JPH0226877A - Fiber-reinforced ceramic composite material reinforced with dispersed particles and its production - Google Patents

Fiber-reinforced ceramic composite material reinforced with dispersed particles and its production

Info

Publication number
JPH0226877A
JPH0226877A JP63175587A JP17558788A JPH0226877A JP H0226877 A JPH0226877 A JP H0226877A JP 63175587 A JP63175587 A JP 63175587A JP 17558788 A JP17558788 A JP 17558788A JP H0226877 A JPH0226877 A JP H0226877A
Authority
JP
Japan
Prior art keywords
fiber
fibers
ceramic
matrix
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63175587A
Other languages
Japanese (ja)
Other versions
JPH0582350B2 (en
Inventor
Kikuo Nakano
中野 喜久男
Kenji Oshima
健司 大島
Misao Iwata
美佐男 岩田
Takao Yamada
隆夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Noritake Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP63175587A priority Critical patent/JPH0226877A/en
Publication of JPH0226877A publication Critical patent/JPH0226877A/en
Publication of JPH0582350B2 publication Critical patent/JPH0582350B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title fiber-reinforced ceramic composite material having excellent fracture toughness by composing the composite material out of a ceramic matrix, the fiber dispersed in the matrix, and the ceramic fine particles of the same or different kind. CONSTITUTION:An organometallic polymer such as polysiloxane is dissolved in a solvent such as toluene, and the ceramic particles of Al2O3, etc., to be used as the matrix are dispersed in the soln. to produce a liq. impregnant. The fiber is then continuously passed through the impregnant to uniformly deposit the impregnant on the fiber surface. The content of the fiber in the mixture is preferably controlled to about 30-40vol.%. The obtained material is heated to 700-800 deg.C in gaseous N2 or gaseous Ar to make the organometallic polymer infusible. The obtained formed product is then sintered in gaseous Ar or gaseous N2 under pressure or at atmospheric pressure. By this method, the desired fiber-reinforced ceramic composite material reinforced further with dispersed particles is obtained. The composite material is excellent in fracture toughness and flexural strength.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は繊維強化セラミックス複合材を粒子分散により
さらに強化し、特に破壊靭性値を驚異的に向上させたの
で、レシプロエンジンのシリンダライナー、ピストンリ
ングあるいはガスタービンエンジンのタービン動翼等へ
の応用が期待されるセラミックス複合材料とその製造方
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention further strengthens the fiber-reinforced ceramic composite material by particle dispersion, and in particular, the fracture toughness value has been surprisingly improved. The present invention relates to a ceramic composite material that is expected to be applied to rings or turbine rotor blades of gas turbine engines, and a method for manufacturing the same.

[従来の技術丁 セラミックスは金属材料よりも優れた耐熱性、耐酸化性
を有し、さらに断熱性にも優れているので、金属に代わ
る耐熱構造材料として注目されてきた。しかしながら、
セラミックスは共有結合やイオン結合で構成されており
、金属材料のように転位によって変形したり伸びること
が出来ず、材料内部の微少な欠陥や表面のきずに応力の
集中が起こり、容易に破壊されるので、非常に脆く、破
壊靭性に劣るという欠点がある。
[Conventional technology] Ceramics have better heat resistance and oxidation resistance than metal materials, and also have excellent heat insulation properties, so they have attracted attention as heat-resistant structural materials that can replace metals. however,
Ceramics are composed of covalent and ionic bonds, and cannot be deformed or stretched due to dislocations like metal materials. Stress concentrates on minute defects inside the material and scratches on the surface, making it easily broken. Therefore, it has the disadvantage of being extremely brittle and having poor fracture toughness.

脆性破壊に対する材料の抵抗性は、一般に破壊靭性値K
I0により示されるが、例えば窒化珪素材料のKIOは
5〜7MN/m”であり1.金属材料の中で比較的脆い
と言われるアルミニウム合金の34MN/m”に比べて
も極めて低い、セラミックスをエンジニアリングセラミ
ックスとしてレシプロエンジンあるいはガスタービンエ
ンジンに応用していくためには、少なくとも破壊靭性値
を10MN/m”以上にする必要がある。
The resistance of a material to brittle fracture is generally determined by the fracture toughness value K
For example, the KIO of silicon nitride material is 5 to 7 MN/m'', which is extremely low compared to 34 MN/m'' of aluminum alloy, which is said to be relatively brittle among metal materials. In order to apply engineering ceramics to reciprocating engines or gas turbine engines, it is necessary to have a fracture toughness value of at least 10 MN/m'' or more.

そのために、この構造用セラミックスの脆さを改善する
ために、種々の手法が研究されてきたが。
Therefore, various methods have been studied to improve the brittleness of structural ceramics.

その中でもセラミックスマトリックス中にいろいろの粒
子を混合分散させる粒子分散強化法および各種繊維をセ
ラミックスマトリックス中に分散させる繊維強化法が注
目されている。
Among these, the particle dispersion strengthening method in which various particles are mixed and dispersed in a ceramic matrix and the fiber reinforcement method in which various fibers are dispersed in the ceramic matrix are attracting attention.

繊維強化セラミックス(以下FRCという、)用繊維は
大きく分けて、短繊維系と長繊維系がある。
Fibers for fiber-reinforced ceramics (hereinafter referred to as FRC) can be broadly divided into short fiber type and long fiber type.

長繊維にはガラス組り金属繊維、炭素側Lセラミック繊
維などがあり、炭素w1#@は強度が高く、弾性率も高
いので複合材に適しているが、酸化に弱いという欠点が
ある。また、炭化珪素やアルミナなどのセラミック繊維
は有機系原料を紡糸して熱処理したもので、高融点であ
り最も多用されている。短繊維は針状の単結晶であるウ
ィスカーあるいは長繊維のチョップ品を意味するが、ウ
ィスカーはFRC用繊維として理想的な強度を示すが、
マトリックス中に均一に分散させることが難しく、価格
が高いという欠点がある。
Long fibers include glass-braided metal fibers, carbon-side L ceramic fibers, etc. Carbon w1#@ has high strength and high elastic modulus, making it suitable for composite materials, but it has the drawback of being susceptible to oxidation. Ceramic fibers such as silicon carbide and alumina are spun and heat-treated from organic raw materials, have a high melting point, and are most commonly used. Short fibers refer to whiskers, which are needle-shaped single crystals, or chopped long fibers. Whiskers exhibit ideal strength as FRC fibers, but
Disadvantages include that it is difficult to uniformly disperse in the matrix and that it is expensive.

