JPH0226829A - Production of synthetic rutile - Google Patents

Production of synthetic rutile

Info

Publication number
JPH0226829A
JPH0226829A JP17773188A JP17773188A JPH0226829A JP H0226829 A JPH0226829 A JP H0226829A JP 17773188 A JP17773188 A JP 17773188A JP 17773188 A JP17773188 A JP 17773188A JP H0226829 A JPH0226829 A JP H0226829A
Authority
JP
Japan
Prior art keywords
chlorine
produced
synthetic rutile
ticl4
titanium tetrachloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17773188A
Other languages
Japanese (ja)
Inventor
Tadashi Ogasawara
忠司 小笠原
Kenji Fujita
健治 藤田
Yoshitake Natsume
義丈 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Co Ltd
Original Assignee
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Co Ltd filed Critical Osaka Titanium Co Ltd
Priority to JP17773188A priority Critical patent/JPH0226829A/en
Publication of JPH0226829A publication Critical patent/JPH0226829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To economically obtain synthetic rutile with eliminating a pre-treatment furnace and other equipment by treating the gas produced from a selective chlorination furnace in the production of synthetic rutile by introducing to a condensing system in the producing process of TiCl4. CONSTITUTION:The low grade ore contg. Ti such as ilmenite is charged to the selective chlorination furnace, and then, mainly iron component, etc., are chlorinated and removed by volatilizing to produce synthetic rutile. The gas produced from the furnace is sent not to an exclusively treating system but to the condensing system in the producing equipment of TiCl4, and thereafter treated in the producing process of TiCl4. That is, the produced gas sent to the condensing system is separated in earnest into CO2, TiCl4 and produced chlorinated substance in this process. The produced chlorinated substance is introduced to a chlorine-recovering system together with the chlorinated substance produced in the producing equipment of TiCl4, if condensed before the condensing system, together with the condensed chlorinated substance. Then, the recovered chlorine is introduced to a chlorine-purifying system, preceding process in the producing equipment of TiCl4, to obtain high grade chlorine, and the waste from the chlorine-recovering system is treated with a waste water disposal plant in the producing equipment above-mentioned in the same way.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明はイルメナイト等低品位チタン含存鉱石の鉄成分
等を選択塩素化し、揮発除去することによって合成ルチ
ルを製造する工程において、選択塩素化炉からの生成ガ
ス処理を合理化することによって合成ルチル製造設備を
簡素化し、操業コストを低廉ならしめる合成ルチルの製
造方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is a method of selective chlorination in the process of producing synthetic rutile by selectively chlorinating the iron components of low-grade titanium-containing ores such as ilmenite and removing them by volatilization. The present invention relates to a method for producing synthetic rutile that simplifies synthetic rutile production equipment and lowers operating costs by streamlining the treatment of gas generated from a furnace.

上記低品位チタン含有鉱石は、74分を除けば鉄成分が
主体となるが、それ以外にもMn、Al、Mg等も含ん
でいる。本明細書では74分を除く成分の全てを鉄成分
等と表現する。
The above-mentioned low-grade titanium-containing ore is mainly composed of iron, except for 74%, but also contains Mn, Al, Mg, etc. In this specification, all components except 74 minutes are expressed as iron components.

〔従来の技術〕[Conventional technology]

従来の最も一般的な合成ルチルの製造工程を第2図およ
び第3図にフローチャートで掲げる。
The most common conventional synthetic rutile manufacturing process is shown in flowcharts in FIGS. 2 and 3.

イルメナイト等のチタン含有量60%以下の鉱石は予備
処理後、コークスと混合し流動床式塩化炉に挿入し、約
1000°C付近に加熱することにより、鉱石中の鉄成
分等を選択的に塩素化する。
After preliminary treatment, ores with a titanium content of 60% or less, such as ilmenite, are mixed with coke, inserted into a fluidized bed chlorination furnace, and heated to around 1000°C to selectively remove iron components from the ore. Chlorinate.

鉄成分等を除去した炉内原料は選択塩素化炉から抜かれ
、コークスを篩別して取除き、未反応の鉱石を磁選等で
除去し、反応部分を焼成して品位90%以上の合成ルチ
ルが得られる。
The raw material in the furnace from which iron components have been removed is extracted from the selective chlorination furnace, the coke is removed by sieving, the unreacted ore is removed by magnetic separation, etc., and the reacted part is calcined to obtain synthetic rutile with a grade of 90% or higher. It will be done.

