JPH0226831A - Production of superconducting material - Google Patents

Production of superconducting material

Info

Publication number
JPH0226831A
JPH0226831A JP63176363A JP17636388A JPH0226831A JP H0226831 A JPH0226831 A JP H0226831A JP 63176363 A JP63176363 A JP 63176363A JP 17636388 A JP17636388 A JP 17636388A JP H0226831 A JPH0226831 A JP H0226831A
Authority
JP
Japan
Prior art keywords
superconductor
superconducting
powder
temperature
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63176363A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshida
克仁 吉田
Kazuo Tsuji
辻 一夫
Hitoshi Oyama
仁 尾山
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63176363A priority Critical patent/JPH0226831A/en
Publication of JPH0226831A publication Critical patent/JPH0226831A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a superconducting material of Bi-Sr-Ca-Cu-O, etc., type consisting only of a single phase exhibiting superconductivity at about 105K by sintering powder of oxide as raw material by heating under an extremely high pressure, and reheating the sintered product at below melting temp. CONSTITUTION:A superconducting material cansisting of a compound superconductor having a compsn. expressed by the formula is prepd. under conditions described hereunder. Namely, when the superconductor is a Bi-Sr-Ca-Cu-O type supercondutor, powder of Bi2O3, SrCO3, CaCO3 and Cu are mixed in a proportion so as to obtain a compsn. expressed by the formula. Said mixture is mixed in a ball mill, then calcined in O2-stream to obtain thus a Bi-Sr-Ca-Cu-O type compound oxide, which is pulverized again to obtain thus the raw material powder. Then, obtd. raw material powder is formed with a simple press and encapsulated in capsules. After sintering the capsules by heating at 600-1200 deg.C under 10b-100Kb, and reheated at 350 deg.C-blow m.p. Thus, an above-described superconductor is obtd. A Ti-Ba-Ca-Cu-O type compound oxide superconductor may be prepd. by a similar method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導材料の製造方法に関する。より詳細に
は、Bi −5r−Ca −Cu −0系およびTl 
−Ba−Ca −Cu−0系複合酸化物超電導体から構
成される超電導材料の、完全な超電導性を示す温度Tc
(R=O)を飛躍的に上昇させる新規な製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing superconducting materials. More specifically, Bi-5r-Ca-Cu-0 system and Tl
- Temperature Tc at which a superconducting material composed of a Ba-Ca-Cu-0 based composite oxide superconductor exhibits perfect superconductivity
This invention relates to a new manufacturing method that dramatically increases (R=O).

従来の技術 超電導現象は、物体が特定の条件下で完全な反磁性を示
し、その内部で有限な定常電流が流れているにも関わら
ず電位差が現れなくなる現象である。このような状態に
ある物質を超電導体と呼び、電力損失の全くない伝送媒
体としての各種の応用が提案されている。
Background of the Invention Superconductivity is a phenomenon in which an object exhibits complete diamagnetic properties under certain conditions, and no potential difference appears even though a finite steady current is flowing inside the object. Substances in this state are called superconductors, and various applications have been proposed for them as transmission media with no power loss.

例えば、超電導技術を送電に応用すれば、現在送電に伴
って生じている約7%の不可避な送電損失を大幅に減少
できる。また、電力貯蔵方法としても、超電導電力貯蔵
は今日知られている電力貯蔵方法として最も効率の高い
ものであると言われている。
For example, if superconducting technology is applied to power transmission, it will be possible to significantly reduce the approximately 7% unavoidable transmission loss that currently occurs with power transmission. Furthermore, superconducting power storage is said to be the most efficient power storage method known today.

また、高磁場発生用電磁石への応用は、最も早くから実
現され、また利用分野も極めて広い。発電技術の分野で
はMHD発電、電動機等と共に、開発に発電壷以上の電
力を消費するともいわれる核融合反応の実現を有利に促
進する技術として期待されている。また輸送機器の分野
では磁気浮上列車、電磁気促進船舶等の動力として、更
に、計測・医療の分野でもNMR,π中間子治療、高エ
ネルギ物理実験装置などへの利用が期待されている。
Furthermore, its application to electromagnets for generating high magnetic fields was realized at the earliest, and the field of use is extremely wide. In the field of power generation technology, along with MHD power generation and electric motors, it is expected to be a technology that advantageously promotes the realization of nuclear fusion reactions, which are said to consume more power than a power generator. Furthermore, in the field of transportation equipment, it is expected to be used as a power source for magnetic levitation trains, electromagnetically propelled ships, etc., and in the field of measurement and medicine, it is expected to be used in NMR, pi-meson therapy, high-energy physical experiment equipment, etc.