マトリックスとなるセラミックスについては、A I 
20 :l、ムライト、ZrO2、Si、N、、SiC
、ガラス等の酸化物から非酸化物まで多くのセラミック
スに対して繊維との複合化が試みられている。
Regarding the ceramics that serve as the matrix, A.I.
20: l, mullite, ZrO2, Si, N,, SiC
Attempts have been made to combine many ceramics, from oxides such as glass to non-oxides, with fibers.

mm強化セラミックス材料についての特許については、
スピネル(M go−A I203)に炭化珪素短繊維
を混ぜた焼結体く特開昭62−119175)、アルミ
ナに炭化珪素短繊維を混ぜた焼結体(特開昭62−11
9174)、炭素連続繊維強化SiC複合体く特開昭6
1.−247663)、金属酸化物または金属炭化物に
炭素繊維を添加して加圧と同時に焼結するセラミックス
複合材(特開昭50136306>、炭化珪素繊維強化
セラミックス複合材(特公昭6l−35996)などが
ある。
For patents on mm-reinforced ceramic materials,
A sintered body of spinel (M go-A I203) mixed with silicon carbide short fibers (Japanese Patent Application Laid-Open No. 62-119175), a sintered body of alumina mixed with silicon carbide short fibers (Japanese Patent Laid-Open No. 62-1191)
9174), Carbon continuous fiber reinforced SiC composite
1. -247663), ceramic composites made by adding carbon fiber to metal oxides or metal carbides and sintering them at the same time as pressure (JP-A-50136306), silicon carbide fiber-reinforced ceramic composites (JP-B No. 6L-35996), etc. be.

粒子分散によるセラミックスの破壊靭性向上の機構は、
クラックの先端がさらに進もうとするエネルギーを何等
かの形で強化用粒子が分散しまたは吸収し、応力緩和現
象が起こるためと考えられる。破壊靭性向上の例として
、5iaN−にTiC粒子を分散させた例がある。
The mechanism by which fracture toughness of ceramics is improved by particle dispersion is as follows.
This is thought to be because the reinforcing particles somehow disperse or absorb the energy that causes the tip of the crack to advance further, causing a stress relaxation phenomenon. As an example of improving fracture toughness, there is an example in which TiC particles are dispersed in 5iaN-.

[発明が解決しようとする課J!!]’しかしながら、
前記の複合材を作るに際しては、焼結温度において繊維
がマトリックスと反応せずに所望の強度を保つかどうか
という化学的適合性、および膨張係数の差が繊維を損傷
するがどうかの物理的適合性が、複合材料の破壊靭性等
の特性を左右するので、繊維強化あるいは粒子分散強化
のみでは期待通りの破壊靭性値が得られないのが実情で
ある。
[The section that the invention attempts to solve J! ! ]'however,
When making the above-mentioned composite materials, there are two important considerations: chemical compatibility, that is, whether the fibers will maintain the desired strength without reacting with the matrix at the sintering temperature, and physical compatibility, that is, whether the difference in coefficient of expansion will damage the fibers. The fact is that the expected fracture toughness cannot be obtained only by fiber reinforcement or particle dispersion reinforcement, since the properties of composite materials such as fracture toughness are influenced by the properties of composite materials, such as fracture toughness.

本発明は繊維強化セラミックス複合材の前記のごとき問
題点に鑑みてなされたもので、破壊靭性値の優れた繊維
強化セラミックス複合材とその製造方法を提供すること
を目的とする。
The present invention was made in view of the above-mentioned problems with fiber-reinforced ceramic composite materials, and an object of the present invention is to provide a fiber-reinforced ceramic composite material with excellent fracture toughness and a method for manufacturing the same.

[課題を解決するための手段] 発明者は前記課題を解決するため鋭意研究を重ねた結果
、繊維強化と粒子分散強化を兼ね備えた強化材料を想到
するに至った。
[Means for Solving the Problems] As a result of extensive research in order to solve the above problems, the inventors came up with a reinforcing material that combines fiber reinforcement and particle dispersion reinforcement.

粒子分散の破壊靭性向上の機構としては、クラック・デ
フレクションが挙げられている。すなわちマトリックス
と分散相の靭性や熱膨張率など各種の性質の違いや、両
者の界面状態などが原因で、クラックが分散相の回りを
ジグザグに折れ曲がって進む、これによりクラック進行
に必要なエネルギーが消費されるので破壊靭性が向上す
る。
Crack deflection is cited as a mechanism for improving fracture toughness due to particle dispersion. In other words, due to differences in various properties such as toughness and coefficient of thermal expansion between the matrix and the dispersed phase, as well as the state of the interface between the two, cracks propagate in a zigzag manner around the dispersed phase, and this causes the energy required for crack propagation to increase. Since it is consumed, fracture toughness improves.

また、繊維強化による破壊靭性向上の機構は、プルアウ
トとディフレクションが生ずるためであるとされる。す
なわち、分散相としてウィスカーを混合した場合、クラ
ックがウィスカーのある場所を通過する際に、クラック
により隙間が生ずる分だけ、ウィスカーがマトリックス
から引き抜かれる。ウィスカーが引き抜かれる仕事分だ
け、エネルギーが消費されて靭性が向上する。
Furthermore, the mechanism of improvement in fracture toughness due to fiber reinforcement is said to be due to the occurrence of pullout and deflection. That is, when whiskers are mixed as a dispersed phase, when the cracks pass through a place where the whiskers are present, the whiskers are pulled out from the matrix by the amount of gap created by the cracks. The amount of work done to pull out the whiskers consumes energy and improves toughness.

ここの述べたクラック・ディフレクションとプルアウド
が同時に効果的に起こるようにすれば、破壊エネルギー
は驚異的に増加して、破壊靭性値が著しく増加に至るこ
とに想到し、本発明を完成するに至った。
We have come up with the idea that if the crack deflection and pull-out mentioned above occur effectively at the same time, the fracture energy will increase tremendously and the fracture toughness value will increase significantly, and we have completed the present invention. It's arrived.

すなわち、本発明の繊維強化セラミックス複合材は、繊
維強化と併せて粒子分散強化を同時に行ったものであり
、セラミックマトリックスと、セラミックマトリックス
中に分散された繊維と、セラミックマトリックス中に分
散された同種または異種のセラミックス微粒子とからな
ることを要旨とする。
That is, the fiber-reinforced ceramic composite material of the present invention is one in which fiber reinforcement and particle dispersion reinforcement are performed at the same time. or different types of ceramic fine particles.

また、本発明の製造方法は、有機金属高分子を溶解した
溶液中にマトリックスとなるセラミックス粒子を分散さ
せ含浸液を調製する工程と、繊維を連続的に前記含浸液
の中を通過させて1m維に前記含浸液を均一に含浸させ
る工程と、前記繊維を積層して積層体とする工程と、前
記積層体中の有機金属高分子を不融化する工程と、前記
積層体をアルゴンガスまたは窒素ガス中でガス加圧また
は常圧で焼結する工程とからなることを要旨とする。
Further, the manufacturing method of the present invention includes a step of preparing an impregnating liquid by dispersing ceramic particles serving as a matrix in a solution in which an organic metal polymer is dissolved, and a step of continuously passing the fiber through the impregnating liquid for 1 m. a step of uniformly impregnating the fibers with the impregnating liquid; a step of laminating the fibers to form a laminate; a step of making the organometallic polymer in the laminate infusible; The gist is that the method consists of a step of sintering in gas under gas pressure or normal pressure.

