 10 to 204 m are mixed and dispersed at a volume ratio of 10 to 20%, and the light for polymerization is 0.
.. By using wavelengths of 4 to Q and 3 pm, it was possible to polymerize sufficiently deep.

又、螢石としては紫外線が当たっても、螢光を発しない
無螢光のものが望ましい場合もある。
In some cases, it is desirable that the fluorite be non-fluorescent, which does not emit fluorescence even when exposed to ultraviolet light.

(発明の効果) 以上詳細に説明したように、本発明によれば、透明体の
粒子がモノマー中に存在するので、モノマー自体の吸収
が増加しても透明粒子中を通過する光は何等吸収を受け
ないので、深部まで到着することができるので、重合が
均一に行なわれる効果が得られる。
(Effects of the Invention) As explained in detail above, according to the present invention, since transparent particles are present in the monomer, even if the absorption of the monomer itself increases, no light passing through the transparent particles is absorbed. Since the polymer is not exposed to water, it can reach deep parts, so that the effect of uniform polymerization can be obtained.

また、モノマーとことなる屈折率の粒子との境界におけ
る反射は、粒子の屈折率をモノマーとポリマーの屈折率
の中間の値の透明体を選択しであるので、実用的に差支
えない程度に減少することができる利点がある。
In addition, reflection at the boundary between the monomer and particles with different refractive indexes is reduced to a level that does not cause any practical problems because the refractive index of the particles is selected to be a transparent material with a value intermediate between the refractive index of the monomer and the polymer. There are advantages to being able to do so.

また、付随的な効果として、光重合樹脂は重合による収
縮が大きいものであるが、透明粒子を混合することによ
り、収縮を減少できる利点もある。
Furthermore, as an additional effect, although photopolymerized resins have a large shrinkage due to polymerization, mixing transparent particles has the advantage that shrinkage can be reduced.

尚、実施例では透明体粒子として螢石(CaF2)の粒
子を用いたが光重合樹脂の種類によっては、MgF、、
LtF、BaF、等の粒子を用いても同様の効果が得ら
れる。
In the examples, particles of fluorite (CaF2) were used as transparent particles, but depending on the type of photopolymerized resin, MgF,...
Similar effects can be obtained by using particles such as LtF, BaF, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する模式図で、第2図
は従来例を示す説明図である。 1・・・・・・光重合樹脂 2・・・・・・透明体粒子 3・・・・・・光源 L・・・・・・光 特許出願人 コパル電子株式会社
FIG. 1 is a schematic diagram illustrating an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing a conventional example. 1...Photopolymerized resin 2...Transparent particles 3...Light source L...Light patent applicant Copal Electronics Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)光重合樹脂のモノマーに充填材として重合用光に
対して吸収が少なく、その屈折率がモノマーの屈折率と
ポリマーの屈折率の中間の値を有する透明体の粒子を混
合拡散してなる光重合樹脂。
(1) Transparent particles that absorb little light for polymerization and whose refractive index is between the refractive index of the monomer and the refractive index of the polymer are mixed and diffused into the monomer of the photopolymerized resin as a filler. A photopolymerized resin.
(2)上記透明体として、螢石(CaF_2)の粒径1
0〜20μmの粒子を、容積比10〜20%混合拡散し
てなる請求項1記載の光重合樹脂。
(2) As the transparent body, fluorite (CaF_2) has a particle size of 1
2. The photopolymerized resin according to claim 1, wherein particles having a diameter of 0 to 20 μm are mixed and diffused in a volume ratio of 10 to 20%.
JP9082189A 1989-04-12 1989-04-12 Photopolymerization resin Pending JPH02269701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9082189A JPH02269701A (en) 1989-04-12 1989-04-12 Photopolymerization resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9082189A JPH02269701A (en) 1989-04-12 1989-04-12 Photopolymerization resin

Publications (1)

Publication Number Publication Date
JPH02269701A true JPH02269701A (en) 1990-11-05

Family

ID=14009256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9082189A Pending JPH02269701A (en) 1989-04-12 1989-04-12 Photopolymerization resin

Country Status (1)

Country Link
JP (1) JPH02269701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093075A1 (en) * 2005-02-28 2006-09-08 Toagosei Co., Ltd. Active energy ray-curable composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093075A1 (en) * 2005-02-28 2006-09-08 Toagosei Co., Ltd. Active energy ray-curable composition
US7754781B2 (en) 2005-02-28 2010-07-13 Toagosei Co., Ltd. Active energy beam-curable composition

Similar Documents

Publication Publication Date Title
JP2505779B2 (en) Method for manufacturing photochromic articles
CA2273050C (en) Optical structures for diffusing light
TWI759451B (en) Light guiding laminate using anisortropic optical film and planar light source device using the same
EP0566744A4 (en) Optical resin material of refractive index distribution type, method of making said material, and optical transmitter.
JPH09500981A (en) Method for manufacturing an array of tapered photopolymerized waveguides
FR2694641A1 (en) Photodispersing material and its manufacturing process.
JPS55110105A (en) Preparation of polymer composition containing physiologically active material
JPH02269701A (en) Photopolymerization resin
JPH0387701A (en) Production of light control plate having light scattering and transmittable region
JPH0267501A (en) Manufacture of light control plate
CN107531842A (en) Particle with refractive index variable
Cook Depth of cure in the UV photopolymerization of dimethacrylate-based dental filling materials
JPH04143701A (en) Manufacture of light control plate
JPS57128301A (en) Manufacture for light conducting array
JP2782200B2 (en) Resin composition for light control plate
US5137801A (en) Process for producing light control plate having light-scattering pervious region
WO2014187050A1 (en) Preparation method for pdlc liquid crystal panel
JP3208505B2 (en) Light diffusion plate and method of manufacturing the same
JPH03200949A (en) Screen for projection
JPS6225705A (en) Production of near parabolic optical plastic
EP0409396B1 (en) Process for producing light control plate having light-scattering pervious region
JPH03154007A (en) Organic optical waveguide
JP2000035506A (en) Light scattering plate
JPH05206524A (en) Molding resin for photo-semiconductor
JP2533859B2 (en) Optical photosensitive resin composition