また、複数の超電導体を弱く接合すると、量子効果の巨
視的な具現であるジョセフソン効果が観測される。この
効果を利用したトンネル接合型ジョセフソン素子は、超
電導体のエネルギーギャップが小さいことから、極めて
高速且つ低電力消費のスイッチング素子として期待され
ている。更に、電磁波や磁場に対するジョセフソン効果
が鋭敏な量子減少として現れることから、この素子を磁
場、マイクロ波、放射線等の超高感度センサとして利用
することも提、案されている。
Furthermore, when multiple superconductors are weakly bonded, the Josephson effect, which is a macroscopic manifestation of a quantum effect, can be observed. A tunnel junction type Josephson device that utilizes this effect is expected to be an extremely high-speed and low-power switching device because the energy gap of the superconductor is small. Furthermore, since the Josephson effect on electromagnetic waves and magnetic fields appears as a sharp quantum decrease, it has been proposed and suggested that this element be used as an ultra-sensitive sensor for magnetic fields, microwaves, radiation, etc.

このように、あらゆる分野において、電力効率を向上す
るという社会的ニーズに答える技術として、超電導技術
は核融合の実用化と並ぶ重要な技術であると言われてい
る。
In this way, superconducting technology is said to be an important technology, along with the practical application of nuclear fusion, as a technology that responds to the social need to improve power efficiency in all fields.

ところで、従来の技術においては、超電導現象は超低温
下においてのみ観測されていた。即ち、従来開発された
超電導材料としては、A−15型の結晶構造を有する一
群の物質が比較的高いTc(超電導臨界温度)を示すこ
とが確認されているが、Tcが最も高いといわれるNb
3GeにおいてもTcは依然として23.2 Kに止ま
っていた。
By the way, in conventional technology, superconducting phenomena have been observed only at extremely low temperatures. In other words, among conventionally developed superconducting materials, it has been confirmed that a group of substances with an A-15 type crystal structure exhibit a relatively high Tc (superconducting critical temperature), but Nb, which is said to have the highest Tc,
Even in 3Ge, Tc remained at 23.2 K.

一方、様々な努力にもかかわらず、超電導材料の超電導
臨界温度Tcは長期間に亘ってNb3Geの23Kを越
えることができなかったが、1986年に、ベドノーツ
およびミューラー達によって高いTcをもつ複合酸化物
系の超電導材料が発見されるにいたって、高温超電導の
可能性が大きく開けてきた(Bednorz、Mull
er、”Z、Phys、B64 (1986) 189
”)。
On the other hand, despite various efforts, the superconducting critical temperature Tc of superconducting materials could not exceed 23K of Nb3Ge for a long period of time, but in 1986, Bednautz and Muller et al. With the discovery of physical superconducting materials, the possibility of high-temperature superconductivity has greatly opened up (Bednorz, Mull
er,”Z, Phys, B64 (1986) 189
”).

ベドノーツおよびミューラー達によって発見された酸化
物超電導体は(La、 Ba) 、Cu O4で、この
酸化物超電導体は、K2NiF、型酸化物と呼ばれるも
ので、従来から知られていたペロブスカイト型超電導酸
化物と結晶構造が似ているが、そのTcは従来の超電導
材料に比べて飛躍的に高い約30にという値である。
The oxide superconductor discovered by Bednotes and Muller et al. is (La, Ba), CuO4. Although its crystal structure is similar to that of superconducting materials, its Tc is significantly higher than that of conventional superconducting materials, at about 30.

さらに、1987年2月になって、チ二−達によって9
0にクラスの臨界温度を示すY lBa2Cus O1
−x系の複合酸化物が発見されたことが新聞報道され、
非低温超電導体実現の可能性が俄かに高まっている。
Furthermore, in February 1987, 9
Y lBa2Cus O1 showing the critical temperature of the class at 0
- It was reported in the newspaper that an x-based complex oxide had been discovered.
The possibility of realizing non-low temperature superconductors is rapidly increasing.

最近では、希土類を用いないため、原料が比較的安価な
りi −3r−Ca−Cu −0系およびTl −Ba
 −Ca−Cu−0系複合酸化物では、Tcが100K
を超える可能性のあることが報告されているが、従来の
作製方法では、100に以上で完全に電気抵抗が零にな
る物質は得られていない。
Recently, since rare earths are not used, the raw materials are relatively cheap, and i-3r-Ca-Cu-0 and Tl-Ba
-Ca-Cu-0 complex oxide has Tc of 100K
Although it has been reported that the electrical resistance may exceed 100, conventional manufacturing methods have not yielded a material whose electrical resistance becomes completely zero when the resistance exceeds 100.