マトリックスとなるセラミックスには、A1□01、ム
ライト、Z r O2、S i 3 N 4、SiC、
ガラス等の酸化物から非酸化物まで多くのセラミックス
を用いることができる。セラミックマトリックス中に分
散される強化繊維は、S![繊維でも長繊維でも良い、
長繊維にはガラス組り金属側り炭素側Lセラミック繊維
を用いることができる。これら繊維の耐酸化性を改善し
あるいはマトリックスとの界面接合を制御するため、繊
維表面にセラミックス等をCVDコーティングをして用
いると良い。
The matrix ceramics include A1□01, mullite, Z r O2, Si 3 N 4, SiC,
Many ceramics can be used, from oxides such as glass to non-oxides. The reinforcing fibers dispersed in the ceramic matrix are S! [Fibers or long fibers may be used,
For the long fibers, glass-structured metal-side carbon-side L ceramic fibers can be used. In order to improve the oxidation resistance of these fibers or to control the interfacial bonding with the matrix, it is preferable to coat the fiber surfaces with ceramics or the like by CVD.

強化繊維をセラミックマトリクス中に分散させる方法は
公知の方法によって行う0例えば長繊維の場合、スラリ
ー状にしたセラミック粉末中へ繊維を浸漬し、順次ドラ
ムに巻き取る方法(フィラメント・ワインディング法)
、あるいは繊維をシート状にし、マトリクス粉末を交互
に積層する方法(積層法)により、未焼成積層体を作り
、この積層体を押し型に合わせて成形してホットプレス
する方法などがとられる。
The reinforcing fibers are dispersed in the ceramic matrix using a known method.For example, in the case of long fibers, the fibers are immersed in a slurry of ceramic powder and then wound around a drum (filament winding method).
Alternatively, an unfired laminate is made by forming a sheet of fibers and alternately layering matrix powder (laminated method), and this laminate is molded into a mold and hot pressed.

第°1図はフィラメント・ワインディング法を模式的に
示した図である。スプール10から巻き戻された長繊維
12は含浸液層14に収容したマトリックス粉末を混合
したスラリー状の含浸液16の中に浸漬して通過させ、
長繊維12の表面に含浸液16を付着させ巻き取りドラ
ム18に巻き取る。ドラムに巻き取られた積層体20は
適当な箇所を切り開いてドラム18から取り外し、所望
の大きさに裁断し、適宜の厚さに積層する。積層した積
層体20は必要に応じて脱脂した後、押し型に合わせて
成形してホットプレスする。
Figure 1 is a diagram schematically showing the filament winding method. The long fibers 12 unwound from the spool 10 are immersed in a slurry-like impregnating liquid 16 mixed with matrix powder contained in an impregnating liquid layer 14 and passed through.
An impregnating liquid 16 is applied to the surface of the long fibers 12, and the fibers are wound onto a winding drum 18. The laminate 20 wound around the drum is removed from the drum 18 by cutting at an appropriate location, cut into a desired size, and laminated to an appropriate thickness. The stacked laminate 20 is degreased if necessary, then molded into a mold and hot pressed.

また、いわゆる化学蒸着法により、繊維のプリフォーム
の間隙にセラミックマトリックス相を生成させるCVD
法、あるいは金属アルコキシドのゲル状高分子を繊維に
含浸させた後熱分解して金属酸化物を得るゾル−ゲルな
ども利用できる。短繊維の場合は、セラミック粉末スラ
リー中へ繊維を分散させ、石膏型に流し込み、型通りの
雌型を取り出して焼成するスリップキャスト法が効果的
である。*維の複合量は容量%で30〜40%が適当で
ある。
Additionally, CVD (chemical vapor deposition) is used to generate a ceramic matrix phase in the gaps between fiber preforms.
Alternatively, a sol-gel method in which fibers are impregnated with a gel polymer of metal alkoxide and then thermally decomposed to obtain metal oxides can be used. In the case of short fibers, a slip casting method is effective, in which the fibers are dispersed in a ceramic powder slurry, poured into a plaster mold, and a female mold that matches the mold is taken out and fired. *The appropriate amount of composite fibers is 30 to 40% by volume.

セラミックマトリックス中に分散される微粒子は、セラ
ミックマトリックスと異種の粒子でも同種の粒子でも良
い0粒子分散によりマトリックスの強化は、S ; x
 N 4−T i Cの知見から予測されるように、2
0〜25容量%において最大の効果が得られる。
The fine particles dispersed in the ceramic matrix may be particles of a different type or the same type as the ceramic matrix.The reinforcement of the matrix is achieved by dispersing zero particles.
As expected from the N4-T i C findings, 2
The maximum effect is obtained between 0 and 25% by volume.

分散される粒子の粒径はクラック・ディフレクションの
考え方からすれば、マトリックスの粒界に均一に微細な
状態で存在することが有効である。
From the viewpoint of crack deflection, it is effective for the particle size of the particles to be dispersed to be uniformly present at the grain boundaries of the matrix in a fine state.

粒子分散の手法は、粉末混合法では均一分散が困難であ
り、微細な粒子の作成が困難であるため、有機金属高分
子の熱分解を利用する方法が最も適切である。すなわち
、珪素などセラミックを形作る金属元素を含む有機金属
高分子を不活性雰囲気中で熱分解すると、有機成分が離
脱し、炭化物あるいは窒化物が得られる。有機金属高分
子には、例えばポリシロキサン、ポリシラザン、ポリカ
ルボシラン、ポリシラスチレンなとがあり、ポリカルボ
シランは(1)式のように炭化珪素を生成し、ポリシラ
ザンからは(2)式のように窒化珪素が得られる。
The most appropriate particle dispersion method is a method that utilizes thermal decomposition of organometallic polymers, since it is difficult to achieve uniform dispersion and create fine particles using the powder mixing method. That is, when an organometallic polymer containing metal elements such as silicon that forms ceramics is thermally decomposed in an inert atmosphere, organic components are separated and carbides or nitrides are obtained. Examples of organometallic polymers include polysiloxane, polysilazane, polycarbosilane, and polysilastyrene. Polycarbosilane produces silicon carbide as shown in formula (1), and polysilazane produces silicon carbide as shown in formula (2). Silicon nitride is obtained in this way.