一方、塩素化炉の生成ガスはフローチャートに示す工程
で塩素が回収される。炭酸ガスは塩素骨を中和して排気
される。第2図は生成ガスから気体状態で塩素を回収す
る場合のフローであり、第2図は生成塩化物を固体で回
収し、それから塩素を回収する場合のフローである。
On the other hand, chlorine is recovered from the gas produced in the chlorination furnace in the steps shown in the flowchart. Carbon dioxide gas neutralizes chlorine bones and is exhausted. FIG. 2 is a flowchart for recovering chlorine in a gaseous state from produced gas, and FIG. 2 is a flowchart for recovering produced chloride in solid form and then recovering chlorine.

[発明が解決しようとする課題] 上記従来の合成ルチル製造方法は、フローチャートで明
らかなように、一つの独立した工程からなりたっており
、この方法では鉄成分等だけを選択的に塩素化する必要
があり、T i O□分を塩素化してしまうと、それが
そのままロスとなる。そこで鉄成分等の選択塩素化性を
高めるための予備処理工程が必要とされてきた。例えば
特開昭62−191425公報にはチタン含有鉱石を炭
化水素ガスの還元雰囲気中で加熱する予備処理が、また
特開昭49−123918公報には含酸素雰囲気中で鉱
石を焼結温度以下で加熱して活性化する予備処理工程が
開示されている。
[Problems to be Solved by the Invention] As is clear from the flowchart, the above-mentioned conventional method for producing synthetic rutile consists of one independent step, and in this method, it is necessary to selectively chlorinate only the iron component, etc. If T i O□ is chlorinated, it becomes a loss. Therefore, a pretreatment process has been required to enhance the selective chlorination of iron components and the like. For example, JP-A No. 62-191425 discloses a preliminary treatment in which titanium-containing ore is heated in a reducing atmosphere of hydrocarbon gas, and JP-A No. 49-123918 discloses a pretreatment process in which ore is heated below the sintering temperature in an oxygen-containing atmosphere. A heat activation pretreatment step is disclosed.

また、選択塩素化炉で塩素化を行う場合、1゜00°C
を越えて高温になるとTie、分も塩素化され、950
°Cより下がると反応速度が遅くなり収率が悪くなるの
で厳密な操作が必要である。
In addition, when chlorinating in a selective chlorination furnace, the temperature is 1°00°C.
When the temperature exceeds Tie, the temperature also becomes chlorinated, 950
If the temperature drops below .degree. C., the reaction rate slows down and the yield deteriorates, so strict operations are required.

さらに、選択塩素化炉から出る生成ガスの塩素回収工程
では、直接酸素を導入し酸化焙焼を起させ塩素を回収す
る方法では、液化蒸溜、炭酸ガス分離設備が必要であり
、かなり設備費用が嵩む。
Furthermore, in the process of recovering chlorine from the gas produced from the selective chlorination furnace, the method of directly introducing oxygen and causing oxidative roasting to recover chlorine requires liquefaction distillation and carbon dioxide gas separation equipment, which requires considerable equipment costs. Bulk.

また本質的に選択塩素化法では、炭酸ガス中の塩素骨除
去、排出塩化物の中和処理等塩素分を中和する設備が必
要である。これ等の設備をルチルの生産工程のために建
設するとすれば、合成ルチルの製造は多大な生産量を維
持する以外に経済性が伴わないと言わなければならない
Additionally, the selective chlorination method essentially requires equipment to neutralize the chlorine content, such as removing chlorine bones from carbon dioxide gas and neutralizing discharged chloride. If such facilities were to be constructed for the rutile production process, it must be said that the production of synthetic rutile would not be economically viable other than maintaining a large production volume.

上記の問題に鑑み、本発明の目的は選択塩素化法におい
て生産設備を簡素化し、合成ルチルを比較的少量でも採
算的に生産でき、しがち操業の容易な合成ルチルの製造
方法を提供するにある。
In view of the above problems, an object of the present invention is to simplify the production equipment in the selective chlorination method, to provide a method for producing synthetic rutile that can be produced economically even in a relatively small amount, and that is easy to operate. be.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明者等は合成ルチルの製
造工程において、選択塩素化炉での生成ガスを四塩化チ
タン製造設備の凝縮系に導くことにした。なお、この凝
縮系に導く前に、選択塩素化炉内で生成した塩化物のう
ち四塩化チタンの凝!1温度より沸点の高い成分を凝縮
補集し、残成分ガスを前記四塩化チタン製造設備の凝縮
系に導くことにしてもよい。
In order to achieve the above object, the present inventors decided to introduce the gas generated in the selective chlorination furnace into the condensation system of the titanium tetrachloride production facility in the process of producing synthetic rutile. Before introducing this condensation system, titanium tetrachloride among the chlorides generated in the selective chlorination furnace is condensed. Components having a boiling point higher than 1 temperature may be condensed and collected, and the remaining component gas may be introduced to the condensation system of the titanium tetrachloride production facility.