発明が解決しようとする課題 従来、Bi −3r −Ca−Cu−0系およびTl 
−Ba −Ca−Cu−〇系超電導材料は、一般に大気
圧下で焼結・作製しているが、従来の方法で作製したB
i −3r−Ca −Cu−0系超電導材料は、約10
5にで超電導性を示す相と、約80にで超電導性を示す
相との両方の相が、混在していた。また、従来の方法で
作製したTl −Ba −Ca −Cu −0系超電導
材料は、約120にで超電導性示す相と、約90にで超
電導性を示す相との両方の相が、混在していた。
Problems to be Solved by the Invention Conventionally, Bi-3r-Ca-Cu-0 system and Tl
-Ba -Ca-Cu-〇-based superconducting materials are generally sintered and produced under atmospheric pressure, but B
The i-3r-Ca-Cu-0 based superconducting material is approximately 10
Both phases, a phase showing superconductivity at about 5 and a phase showing superconductivity at about 80, were mixed. In addition, the Tl-Ba-Ca-Cu-0-based superconducting material produced by the conventional method contains both a phase that exhibits superconductivity at about 120 and a phase that exhibits superconductivity at about 90. was.

そのため、従来の方法で作製した上記の超電導材料全体
の電気抵抗が零になる温度は、それぞれ70〜80にお
よび80〜90にで、YBa、Cu30を系と比べると
超電導性を示す温度Tcoは高いが、完全超電導を示す
温度Tc(R=O)は、はとんど変わらないか、むしろ
低かった。
Therefore, the temperature at which the electric resistance of the entire superconducting material produced by the conventional method becomes zero is 70 to 80 and 80 to 90, respectively, and when comparing YBa and Cu30 systems, the temperature Tco at which superconductivity is exhibited is Although high, the temperature Tc (R=O), which indicates perfect superconductivity, remained almost the same or was even lower.

従ワて、本発明は、約105にで超電導性を示す相のみ
の単相からなるBi −3r −Ca −Cu −0系
および約120にで超電導性示す相のみの単相からなる
Tl −Ba−Ca−Cu−〇系超電導体の製造方法を
提供することを目的としたものである。
Accordingly, the present invention provides a Bi-3r-Ca-Cu-0 system consisting of a single phase of only a phase exhibiting superconductivity at about 105 and a Tl-3r-Ca-Cu-0 system consisting of a single phase of only a phase exhibiting superconductivity at about 120. The object of the present invention is to provide a method for manufacturing a Ba-Ca-Cu-〇-based superconductor.

課題を解決するための手段 本発明に従うと、 式:α4(βI−X+ Ca、)+aCuw Opay
(ここで、αはDiまたはTlであり、βはαがBiの
ときはSrであり、αがTlのときはBaであり、 mは6≦m≦10を満たし、 nは4≦n≦8を満たし、 p=6+m+nであり、 Xは0.2<x<0.8を満たし、 yは一2≦y≦2を満たす数を表す) で表される組成の複合酸化物超電導体からなる超電導材
料を製造する方法において、原料酸化物粉末を10b以
上、100kb以下の超高圧力下で600 を以上、1
200℃以下の温度に加熱して焼結した後、350℃以
上融点温度未満の温度で再加熱することを特徴とする超
電導材料の製造方法が提供される。
Means for Solving the Problems According to the present invention, the formula: α4(βI−X+ Ca,)+aCuw Opay
(Here, α is Di or Tl, β is Sr when α is Bi, and Ba when α is Tl, m satisfies 6≦m≦10, and n is 4≦n≦ 8, p=6+m+n, X satisfies 0.2<x<0.8, and y represents a number satisfying -2≦y≦2). In the method of manufacturing a superconducting material, raw material oxide powder is heated to 600 to 1 under ultra-high pressure of 10 b or more and 100 kb or less.
A method for producing a superconducting material is provided, which comprises heating to a temperature of 200° C. or lower for sintering, and then reheating at a temperature of 350° C. or higher and lower than the melting point temperature.