(SiH(CHs)・CHz)n  −+ SiC(1
)(S!RR’NHz)n  −+ 5izN4   
   <2)有機金属高分子はマトリックスとなるセラ
ミックス粒子表面にコーティングし、ついで熱化学反応
によりセラミックス化し微粒子を分散させる手法をとる
。そのため、有機金属高分子を溶剤(トルエン、キシレ
ン等)に溶解させ、その中にマトリックスとなるセラミ
ックス粒子を混合しマトリックス粒子表面に有機金属高
分子をコーティングする。
(SiH(CHs)・CHz)n −+ SiC(1
) (S!RR'NHz)n −+ 5izN4
<2) Organometallic polymers are coated on the surface of ceramic particles that serve as a matrix, and then the ceramic particles are formed by a thermochemical reaction and the fine particles are dispersed. Therefore, the organic metal polymer is dissolved in a solvent (toluene, xylene, etc.), and the ceramic particles serving as a matrix are mixed therein, and the surfaces of the matrix particles are coated with the organic metal polymer.

マトリックス中に均一に繊維を分散させるには、この有
機金属高分子を溶解した溶液中にマトリックス粒子を混
合した液を含浸液とし、その中に繊維を連続的に通過さ
せ繊維表面に含浸液を均一に付着させるフィラメント・
ワインディング法による。セラミックマトリックス中に
分散される繊維の量は、含浸液の粘度および繊維の通過
速度により調節することができるが、含有繊維は容量%
で30〜40%程度が最も好ましい。
In order to uniformly disperse the fibers in the matrix, the impregnating liquid is a mixture of matrix particles in a solution of the organometallic polymer, and the fibers are continuously passed through the impregnating liquid to coat the fiber surface with the impregnating liquid. Filament for uniform adhesion
By winding method. The amount of fibers dispersed in the ceramic matrix can be adjusted by the viscosity of the impregnating liquid and the rate of fiber passage, but the amount of fibers dispersed in volume %
The most preferable range is about 30 to 40%.

フィラメント・ワインディング法で巻き取られた素材は
、本焼結を行う前に、窒素ガスあるいはアルゴンガス、
あるいは窒素ガスとアンモニアガスの混合ガス気流中7
00〜800℃にて、有機金属高分子を不融化し、マト
リックスとなるセラミック粒子表面に微細粒子の前段階
となるガラス化されたセラミック層を生成させる。有機
金属高分子を不磁化した後、成形品はアルゴンガスある
いは窒素ガス中で、加圧(〜9kg/em”G)あるい
は無加圧気流下において焼結する。
The material wound using the filament winding method is heated with nitrogen gas or argon gas before being sintered.
Or in a mixed gas stream of nitrogen gas and ammonia gas 7
At 00 to 800°C, the organometallic polymer is made infusible to form a vitrified ceramic layer, which is a precursor to fine particles, on the surface of the ceramic particles that serve as the matrix. After demagnetizing the organometallic polymer, the molded article is sintered in argon gas or nitrogen gas under pressure (~9 kg/em''G) or under non-pressurized air flow.

[作用] 本発明の粒子分散強化した繊維強化セラミックス複合体
は、マトリックスセラミックスと同種または異種の微細
粒子が粒界に分散しているのでクラック・デフレクショ
ンが起こり、破壊靭性が向上する。すなわちマトリック
スと微粒子の分散相の靭性や熱膨張率など各種の性質の
違いや、両者の界面状態などが原因で、クラックが分散
相の回りをジグザグに折れ曲がって進む、これによりク
ラック進行に必要なエネルギーが消費されて破壊エネル
ギーが増加し破壊靭性が向上する。
[Function] In the particle-dispersion-strengthened fiber-reinforced ceramic composite of the present invention, fine particles of the same type or different type as the matrix ceramic are dispersed in the grain boundaries, so crack deflection occurs and fracture toughness is improved. In other words, cracks propagate in a zigzag manner around the dispersed phase due to differences in properties such as toughness and coefficient of thermal expansion between the matrix and the dispersed phase of the fine particles, as well as the state of the interface between the two. Energy is consumed, fracture energy increases, and fracture toughness improves.

また、本発明のセラミックス複合体は、繊維が分散され
て強化されているので、繊維強化により破壊靭性が向上
する。すなわち、分散相として繊維を混合した場合、ク
ラックが繊維のある場所を通過する際に、クラックによ
り隙間が生ずる分だけ、繊維がマトリックスから引き抜
かれる。繊維が引き抜かれる仕事分だけ、エネルギーが
消費されて破壊エネルギーが増加し破壊靭性が向上する
Further, since the ceramic composite of the present invention is reinforced by dispersing fibers, the fracture toughness is improved by fiber reinforcement. That is, when fibers are mixed as a dispersed phase, when the cracks pass through a location where the fibers are present, the fibers are pulled out from the matrix by the amount of gap created by the cracks. Energy is consumed by the amount of work done to pull out the fibers, increasing fracture energy and improving fracture toughness.

本発明の粒子分散強化された繊維強化セラミックス複合
体の最も特徴とするところは、前記の粒子分散による破
壊靭性の向上と、繊維強化による破壊靭性の向上が、同
時に効果的に起こり、破壊靭性が著しく増加することで
ある。
The most distinctive feature of the particle dispersion-strengthened fiber-reinforced ceramic composite of the present invention is that the above-mentioned improvement in fracture toughness due to particle dispersion and improvement in fracture toughness due to fiber reinforcement occur simultaneously and effectively, resulting in improved fracture toughness. This is a significant increase.

本発明の製造方法では、有機金属高分子を溶解した溶液
にマトリックスとなるセラミックス粒子を混合して含浸
液とし、この含浸液を繊維に含浸させる手法をとったの
で、有機金属高分子を不磁化した後、繊維の積層体を不
活性雰囲気中で焼結すると、有機金属高分子の熱分解に
より、有機成分が離脱し、微細な炭化物あるいは窒化物
がマトリックス粒界に析出し、粒子分散強化された繊維
強化セラミックス複合体を得ることができる。
In the manufacturing method of the present invention, ceramic particles serving as a matrix are mixed with a solution containing an organometallic polymer to form an impregnating liquid, and the fibers are impregnated with this impregnating liquid, so that the organometallic polymer is demagnetized. After that, when the fiber laminate is sintered in an inert atmosphere, organic components are separated due to thermal decomposition of the organometallic polymer, fine carbides or nitrides are precipitated at matrix grain boundaries, and particle dispersion is strengthened. A fiber-reinforced ceramic composite can be obtained.

[実施例] 本発明の好適な実施例を以下に説明し、本発明をさらに
具体的に明らかにするが、本発明が以下に述べる実施例
の記載によって可算限定解釈されるものではない。
[Examples] Preferred embodiments of the present invention will be described below to clarify the present invention more specifically, but the present invention should not be construed to be limited to the extent possible by the description of the embodiments described below.