すなわち、請求項1の発明は、例えばイルメナイト等、
低品位チタン含有鉱石の主に鉄成分等を塩素化し揮発除
去することによって合成ルチルを製造する工程において
、選択塩素化炉からの生成ガスを四塩化チタン製造工程
の凝縮系に導入し同工程で処理する合成ルチルの製造方
法を要旨とし、請求項2の発明は、同じく選択塩素化炉
からの生成ガスを、四塩化チタンより沸点の高い塩化ガ
ス成分を凝縮補集し、生成ガスの残余を同じく四塩化チ
タン製造工程の凝縮系に導入し同工程で処理する合成ル
チルの製造方法を要旨とする。
That is, the invention of claim 1 provides, for example, ilmenite, etc.
In the process of producing synthetic rutile by chlorinating and volatilizing the iron components of low-grade titanium-containing ores, the generated gas from the selective chlorination furnace is introduced into the condensation system of the titanium tetrachloride production process. The gist of the invention is a method for producing synthetic rutile to be treated, and the invention of claim 2 condenses and collects a chloride gas component having a boiling point higher than that of titanium tetrachloride in the generated gas from the selective chlorination furnace, and removes the remainder of the generated gas. Similarly, the gist is a method for producing synthetic rutile, which is introduced into the condensed system of the titanium tetrachloride production process and treated in the same process.

〔作  用] 上記方法により次のような極めて重要な利点が生じた。[For production] The above method yielded the following very important advantages.

すなわち、まずチタン含有鉱石を選択塩素化炉に投入す
るに際して、この鉱石は何等の予備処理も必要としない
。強いてあげるならば予熱のみで十分である。何故なら
、T i Oを分の塩素化が若干は許容されるからであ
る。生成四塩化チタンは四塩化チタン製造工程の凝縮系
にて液化補集され、金属チタン製造あるいは塩素性酸化
チタン製造等に有効に利用されるからである。このため
従来のような予備処理炉の必要性がなくなった。
That is, when the titanium-containing ore is first charged into the selective chlorination furnace, the ore does not require any preliminary treatment. If you insist, preheating alone is sufficient. This is because some chlorination of T i O is allowed. This is because the produced titanium tetrachloride is liquefied and collected in the condensation system of the titanium tetrachloride manufacturing process, and is effectively used for manufacturing titanium metal or chlorinated titanium oxide. This eliminates the need for a conventional pretreatment furnace.

また上記の理由から塩素化炉での選択塩素化の厳密な操
作が幾分楽に操作できるようになった。さらに選択塩素
化炉生成ガスからの塩素回収のためにはどのような方法
を使用してもよく、廃棄物の塩素を中和する等の専用設
備が不要となった。
Also, for the above reasons, the strict operation of selective chlorination in a chlorination furnace has become somewhat easier. Furthermore, any method can be used to recover chlorine from the gas produced by the selective chlorination furnace, and special equipment for neutralizing chlorine in waste is no longer required.

(実施例〕 第1図に本発明方法の工程をフローチャートで掲げる。(Example〕 FIG. 1 shows a flow chart of the steps of the method of the present invention.

チャート上段が一般の四塩化チタン製造工程、下段が合
成ルチル製造工程であり、両者が有機的に結びついてい
る。
The upper part of the chart is the general titanium tetrachloride production process, and the lower part is the synthetic rutile production process, and the two are organically linked.

図中、(1)(2)は、選択塩素化炉での生成ガスが四
塩化チタン製造工程のa縮系に導かれる前に四塩化チタ
ンよりも沸点の高いガス成分が凝縮補集される場合(2
)と、そうでなくガスのまま凝縮系に導かれる場合(1
)を示している。
In the diagram, (1) and (2) indicate that gas components with a higher boiling point than titanium tetrachloride are condensed and collected before the gas generated in the selective chlorination furnace is led to the a-condensation system of the titanium tetrachloride manufacturing process. Case (2
), and when the gas is instead led to the condensate system (1
) is shown.