作用 本発明の方法は、 式:α4(βI−)1. Ca、1)Jurl o、+
y(ここで、αはB1またはTlであり、βはαがBi
のときはSrであり、αがTlのときはDaであり、 mは6≦m≦10を満たし、 nは4≦n≦8を満たし、 p=6+m+nであり、 Xは0.2<x<0.8を満たし、 yは一2≦y≦2を満たす数を表す) で表される組成の複合酸化物超電導体からなる超電導材
料を、原料酸化物粉末を超高圧下で焼結して作製すると
ころにその主要な特徴がある。
Effect: The method of the present invention has the following formula: α4(βI-)1. Ca, 1) Jurl o, +
y (where α is B1 or Tl, β is α is Bi
When α is Tl, it is Sr, when α is Tl, it is Da, m satisfies 6≦m≦10, n satisfies 4≦n≦8, p=6+m+n, and X is 0.2<x <0.8, and y represents a number satisfying -2≦y≦2) A superconducting material consisting of a composite oxide superconductor with a composition expressed as follows is obtained by sintering raw material oxide powder under ultra-high pressure. Its main feature is that it is manufactured using

81−3r −Ca−Cu −0系超電導体においては
、約80にで超電導性を示す相と約105 Kで超電導
性を示す相の2種類の相が、また、Tl −Ba−Ca
−Cu −0系超電導体においては、約90にで超電導
性を示す相と約120にで超電導性を示す相の2種類の
相が混在していることが知られている。従来、通常の大
気雰囲気中あるいは大気圧程度の酸素雰囲気下での焼結
では、Bi −Sr −Ca −Cu −0系超電導体
で、105に、また、Tl −Ba −Ca−Cu −
0系超電導体においては120にで超電特性を示す相、
単相から成る超電導物質は作製されていない。
In the 81-3r -Ca-Cu -0-based superconductor, there are two phases: a phase that exhibits superconductivity at about 80 K and a phase that exhibits superconductivity at about 105 K.
It is known that in the -Cu -0-based superconductor, two types of phases coexist: a phase that exhibits superconductivity at about 90 and a phase that exhibits superconductivity at about 120. Conventionally, when sintering is performed in a normal atmospheric atmosphere or an oxygen atmosphere at about atmospheric pressure, Bi-Sr-Ca-Cu-0-based superconductors are used for 105, Tl-Ba-Ca-Cu-
In 0-series superconductors, a phase exhibiting superelectric properties at 120,
Superconducting materials consisting of a single phase have not been created.

本発明者等は種々研究を重ねた結果、B1−3r−Ca
−Cu−○系超電導体の105にで超電導性を示す相お
よびTl −Ba−Ca−Cu −0系超電導体の12
0にで超電特性を示す相の構造が高温・高圧下でより安
定であることを見出したものである。
As a result of various studies, the present inventors found that B1-3r-Ca
-Cu-○ superconductor phase showing superconductivity at 105 and Tl -Ba-Ca-Cu -0 system superconductor phase 12
It was discovered that the phase structure exhibiting superelectric properties at zero is more stable under high temperature and high pressure.

本発明の方法では、上記のそれぞれの超電導体の原料酸
化物粉末の焼結反応を進める過程において、上記の物質
を高温・高圧下という環境におくことにより、105に
あるいは120にで超電導性を示す相のみから成る物質
を作製し、この物質に再度加熱処理を施すことにより、
完全超電導を示す臨界温度TC(R=0)が100〜1
05にあるいは100〜111にと従来の超電導体に比
べ高い超電導臨界温度Tc(R=0)をもつ超電導体を
作製するものである。
In the method of the present invention, in the process of proceeding with the sintering reaction of the raw material oxide powder for each of the above-mentioned superconductors, the above-mentioned substances are placed in an environment of high temperature and high pressure, thereby achieving superconductivity at 105 or 120. By creating a material consisting only of the phases shown and subjecting this material to heat treatment again,
The critical temperature TC (R=0) indicating perfect superconductivity is 100 to 1
A superconductor having a higher superconducting critical temperature Tc (R=0) than conventional superconductors, such as 0.05 or 100 to 111, is produced.

本発明においては、上記の超電導体を合成するためには
、圧力が10b以上の超高圧下で600℃以上に加熱す
る必要がある。焼結時の圧力が10b未満では超高圧下
での焼結の効果が顕れず、Tc(R=0)が低下する。
In the present invention, in order to synthesize the above superconductor, it is necessary to heat it to 600° C. or higher under ultra-high pressure of 10 b or higher. If the pressure during sintering is less than 10b, the effect of sintering under ultra-high pressure will not be apparent, and Tc (R=0) will decrease.

圧力は高い方が好ましいが、ダイヤモンド合成に用いる
超高圧装置を用いても実用的な圧力範囲は100kbま
でである。従って焼結の圧力範囲を10b以上、100
kb以下とした。好ましい圧力範囲は10kb〜60k
bである。焼結温度は600℃〜1200℃、好ましく
は870℃〜950℃、さらに好ましくは900℃であ
る。600℃未満の焼結温度では、完全な単一相から成
る物質は得られずTc(R=O)は低下する。
Although a higher pressure is preferable, the practical pressure range is up to 100 kb even if an ultra-high pressure apparatus used for diamond synthesis is used. Therefore, the pressure range for sintering should be set to 10b or more, 100
KB or less. Preferred pressure range is 10kb to 60k
It is b. The sintering temperature is 600°C to 1200°C, preferably 870°C to 950°C, more preferably 900°C. At sintering temperatures below 600° C., a completely single-phase material cannot be obtained and Tc (R=O) decreases.