(実施例1) 溶剤としてトルエン110g中に日本曹達(株)製のポ
リシラスチレン(商品名、PSS−400)42gを溶
解させた。この溶液を別に用意した内容積500ccの
ポリエチレン製ポットに入れ、窒化珪素粉末(宇部興産
(株)製 商品名;CC−0A)98を添加した0次い
でこれに12.5+*mφの高アルミナ質シリンダ型玉
石を300g入れ、ボット塁を閉じ、ポットを50 r
pmにて回転し、16時間混合して含浸液を調製した。
(Example 1) 42 g of polysilastyrene (trade name, PSS-400) manufactured by Nippon Soda Co., Ltd. was dissolved in 110 g of toluene as a solvent. This solution was placed in a separately prepared polyethylene pot with an internal volume of 500 cc, and silicon nitride powder (product name: CC-0A, manufactured by Ube Industries, Ltd.) 98 was added to it. Put 300g of cylinder-shaped cobblestones, close the bot base, and raise the pot to 50r.
pm and mixed for 16 hours to prepare an impregnation solution.

この含浸液を含浸層に流し込み、功−ボンm維((株)
ペトカ製HM−60,2に品、ピッチ系、あるいは東邦
レーヨン製IM40.6に品、パン系)をスプール台に
取り付け、3 am/秒の巻き取り速度にて含浸層の含
浸液の中を通し、カーボン繊維に含浸液を均一に含浸さ
せ、巻き取りドラムに含浸液を保持したカーボンmmを
巻き取った。
This impregnation liquid was poured into the impregnated layer, and the
Attach the HM-60.2 manufactured by Petka (product, pitch type) or the IM40.6 manufactured by Toho Rayon (product, bread type) to the spool stand, and roll the impregnated liquid into the impregnated layer at a winding speed of 3 am/sec. The carbon fibers were uniformly impregnated with the impregnating liquid, and the carbon mm holding the impregnating liquid was wound up on a winding drum.

なお、カーボン繊維は巻き取りドラムに巻き取る前に4
0〜50℃に加熱した熱風を供給し、トルエンをカーボ
ンm維より揮発させて、ポリシラスチレンに接着性を持
たせた状態にして巻き取った。また、巻き取りドラムに
は、接着性の有るカーボン繊維が巻き取られるため、カ
ーボン1M維の積層体を容易に取り外すことができるよ
うに、積層体と接する箇所には弗素処理等を施しておく
と良い。
In addition, before winding the carbon fiber onto the winding drum,
Hot air heated to 0 to 50° C. was supplied to volatilize toluene from the carbon m fibers, and the polysilastyrene was wound up in a state in which it had adhesive properties. In addition, since adhesive carbon fibers are wound onto the winding drum, the parts that come into contact with the laminate should be treated with fluorine, etc. so that the carbon 1M fiber laminate can be easily removed. Good.

巻き取りドラムより取り外されたカーボン繊維の積層体
は任意の形状に切断後、二軸加圧プレス、あるいは冷間
若しくは熱間等方圧プレス(C・■・PまたはH−I−
P)にて成形加圧して成形体とし、然るf&50℃に保
持されているオーブン中に入れ、24時間放置し、完全
にトルエンを揮発させた。
The carbon fiber laminate removed from the winding drum is cut into an arbitrary shape and then subjected to a biaxial pressure press, or a cold or hot isostatic press (C, ■, P or H-I-
The molded product was molded and pressurized at P), placed in an oven maintained at the appropriate temperature of f&50°C, and left for 24 hours to completely volatilize the toluene.

続いてこの成形体に含まれるポリシラスチレンの不磁化
処理を行った。不磁化処理は成形体を3゜5℃/時間の
温度勾配のもとN2ガス加圧下(〜5kg/cm”G)
にて、600℃まで処理し、完全にガラス化させた。
Subsequently, the polysilastyrene contained in this molded body was subjected to a demagnetization treatment. For the demagnetization treatment, the molded body was subjected to a temperature gradient of 3° to 5°C/hour under N2 gas pressure (~5 kg/cm"G).
The sample was heated to 600°C to completely vitrify it.

この成形体の焼結に当たっては、脱脂処理された成形体
の表面に窒化硼素の微粉を付着させ、マスキングを施し
た。この成形体をガス加圧下(窒素ガスの場合9kg/
em”G、アルゴンガスの場合2kg/c餉’G)20
0℃/時間の温度勾配にて加熱し1650℃の温度で1
時間保持の条件で焼結を行った。
In sintering this molded body, fine boron nitride powder was applied to the surface of the degreased molded body to perform masking. This molded body is heated under gas pressure (9 kg/in the case of nitrogen gas).
em"G, 2kg/c for argon gas) 20
Heating at a temperature gradient of 0°C/hour and heating at a temperature of 1650°C
Sintering was performed under conditions of time holding.

なお、比較のために従来例として有機金属高分子を使用
しない含浸液を調製し、前記と同じ方法でピッチ系とパ
ン系のカーボン繊維を含浸させた積層体を作成し、前記
と同様に切断し加圧成形して、成形体とし前記と同じ条
件で不融化した後焼結して焼結体を得た。
For comparison, as a conventional example, an impregnating liquid that does not use an organometallic polymer was prepared, and a laminate impregnated with pitch-based and bread-based carbon fibers was created in the same manner as above, and cut in the same manner as above. This was then pressure-molded to obtain a molded body, which was made infusible under the same conditions as above, and then sintered to obtain a sintered body.

得られた本発明例と従来例の焼結体について曲げ強度お
よび破壊靭性質KIOを測定し結果を第1表に示した。
The bending strength and fracture toughness KIO of the obtained sintered bodies of the present invention example and the conventional example were measured, and the results are shown in Table 1.

(以下余白) 第     1     表 第1表から明らかなように、本発明例は従来例に比較し
て、ピッチ系において曲げ強度および破壊靭性値共に約
40%以上の向上が見られ、またパン系において曲げ強
度および破壊靭性値が共に約40%以上の高い値が得ら
れ、本発明の効果が確認された。
(Leaving space below) Table 1 As is clear from Table 1, the examples of the present invention show an improvement of about 40% or more in both bending strength and fracture toughness in the pitch system compared to the conventional example, and also in the bread system. Both bending strength and fracture toughness values were as high as about 40% or more, confirming the effectiveness of the present invention.

(実施例2) 実施例1で用いたと同じカーボン繊維(ピッチ系および
パン系)に表面酸化を防止するため、繊維表面に化学的
蒸着(CvD)により炭化珪素を蒸着した。このカーボ
ン繊維を用い、含浸液組成、巻き取り条件、脱脂および
焼結条件は実施例1と全く同じにして焼結体を得た。
(Example 2) In order to prevent surface oxidation of the same carbon fibers (pitch type and bread type) used in Example 1, silicon carbide was deposited on the fiber surface by chemical vapor deposition (CvD). Using this carbon fiber, a sintered body was obtained using the same impregnating liquid composition, winding conditions, degreasing and sintering conditions as in Example 1.

また、比較のために同じカーボン繊維を用い、有機金属
高分子を溶解しなかった含浸液に浸漬して巻き取り、同
じ条件の脱脂および焼結を行って従来例の焼結体を得た
For comparison, the same carbon fiber was immersed in an impregnating liquid that did not dissolve the organometallic polymer, wound up, and degreased and sintered under the same conditions to obtain a conventional sintered body.