本発明方法においては、第1図フローチャートに示す如
く、イルメナイト等のチタン鉱石は予備処理を必要とせ
ずに選択塩素化炉に装入できる。
In the method of the present invention, as shown in the flowchart of FIG. 1, titanium ore such as ilmenite can be charged into a selective chlorination furnace without the need for pretreatment.

其の後の塩素化により鉄成分等を除去した炉内原料が炉
外へ引出され、コークス分と未反応イルメナイトが除去
され、合成ルチルを製造する工程は−Cの合成ルチル製
造法と変りはない。
After that, the raw material in the furnace from which iron components have been removed through chlorination is drawn out of the furnace, and coke and unreacted ilmenite are removed.The process for producing synthetic rutile is different from the synthetic rutile production method in -C. do not have.

しかし本発明の方法では選択塩素化炉での生成ガスは専
用の処理系に廻さずに、塩化チタン製造設備の凝縮系に
導かれ、爾後は四塩化チタンの製造工程で処理される。
However, in the method of the present invention, the gas produced in the selective chlorination furnace is not sent to a dedicated treatment system, but is led to the condensation system of the titanium chloride manufacturing facility, and is then treated in the titanium tetrachloride manufacturing process.

この凝縮系においては、周知の四塩化チタン製造工程に
より四塩化チタンと他の塩化物が凝縮分離される。
In this condensation system, titanium tetrachloride and other chlorides are condensed and separated by a well-known titanium tetrachloride manufacturing process.

本発明方法では、四塩化チタン製造工程の凝縮系に入る
前に、四塩化チタンの凝縮温度より高い温度まで四塩化
チタンの噴霧あるいは他の冷却方法を使用して選択塩素
化炉内で生成した塩化物の若干を凝縮補集しても差しつ
かえない。
In the method of the present invention, titanium tetrachloride is produced in a selective chlorination furnace using spraying or other cooling methods to a temperature higher than the condensation temperature of titanium tetrachloride before entering the condensation system of the titanium tetrachloride manufacturing process. It is acceptable to condense and collect some of the chloride.

凝縮系に入った生成ガスは、ここで本格的に炭酸ガス、
四塩化チタン、生成塩化物と分離される。
The produced gas that enters the condensed system is fully converted to carbon dioxide,
Titanium tetrachloride is separated from the produced chloride.

炭酸ガスは凝縮系の後に続く排ガス処理系で含有塩素分
を中和後廃棄される。
The carbon dioxide gas is disposed of after neutralizing the chlorine content in the exhaust gas treatment system following the condensation system.

四塩化チタンは四塩化チタン製造設備で生成したものと
共に回収され、金属チタン製造等有効に使用される。
Titanium tetrachloride is recovered together with that produced in titanium tetrachloride production equipment and is effectively used in the production of titanium metal.

生成塩化物は四塩化チタン製造設備で生成した塩化物と
共に、さらに凝縮系に入る前に凝縮させた場合はそれ等
の塩化物と共に、塩素回収系に導かれる。
The produced chloride is led to the chlorine recovery system together with the chloride produced in the titanium tetrachloride production facility, and further together with the chloride if condensed before entering the condensation system.

塩素回収系では、従来からよく知られている酸素により
焙焼することにより塩素を生成させる方法等、どのよう
な方法を用いても差しつかえない。
In the chlorine recovery system, any method may be used, including the conventionally well-known method of generating chlorine by roasting with oxygen.

また回収塩素はどのように処理して再使用してもかまわ
ないが、四塩化チタン製造設備の前工程である塩素精製
系に送入すれば、複雑な処理設備をつくらなくても良質
な塩素が得られる。
In addition, recovered chlorine can be treated and reused in any way, but if it is sent to the chlorine purification system, which is the pre-process of titanium tetrachloride manufacturing equipment, high-quality chlorine can be produced without the need for complex treatment equipment. is obtained.

塩素回収系からの廃棄物は、同様に四塩化チタン製造設
備の廃水処理設備にて処理される。
Waste from the chlorine recovery system is similarly treated in the wastewater treatment facility of the titanium tetrachloride production facility.

実施例を述べる。An example will be described.