超高圧で焼結した状態の物質は結晶中に歪みおよび欠陥
が存在するため、このままでは、超電導特性を示さない
。この物質を350℃以上、且つ融点温度未満の温度で
再加熱することにより、結晶中の歪みおよび欠陥はなく
なり超電導性を示す物質が得られる。再加熱温度が35
0℃未満では結晶中の歪みおよび欠陥が十分取りきれず
、融点以上の温度で再加熱を行うと、80にで超電導特
性を示す相が析出し、完全な単一相から成る物質は得ら
れずTc(R=O)は低下する。
Materials sintered under ultrahigh pressure have distortions and defects in their crystals, so they do not exhibit superconducting properties as they are. By reheating this material at a temperature of 350° C. or higher and lower than its melting point, a material that exhibits superconductivity can be obtained without distortions and defects in the crystal. Reheating temperature is 35
If the temperature is below 0°C, distortions and defects in the crystal cannot be removed sufficiently, and if reheated at a temperature above the melting point, a phase exhibiting superconducting properties will precipitate at 80°C, making it impossible to obtain a completely single-phase material. First, Tc (R=O) decreases.

実施例 以下に本発明を実施例により具体的に説明するが、これ
らの実施例は本発明の単なる例示であって、本発明の技
術的範囲を何等制限するものではない。
EXAMPLES The present invention will be specifically explained below using examples, but these examples are merely illustrative of the present invention and do not limit the technical scope of the present invention in any way.

本発明の方法で超電導材料を製造する場合、原料酸化物
粉末を10b以上100Kt)以下の超高圧力下で焼結
するが、本実施例では、100b程度の低圧力範囲での
焼結には、一般的なホットプレスを用い、これを超える
超高圧力下での焼結には、第1図に示すベルト型超高圧
装置を用いた。
When producing a superconducting material by the method of the present invention, the raw material oxide powder is sintered under an ultra-high pressure of 10 b to 100 kt), but in this example, sintering in a low pressure range of about 100 b A belt-type ultra-high pressure device shown in FIG. 1 was used for sintering under an ultra-high pressure exceeding that of a general hot press.

第1図は、本発明の方法で超電導材料を製造する際に、
複合酸化物焼結体を製造するために用いるベルト型超高
圧装置の概略模式図である。この超高圧セルはダイヤモ
ンドを合成する際に通常使用されるセルであり、セラミ
ックス製のカプセル9内に納めた原料酸化物粉末を超硬
ダイ2中で超硬ピストン1で圧縮しながら、カーボンヒ
ーター7で加熱するものである。カーボンヒーター7へ
は、Mo板5を介して通電リング4から電力を供給する
。また、超硬ピストン1−超硬ダイ2間の圧力は、パイ
ロガスケット3により封止されており、NaC16およ
びZrO□8によりカーボンヒーター7の熱は断熱され
る。さらに、NaC16は、圧力媒体としても機能して
いる。
FIG. 1 shows that when producing superconducting materials by the method of the present invention,
FIG. 1 is a schematic diagram of a belt-type ultra-high pressure device used to produce a composite oxide sintered body. This ultra-high-pressure cell is a cell normally used when synthesizing diamond, and the raw material oxide powder contained in a ceramic capsule 9 is compressed with a carbide piston 1 in a carbide die 2 while a carbon heater It is heated at 7. Electric power is supplied to the carbon heater 7 from the energizing ring 4 via the Mo plate 5. Further, the pressure between the carbide piston 1 and the carbide die 2 is sealed by a pyro gasket 3, and the heat of the carbon heater 7 is insulated by NaC 16 and ZrO□8. Furthermore, NaC16 also functions as a pressure medium.

第2図は第1図の試料部分を拡大した図である。FIG. 2 is an enlarged view of the sample portion of FIG. 1.

カプセル9は試料と反応しないセラミックスで形成され
、カーボンヒーター7で周囲を囲まれている。原料酸化
物粉末10は、本実施例では後述のように複合酸化物粉
末を成形したものとした。
The capsule 9 is made of ceramic that does not react with the sample, and is surrounded by a carbon heater 7. In this example, the raw material oxide powder 10 was formed by molding a composite oxide powder as described later.