得られた本発明例と従来例の焼結体について曲げ強度お
よび破壊靭性値を測定して第2表に示した。
The bending strength and fracture toughness values of the obtained sintered bodies of the present invention example and the conventional example were measured and shown in Table 2.

第    2    表 第2表から知られるように、従来例はピッチ系において
曲げ強度が12.3kgf/am”、破壊靭性値が6.
5MN/m”、パン系において曲げ強度が11.1kg
f/−輪2、破壊靭性値が5.7MN/階lであったの
に対し、本発明例ではピッチ系において曲げ強度が17
.5kgr/+am2、破壊靭性値が8゜2 M N 
/ m’−パン系において曲げ強度が15.8kgr1
m輸2、破壊靭性値が8.2MN/輪7であって、曲げ
強度および破壊靭性値が共に著しく改善され、本発明の
効果が確認できた。
Table 2 As is known from Table 2, the conventional example has a bending strength of 12.3 kgf/am'' and a fracture toughness value of 6.
5MN/m”, bending strength of bread type is 11.1kg
f/- wheel 2, the fracture toughness value was 5.7 MN/floor 1, whereas in the example of the present invention, the bending strength was 17 MN/story in the pitch system.
.. 5kgr/+am2, fracture toughness value 8゜2 MN
/ m'-pan system bending strength is 15.8kgr1
The fracture toughness value was 8.2 MN/wheel 7, and the bending strength and fracture toughness values were both significantly improved, confirming the effect of the present invention.

〈実施例3) 溶剤としてトルエン87.4g中に、チッソ(株)製の
ポリシラザン(商品名;NCP−200、トルエン溶液
65%含有品)64.6gを溶解させた。
Example 3 64.6 g of polysilazane (trade name: NCP-200, product containing 65% toluene solution) manufactured by Chisso Corporation was dissolved in 87.4 g of toluene as a solvent.

この溶液を別に用意した内容積500ccのポリエチレ
ン製ポットに入れ、窒化珪素粉末(宇部興産(株)製、
商品名;CC−0A)98を添加した6次いでこれに1
2.5mmφの高アルミナ質シリンダ型玉石を300g
入れ、ポット蓋を閉じ、ポットを5Qrp−にて16時
間混合して含浸液を調製した。
Pour this solution into a separately prepared polyethylene pot with an internal volume of 500 cc, and add silicon nitride powder (manufactured by Ube Industries, Ltd.),
Product name: CC-0A) 98 was added to 6 and then 1
300g of 2.5mmφ high alumina cylinder type cobblestone
Then, the pot lid was closed and the pot was mixed at 5 Qrp- for 16 hours to prepare an impregnating solution.

この含浸液を含浸層に流し込み、カーボンm維((株)
ベトカ製HM−60,2に品、ピッチ系、あるいは東邦
レーヨン製IM40.6に品、パン系)をスプール台に
取り付け、3 cm/秒の巻き取り速度にて含浸層の含
浸液の中を通し、カーボン繊維に含浸液を均一に含浸さ
せ、巻き取りドラムに含浸液を保持したカーボン繊維を
巻き取った。
This impregnating liquid was poured into the impregnated layer, and carbon m-fiber (Co., Ltd.)
Attach the HM-60.2 manufactured by Betka (product, pitch type) or the IM40.6 manufactured by Toho Rayon (product, bread type) to the spool stand, and roll the impregnated liquid into the impregnated layer at a winding speed of 3 cm/sec. The carbon fibers were uniformly impregnated with the impregnating liquid, and the carbon fibers holding the impregnating liquid were wound up on a winding drum.

以下実施例1と同様の条件で積層、脱脂、焼結して本発
明例の焼結体を得た。また、比較のために従来例として
、ポリシラザンを溶解しない含浸液を調製し、同様にし
て従来例の焼結体を得た。
Thereafter, lamination, degreasing, and sintering were carried out under the same conditions as in Example 1 to obtain a sintered body of an example of the present invention. For comparison, as a conventional example, an impregnating liquid that does not dissolve polysilazane was prepared, and a sintered body of the conventional example was obtained in the same manner.

得られた本発明例と従来例の焼結体について曲げ強度お
よび破壊靭性値を測定して第3表に示した。
The bending strength and fracture toughness values of the obtained sintered bodies of the present invention example and the conventional example were measured and shown in Table 3.

第    3    表 第3表から知られるように、従来例はピッチ系において
曲げ強度が9.5kgf/am”、破壊靭性値が5.6
MN/+*”、パン系において曲げ強度が9゜0kgf
/am”、破壊靭性値が5.1MN/@”であったのに
対し、本発明例ではピッチ系において曲げ強度が13.
5kg4/am”、破壊靭性(1が8.0MN/−Y、
パン系において曲げ強度が12.8kg7m−1破壊靭
性値が7.3MN/@”であって、曲げ強度および破壊
靭性値において共に40%前後の高い値が得られ、本発
明の効果が確認できた。
Table 3 As is known from Table 3, the conventional example has a bending strength of 9.5 kgf/am'' and a fracture toughness value of 5.6 in the pitch system.
MN/+*”, bending strength of bread type is 9゜0kgf
/am'', and the fracture toughness value was 5.1 MN/@'', whereas in the example of the present invention, the bending strength was 13.
5kg4/am”, fracture toughness (1 is 8.0MN/-Y,
In the bread system, the bending strength was 12.8 kg and the fracture toughness value was 7.3 MN/@'', and high values of around 40% were obtained for both the bending strength and fracture toughness values, confirming the effect of the present invention. Ta.

(実施例4) 実施例1で用いたと同じカーボン繊維(ピッチ系および
パン系)に表面酸化を防止するため、繊維表面に化学的
蒸着(CV D )により炭化珪素を蒸着した。このカ
ーボン繊維を用い、実施例3と同じ含浸液組成、実施例
1と同じ巻き取り条件、脱脂および焼結条件にして焼結
体を得た。
(Example 4) In order to prevent surface oxidation of the same carbon fibers (pitch type and bread type) used in Example 1, silicon carbide was deposited on the fiber surface by chemical vapor deposition (CV D ). Using this carbon fiber, a sintered body was obtained under the same impregnation liquid composition as in Example 3 and the same winding conditions, degreasing and sintering conditions as in Example 1.

また、比較のために従来例として同じカーボン繊維を用
い、有機金属高分子を溶解しなかった含浸液に浸漬して
巻き取り、同じ条件の脱脂および焼結を行って焼結体を
得た。
For comparison, the same carbon fiber was used as a conventional example, immersed in an impregnating liquid that did not dissolve the organometallic polymer, wound up, and degreased and sintered under the same conditions to obtain a sintered body.

得られた本発明例と従来例の焼結体について曲げ強度お
よび破壊靭性値を測定して第4表に示した。
The bending strength and fracture toughness values of the obtained sintered bodies of the present invention example and the conventional example were measured and shown in Table 4.

(以下余白) 第 表 第4表から明らかなように、本発明例は従来例と比較し
てピッチ系パン系共に曲げ強度および破壊靭性値におい
て40%余りの優れた値が得られ、本発明の効果が確認
された。
(The following is a margin) As is clear from Table 4, the present invention example has superior values of bending strength and fracture toughness of about 40% for both pitch and bread systems compared to the conventional example, and the present invention The effect was confirmed.

(実施例5) 実施例1〜4においてはカーボン繊維を使用した複合材
についての試験結果を示したが、本実施例では強度、弾
性率、融点あるいは分解点がカーボン繊維より優秀なタ
ングステン繊維を使用した。
(Example 5) In Examples 1 to 4, test results were shown for composite materials using carbon fiber, but in this example, tungsten fiber was used, which has superior strength, elastic modulus, melting point, or decomposition point to carbon fiber. used.

タングステン繊維は1300℃以上に加熱すると粒成長
を起こし切断し易くなるので、ドリア(ThO□)を2
.5%ドーピングして、加熱により粒成長を起こさない
繊維を使用した。
When tungsten fibers are heated above 1300°C, grains grow and become easier to cut, so doria (ThO□) is
.. Fibers doped with 5% and which do not cause grain growth upon heating were used.

使用したタングステン繊維は日本タングステン(株)製
のもので繊維径50μ論であって、繊維を一本一本フィ
ラメント・ワインディング法で巻き取ると時間を要する
ため、50本を集束して含浸液の入った含浸層を通過さ
せて巻き取りドラムに巻き取った。
The tungsten fibers used were manufactured by Nippon Tungsten Co., Ltd. and had a fiber diameter of 50 μm. Since it would take time to wind the fibers one by one using the filament winding method, 50 fibers were collected and soaked in the impregnating liquid. It passed through the impregnated layer and was wound up on a winding drum.

含浸液には実施例1のポリシラスチレンに窒化珪素混合
した系および実施例3のポリシラザンに窒化珪素を混合
した系の211合を使用した0巻き取り条件、脱脂、焼
結条件は実施例1あるいは実施例3と同一にして焼結体
を得た。また、比較のために従来例として有機金属高分
子を溶解しなかった含浸液を使用し、タングステン繊維
に含浸させて、以下同様の条件で脱脂、焼結して従来例
の焼結体を調製した。
The impregnating liquid used was 211 of the polysilastyrene mixed with silicon nitride of Example 1 and the polysilazane mixed with silicon nitride of Example 3. The zero winding conditions, degreasing, and sintering conditions were as in Example 1. Alternatively, a sintered body was obtained in the same manner as in Example 3. In addition, for comparison, a sintered body of the conventional example was prepared by impregnating tungsten fiber with an impregnating liquid that did not dissolve the organometallic polymer, followed by degreasing and sintering under the same conditions. did.

得られた本発明例と従来例の焼結体について曲げ強度お
よび破壊靭性値を測定して第5表に示した。
The bending strength and fracture toughness values of the obtained sintered bodies of the present invention example and the conventional example were measured and shown in Table 5.

(以下余白) 第     3     表 第5表から明らかなように、本発明例は従来例と比較し
てポリシラスチレンの系において、曲げ強度および破壊
靭性値が60%余りの優れた値が得られ、ポリシラザン
の系において、曲げ強度および破壊靭性値が40%余り
の優れた値が得られて本発明の効果が確認された。
(The following is a blank space) Table 3 As is clear from Table 5, the examples of the present invention obtained superior values of bending strength and fracture toughness of over 60% in the polysilastyrene system compared to the conventional examples. In the polysilazane system, excellent bending strength and fracture toughness values of over 40% were obtained, confirming the effects of the present invention.

[発明の効果] 本発明の粒子分散強化した繊維強化セラミックス複合材
は以上説明したように、セラミックマトリックスと、セ
ラミックマトリックス中に分散された繊維と、セラミッ
クマトリックス中に分散された同種または異種のセラミ
ックス微粒子とからなることを特徴とするものであり、
マトリックス粒界に分散している微粒子によってクラッ
ク・デイフレクションが起こり破壊靭性が向上すると共
に、マトリックス中に分散されたIIaMが引き抜かれ
るプルアウトにより破壊エネルギーを増加するので、曲
げ強度と共に破壊靭性値を著しく改善することが出来た
[Effects of the Invention] As explained above, the fiber-reinforced ceramic composite material reinforced by particle dispersion of the present invention comprises a ceramic matrix, fibers dispersed in the ceramic matrix, and ceramics of the same or different types dispersed in the ceramic matrix. It is characterized by consisting of fine particles,
Cracks and deflections occur due to fine particles dispersed in the matrix grain boundaries, improving fracture toughness, and fracture energy increases due to pull-out of IIaM dispersed in the matrix, which increases the fracture toughness value as well as the bending strength. I was able to improve it significantly.

従来のセラミックスでは各種の優れた特性を有している
が、衝撃等急激な強度変化に弱く脆性材料とされその用
途に制限が有ったが、本発明のセラミックス複合材では
脆さの指標である破壊靭性値に+oが著しく改善され、
いずれも7MN/m”以上のものが得られるので、レシ
プロエンジンではシリンダライナ、ピストンリング等へ
の応用、ガスタービンエンジンではタービン動翼への応
用が充分可能となる。
Although conventional ceramics have various excellent properties, they are brittle materials that are susceptible to sudden changes in strength due to impact, and their applications are limited. +o is significantly improved for a certain fracture toughness value,
In both cases, 7 MN/m" or more can be obtained, so it is fully possible to apply it to cylinder liners, piston rings, etc. in reciprocating engines, and to turbine rotor blades in gas turbine engines.

本発明の製造方法では、有機金属高分子を溶解した溶液
にマトリックスとなるセラミックス粒子を混合して含浸
液とし、この含浸液を繊維に含浸させる手法をとったの
で、有機金属高分子の不融化の後、繊維の積層体を不活
性雰囲気中で焼結すると、有機金属高分子の熱分解によ
り、有機成分が離脱し、微細な炭化物あるいは窒化物が
マトリックス粒界に析出し、粒子分散強化された繊維強
化セラミックス複合体を得ることができる。また、カー
ボン繊維を使用した場合、有機金属高分子がコーティン
グされ、熱化学反応で炭化珪素、窒化珪素の薄膜コート
処理が行なわれるので、カーボンlIMの耐酸化性を向
上させるといった副次的な効果が期待できる。
In the manufacturing method of the present invention, ceramic particles serving as a matrix are mixed with a solution containing an organometallic polymer to form an impregnating liquid, and the fibers are impregnated with this impregnating liquid. After that, when the fiber laminate is sintered in an inert atmosphere, organic components are separated by thermal decomposition of the organometallic polymer, fine carbides or nitrides are precipitated at matrix grain boundaries, and particle dispersion is strengthened. A fiber-reinforced ceramic composite can be obtained. In addition, when carbon fiber is used, it is coated with an organic metal polymer, and a thin film coating process of silicon carbide and silicon nitride is performed through a thermochemical reaction, which has the secondary effect of improving the oxidation resistance of carbon IIM. can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフィラメント・ワインディング法を模式的に示
した図である。 10・・・スプール、12・・・長繊維、14・・・含
浸層、16・・・含浸液、18・・・巻き取りドラム、
20・・・積層体。
FIG. 1 is a diagram schematically showing the filament winding method. 10... Spool, 12... Long fiber, 14... Impregnated layer, 16... Impregnated liquid, 18... Winding drum,
20...Laminated body.