実施例1 純度3Nの81203 、SrCO3、CaC03およ
びCuO粉末をそれぞれ117g、74g、50gおよ
び80g配合し、ボールミルで混合した後、酸素気流中
で880℃、10時間焼成を行ない、B1−3r−Ca
−Cu−0複合酸化物を作製した。この複合酸化物を乳
鉢で細(砕いて原料粉末とした。次に、この粉末を10
gとり、簡易プレスで成型し、カプセル9に収納した。
Example 1 B1-3r-Ca
-Cu-0 composite oxide was produced. This composite oxide was finely crushed in a mortar to obtain a raw material powder. Next, this powder was
g, molded with a simple press, and stored in a capsule 9.

カプセル9を超高圧装置を用いて10kbに加圧し、続
いて900℃で30分間加熱した。得られた焼結体は黒
色をなし、緻密構造のものであった。この焼結体を大気
圧下で820℃、12時間再加熱した。組成分析の結果
、この焼結体はBi25r2Ca2Cu30)lに相当
する複合酸化物超電導体であることが確認された。
Capsule 9 was pressurized to 10 kb using an ultra-high pressure device and subsequently heated at 900° C. for 30 minutes. The obtained sintered body was black in color and had a dense structure. This sintered body was reheated at 820° C. for 12 hours under atmospheric pressure. As a result of compositional analysis, it was confirmed that this sintered body was a composite oxide superconductor corresponding to Bi25r2Ca2Cu30)l.

このようにして得られた複合酸化物超電導体を切断し、
3 mm X l mm X15mmの試料を作成し、
通常の4端子法により、液体N2中で抵抗−温度特性を
測定した。測定電流は20mAである。
The composite oxide superconductor obtained in this way is cut,
Create a sample of 3 mm x 1 mm x 15 mm,
The resistance-temperature characteristics were measured in liquid N2 using the usual four-terminal method. The measurement current is 20 mA.

その結果110にで抵抗の急激な低下が見られ、105
にで完全な超電導特性が観察された。第3図にこの物質
の抵抗−温度特性を示す。
As a result, a sudden decrease in resistance was observed at 110, and at 105
Full superconducting properties were observed in the Figure 3 shows the resistance-temperature characteristics of this material.

次に上記の原料粉末を用いて、焼結圧力・温度および再
加熱温度を変えて作製した複合酸化物焼結体の超電導臨
界温度Tco、抵抗が完全に零となる温度Tc(R=O
)を測定した。第1表に作製条件と、それぞれのTco
、Tc(R=0)を示す。
Next, using the above raw material powder, the superconducting critical temperature Tco of a composite oxide sintered body produced by changing the sintering pressure/temperature and reheating temperature, and the temperature Tc at which the resistance becomes completely zero (R=O
) was measured. Table 1 shows the manufacturing conditions and each Tco
, Tc (R=0).

第1表 実施例2 純度3 N (DBa CO3およびCuO粉末をそれ
ぞれ20gおよび24g配合し、ボールミルで混合した
後、酸素気流中で900℃、8時間焼成を行ない、Ba
 −Cu−0複合酸化物を作製した。この複合酸化物に
Tl2O3粉末23g、CaO粉末17gを加え、酸!
気流中で910℃、10時間の焼成を行い、Tl −C
a−Ba−Cu−0複合酸化物を作製した。この複合酸
化物を乳鉢で細く砕いて原料粉末とした。次に、この粉
末を10gとり、簡易プレスで成型し、カプセル9に収
納した。
Table 1 Example 2 Purity 3 N (DBa 20 g and 24 g of CuO powder were blended, mixed in a ball mill, and fired at 900° C. for 8 hours in an oxygen stream to obtain Ba
-Cu-0 composite oxide was produced. Add 23g of Tl2O3 powder and 17g of CaO powder to this composite oxide, and add acid!
Calcination was performed at 910°C for 10 hours in an air stream to obtain Tl-C
An a-Ba-Cu-0 composite oxide was produced. This composite oxide was finely crushed in a mortar to obtain a raw material powder. Next, 10 g of this powder was taken, molded using a simple press, and housed in a capsule 9.

カプセル9を超高圧装置を用いてIQkbに加圧し、続
いて950℃で30分間加熱した。得られた焼結体は黒
色をなし、緻密構造のものであった。この焼結体を大気
圧下で920℃、10時間再加熱した。組成分析の結果
、この焼結体はT1□Da、Ca2Cu、 OXに相当
する複合酸化物超電導体であることが確認された。
Capsule 9 was pressurized to IQkb using an ultra-high pressure device and subsequently heated at 950° C. for 30 minutes. The obtained sintered body was black in color and had a dense structure. This sintered body was reheated at 920° C. for 10 hours under atmospheric pressure. As a result of compositional analysis, it was confirmed that this sintered body was a composite oxide superconductor corresponding to T1□Da, Ca2Cu, and OX.