Claims (2)

【特許請求の範囲】[Claims] (1)セラミックマトリックスと、セラミックマトリッ
クス中に分散された繊維と、セラミックマトリックス中
に分散された同種または異種のセラミックス微粒子とか
らなることを特徴とする粒子分散強化した繊維強化セラ
ミックス複合材。
(1) A fiber-reinforced ceramic composite material reinforced by particle dispersion, characterized by comprising a ceramic matrix, fibers dispersed in the ceramic matrix, and fine ceramic particles of the same or different types dispersed in the ceramic matrix.
(2)有機金属高分子を溶解した溶液中にマトリックス
となるセラミックス粒子を分散させ含浸液を調製する工
程と、繊維を連続的に前記含浸液の中を通過させて繊維
に前記含浸液を均一に含浸させる工程と、前記繊維を積
層して積層体とする工程と、前記積層体中の有機金属高
分子を不融化する工程と、前記積層体をアルゴンガスま
たは窒素ガス中でガス加圧または常圧で焼結する工程と
からなることを特徴とする粒子分散強化した繊維強化セ
ラミックス複合材の製造方法。
(2) A step of preparing an impregnating liquid by dispersing ceramic particles serving as a matrix in a solution in which an organic metal polymer is dissolved, and a step of uniformly applying the impregnating liquid to the fibers by continuously passing the fibers through the impregnating liquid. a step of laminating the fibers to form a laminate; a step of making the organometallic polymer in the laminate infusible; and a step of pressurizing the laminate in argon gas or nitrogen gas or A method for producing a fiber-reinforced ceramic composite material reinforced by particle dispersion, characterized by comprising a step of sintering at normal pressure.
JP63175587A 1988-07-14 1988-07-14 Fiber-reinforced ceramic composite material reinforced with dispersed particles and its production Granted JPH0226877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63175587A JPH0226877A (en) 1988-07-14 1988-07-14 Fiber-reinforced ceramic composite material reinforced with dispersed particles and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63175587A JPH0226877A (en) 1988-07-14 1988-07-14 Fiber-reinforced ceramic composite material reinforced with dispersed particles and its production

Publications (2)

Publication Number Publication Date
JPH0226877A true JPH0226877A (en) 1990-01-29
JPH0582350B2 JPH0582350B2 (en) 1993-11-18

Family

ID=15998689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63175587A Granted JPH0226877A (en) 1988-07-14 1988-07-14 Fiber-reinforced ceramic composite material reinforced with dispersed particles and its production

Country Status (1)

Country Link
JP (1) JPH0226877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809741B1 (en) 1999-06-09 2004-10-26 International Business Machines Corporation Automatic color contrast adjuster

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247663A (en) * 1985-04-22 1986-11-04 工業技術院長 Manufacture of carbon continuous fiber reinforced sic composite body
JPS6487582A (en) * 1987-09-30 1989-03-31 Ishikawajima Harima Heavy Ind Production of fiber reinforced ceramics
JPH0218364A (en) * 1988-07-02 1990-01-22 Agency Of Ind Science & Technol Fiber reinforced mullite composite material subjected to particle dispersion strengthening and production thereof
JPH0582349A (en) * 1991-09-21 1993-04-02 Tdk Corp Spiral thin film coil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247663A (en) * 1985-04-22 1986-11-04 工業技術院長 Manufacture of carbon continuous fiber reinforced sic composite body
JPS6487582A (en) * 1987-09-30 1989-03-31 Ishikawajima Harima Heavy Ind Production of fiber reinforced ceramics
JPH0218364A (en) * 1988-07-02 1990-01-22 Agency Of Ind Science & Technol Fiber reinforced mullite composite material subjected to particle dispersion strengthening and production thereof
JPH0582349A (en) * 1991-09-21 1993-04-02 Tdk Corp Spiral thin film coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809741B1 (en) 1999-06-09 2004-10-26 International Business Machines Corporation Automatic color contrast adjuster

Also Published As

Publication number Publication date
JPH0582350B2 (en) 1993-11-18

Similar Documents

Publication Publication Date Title
US5294387A (en) Method of producing fiber-reinforced and particle-dispersion reinforced mullite composite material
US5643514A (en) Process for manufacturing a silicon carbide composition
Chawla et al. Ceramic matrix composites
JP2704332B2 (en) Carbon fiber reinforced silicon nitride nanocomposite and method for producing the same
US4915760A (en) Method of producing a coated fiber-containing composite
Chawla et al. Ceramic matrix composites
CN112374917A (en) High-temperature ceramic coating and preparation method thereof
JPH07223876A (en) Fiber-reinforced composite material, production thereof and member using the same
US6121169A (en) Porous interfacial coating for fiber reinforced ceramic matrix composites
EP0351113B1 (en) Fiber-reinforced and particle-dispersion reinforced mullite composite material and method of producing the same
JPH0226877A (en) Fiber-reinforced ceramic composite material reinforced with dispersed particles and its production
JPH0218364A (en) Fiber reinforced mullite composite material subjected to particle dispersion strengthening and production thereof
US5034356A (en) Ceramic matrix composite
Hay et al. Molybdenum‐Palladium Fiber‐Matrix Interlayers for Ceramic Composites
JPH0582349B2 (en)
US5695830A (en) Process for improving the oxidative stability of a composite material having a fibrous reinforcement and a glass, glass-ceramic or ceramic matrix
JP2683577B2 (en) Fiber-reinforced mullite composite with particle dispersion reinforcement
JP2570739B2 (en) Fiber reinforced silicon carbide ceramics and method for producing the same
JPH06172033A (en) Surface-coated carbon-fiber reinforced composite material and its production
JP2898314B2 (en) Fiber reinforced sialon composite material and its manufacturing method
JPH09255442A (en) Production of nonoxide-based ceramic fiber-reinforced ceramic composite material
JPH0274671A (en) Oxidation-resistant carbon fiber-reinforced carbonaceous material and production thereof
JPH0274669A (en) Carbon fiber-reinforced carbon material having oxidation resistance and production thereof
JPH03271170A (en) Fiber-reinforced ceramic composite material
JPH0274668A (en) Carbon fiber-reinforced carbon material having oxidation resistance and production thereof