このようにして得られた複合酸化物超電導体を切断し、
3mmX lmmX15mmの試料を作成し、通常の4
@子法により、液体N2中で抵抗−温度特性を測定した
。測定電流は20mAである。
The composite oxide superconductor obtained in this way is cut,
Create a sample of 3 mm x 1 mm x 15 mm, and
The resistance-temperature characteristics were measured in liquid N2 by the @son method. The measurement current is 20 mA.

この結果120にで抵抗の急激な低下が見られ、110
にで完全な超電導特性が観察された。第4図にこの物質
の抵抗−温度特性を示す。
As a result, a rapid decrease in resistance was observed at 120, and at 110
Full superconducting properties were observed in the Figure 4 shows the resistance-temperature characteristics of this material.

この結果、本発明の方法が、高いTcoおよびTc(R
=O)を有する超電導材料を製造するのに有効であるこ
とが確認された。
As a result, the method of the present invention provides high Tco and Tc(R
=O) was confirmed to be effective for producing superconducting materials.

発明の詳細 な説明した様に、本発明方法に従うと、高い完全超電導
臨界温度を示す 式:C4(βI−1+1 CaX)+aCuB Opa
y(ここで、αはBiまたはTlであり、βはαがBi
のときはSrであり、αがTlのときはBaであり、 mは6≦m≦10を満たし、 nは4≦n≦8を満たし、 p=5+m十nであり、 Xは0.2<x<0.8を満たし、 yは一2≦y≦2を満たす数を表す) で表される組成の複合酸化物超電導体から構成される超
電導材料の製造可能となる。
As described in detail, when the method of the present invention is followed, the formula showing a high perfect superconducting critical temperature: C4(βI-1+1 CaX)+aCuB Opa
y (where α is Bi or Tl, β is α is Bi
When , it is Sr, when α is Tl, it is Ba, m satisfies 6≦m≦10, n satisfies 4≦n≦8, p=5+m×n, and X is 0.2. <x<0.8, and y represents a number satisfying -2≦y≦2) It becomes possible to manufacture a superconducting material composed of a composite oxide superconductor having a composition expressed by the following.

この様に高く安定した超電導臨界温度が得られるため、
本発明の方法により得られる超電導材料は、ジョセフソ
ン素子、5QUID (磁束計)、超電導マグネット、
赤外センサ素子、モーター等への広範な応用分野に好適
に適用できる。
Because such a high and stable superconducting critical temperature can be obtained,
The superconducting material obtained by the method of the present invention includes a Josephson element, a 5QUID (magnetometer), a superconducting magnet,
It can be suitably applied to a wide range of application fields such as infrared sensor elements and motors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を実施する際に使用する超高圧
装置およびセル構成の一例の概略模式図であり、 第2図は、第1図の試料付近の部分を拡大した図であり
、 第3図および第4図は、本発明の方法によって、作製し
た超電導材料の抵抗−温度特性を示す図であ・る。 〔主な参照番号〕 1・・・超硬ピストン、  2・・・超硬ダイ、3・・
・パイロガスケット、 4・・・通電リング、   5・・・Mo板、5−−−
NaC1゜ 7・・・カーボンヒーター 8・・・2rO2 9・・・セラミックス力プセノペ 10・・・複合酸化物粉末成形体
FIG. 1 is a schematic diagram of an example of an ultra-high pressure device and cell configuration used in carrying out the method of the present invention, and FIG. 2 is an enlarged view of the portion near the sample in FIG. 1. , FIG. 3 and FIG. 4 are diagrams showing the resistance-temperature characteristics of the superconducting material produced by the method of the present invention. [Main reference numbers] 1... Carbide piston, 2... Carbide die, 3...
・Pyro gasket, 4...Electricity ring, 5...Mo plate, 5---
NaC1゜7...Carbon heater 8...2rO2 9...Ceramic force pressenope 10...Composite oxide powder compact

Claims (1)

【特許請求の範囲】 式:α_4(β_1_−_x,Ca_x)_mCu_n
O_p_+_y(ここで、αはBiまたはTlであり、 βはαがBiのときはSrであり、αがTlのときはB
aであり、 mは6≦m≦10を満たし、 nは4≦n≦8を満たし、 p=6+m+nであり、 xは0.2<x<0.8を満たし、 yは−2≦y≦2を満たす数を表す) で表される組成の複合酸化物超電導体からなる超電導材
料を製造する方法において、原料酸化物粉末を10b以
上、100kb以下の超高圧力下で600℃以上、12
00℃以下の温度に加熱して焼結した後、350℃以上
融点温度未満の温度で再加熱することを特徴とする超電
導材料の製造方法。
[Claims] Formula: α_4(β_1_−_x, Ca_x)_mCu_n
O_p_+_y (where α is Bi or Tl, β is Sr when α is Bi, and B when α is Tl)
a, m satisfies 6≦m≦10, n satisfies 4≦n≦8, p=6+m+n, x satisfies 0.2<x<0.8, y satisfies -2≦y In a method for manufacturing a superconducting material made of a composite oxide superconductor having a composition represented by ≦2, raw material oxide powder is heated at 600° C. or higher under an ultra-high pressure of 10 b or more and 100 kb or less, 12
A method for producing a superconducting material, the method comprising heating to a temperature of 00°C or lower to sinter, and then reheating at a temperature of 350°C or higher and lower than the melting point temperature.
JP63176363A 1988-07-15 1988-07-15 Production of superconducting material Pending JPH0226831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63176363A JPH0226831A (en) 1988-07-15 1988-07-15 Production of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63176363A JPH0226831A (en) 1988-07-15 1988-07-15 Production of superconducting material

Publications (1)

Publication Number Publication Date
JPH0226831A true JPH0226831A (en) 1990-01-29

Family

ID=16012305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63176363A Pending JPH0226831A (en) 1988-07-15 1988-07-15 Production of superconducting material

Country Status (1)

Country Link
JP (1) JPH0226831A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449222A1 (en) * 1990-03-26 1991-10-02 Sumitomo Electric Industries, Ltd. Thallium oxide superconductor and method of preparing the same
JPH04299878A (en) * 1991-03-28 1992-10-23 Sumitomo Electric Ind Ltd Method for laminating thin films of different material on oxide superconducting thin film
US7284481B2 (en) 2001-01-16 2007-10-23 Furetsu Kasuya Device and method for tensioning a screen on a screen printing frame

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192758A (en) * 1988-01-26 1989-08-02 Semiconductor Energy Lab Co Ltd Superconducting ceramic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192758A (en) * 1988-01-26 1989-08-02 Semiconductor Energy Lab Co Ltd Superconducting ceramic

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449222A1 (en) * 1990-03-26 1991-10-02 Sumitomo Electric Industries, Ltd. Thallium oxide superconductor and method of preparing the same
US5744427A (en) * 1990-03-26 1998-04-28 Sumitomo Electric Industries, Ltd. Thallium oxide superconductor and method of preparing the same
JPH04299878A (en) * 1991-03-28 1992-10-23 Sumitomo Electric Ind Ltd Method for laminating thin films of different material on oxide superconducting thin film
US7284481B2 (en) 2001-01-16 2007-10-23 Furetsu Kasuya Device and method for tensioning a screen on a screen printing frame
US7497159B2 (en) 2001-01-16 2009-03-03 Furetsu Kasuya Device and method for tensioning a screen on a screen printing frame

Similar Documents

Publication Publication Date Title
JPH0226831A (en) Production of superconducting material
KR0125876B1 (en) Method for preparing superconducting thin film
JPH0226832A (en) Production of superconducting material
JPH0226827A (en) Production of superconducting material
US5206214A (en) Method of preparing thin film of superconductor
JPS63277547A (en) Production of high-temperature superconductive porcelain
JPS63282156A (en) Production of superconducting member
JPH07187670A (en) Oxide superconductor and its production
KR0159487B1 (en) Oxide superconductor and method of producing the same
JPH013012A (en) Superconducting materials and their manufacturing methods
JP2597578B2 (en) Superconductor manufacturing method
JPS63260817A (en) Superconductor
JPH02107518A (en) Oxide superconducting material
Emanuelson An introduction to the new oxide superconductors
JPH013014A (en) Superconducting materials and their manufacturing methods
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
JPS63265853A (en) Production of superconductive material
JPH01242416A (en) Production of oxide-based superconducting material
JPH01176609A (en) Manufacture of oxide superconductive wire material
JPH0465319A (en) Production of oxide superconducting material
JPH01282145A (en) Production of oxide superconducting material
Shao et al. Growth of the high‐T c phase, flux pinning, and critical current of Bi‐Sr‐Ca‐Cu‐O superconductors
JPH01212221A (en) Y-ba-cu-o oxide
JPH02124704A (en) Production of oxide superconductor
JPH01212222A (en) Oxide superconducting material