内径300順の選択塩素化炉にオーストラリア産イルメ
ナイト(TiOz  53%、Fe025.2%、Fe
tus  16.3%を含む)とカルサインコークス(
イルメナイトの15重量%)とを混合したものを650
mmの高さまで充填した。そしてArで流動させながら
1000°Cまで昇温した。
Australian ilmenite (TiOz 53%, Fe025.2%, Fe
tus 16.3%) and calcine coke (containing 16.3%
15% by weight of ilmenite) mixed with 650
It was filled to a height of mm. Then, the temperature was raised to 1000°C while flowing with Ar.

次にArを1.2ONrrf/Hrの塩素に置き換え、
それと同時に加熱したイルメナイト85kg/Hとカル
サインコークス5.3 kg/ Hの混合物を連続的に
流動層へ添加した。
Next, replace Ar with 1.2ONrrf/Hr of chlorine,
At the same time, a heated mixture of 85 kg/H of ilmenite and 5.3 kg/H of calcine coke was continuously added to the fluidized bed.

イルメナイト中の鉄分は塩素化され、塩素化炉から次の
冷却装置へ導かれた。そこにおいて四塩化チタンの噴霧
蒸発により塩素化炉からの生成ガスは150 ”Cまで
冷却された。これにより四塩化チタンあるいはこれより
沸点の低い化合物と、そうでない化合物を分離すること
ができた。四塩化チタンおよびこれより沸点の低い化合
物は四塩化チタン製造工程の四塩化チタン凝縮補集系へ
圧力調整弁を経由して導かれた。
The iron content in ilmenite was chlorinated and led from the chlorination furnace to the next cooling device. There, the gas produced from the chlorination furnace was cooled down to 150"C by spray evaporation of titanium tetrachloride. This made it possible to separate titanium tetrachloride or compounds with lower boiling points from other compounds. Titanium tetrachloride and compounds with lower boiling points were led to the titanium tetrachloride condensation collection system in the titanium tetrachloride manufacturing process via a pressure regulating valve.

沸点の高い化合物は公知の酸化焙焼法により塩素を回収
する工程へ移送し、約90%の回収率で塩素を回収し、
四塩化チタン製造前工程の塩素精製装置へ送り再度塩素
化に使用した。
Compounds with high boiling points are transferred to a chlorine recovery process using a known oxidation roasting method, and chlorine is recovered with a recovery rate of approximately 90%.
It was sent to the chlorine purification equipment in the pre-production process of titanium tetrachloride and used again for chlorination.

一方、選択塩素化炉からは約60kg/Hの速度で炉内
原料が抜かれ32メツシユの篩でコークスの大部分が取
り除かれた。次いで磁力選鉱により未反応イルメナイト
が塩素化炉へ再度反応させられるために戻された。篩い
分けられたコークスも同様に塩素化炉へ戻された。
On the other hand, the raw material in the furnace was removed from the selective chlorination furnace at a rate of about 60 kg/H, and most of the coke was removed through a 32-mesh sieve. The unreacted ilmenite was then returned to the chlorination furnace to be reacted again by magnetic beneficiation. The screened coke was also returned to the chlorination furnace.

反応した部分はT i Oを分は89%でコークスを含
んでいた。そこでこれを焼成し、品位92.2%の合成
ルチルを得た。
The reacted portion contained 89% T i O and coke. Therefore, this was fired to obtain synthetic rutile with a grade of 92.2%.

〔発明の効果〕〔Effect of the invention〕

本発明は、合成ルチルの製造において選択塩素化炉から
の生成ガスを四塩化チタンの製造工程において処理する
ようにしたから、選択塩素化炉の前の予備処理炉をはじ
めその他の専用処理設備を省略でき、簡単な設備で経済
的に合成ルチルを製造できる顕著な効果がある。
In the present invention, in the production of synthetic rutile, the generated gas from the selective chlorination furnace is processed in the titanium tetrachloride production process, so a pretreatment furnace and other dedicated processing equipment in front of the selective chlorination furnace are required. This process can be omitted and has the remarkable effect of economically producing synthetic rutile with simple equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のフローチャートで、図中(1)は選択
塩素化炉での生成ガスがそのまま四塩化チタン製造工程
の凝縮系に導かれる場合、(2)は選択塩素化炉での生
成物が四塩化チタン製造工程の凝縮系に導かれる前に一
部冷却凝縮補集される場合を示す。第2図および第3図
は一般の合成ルチル製造のフローチャートで、第2図は
生成塩化物から気体状態で塩素を回収するもの、第3図
は生成塩化物を固体で回収し、それから塩素を回収する
ものである。
Figure 1 is a flowchart of the present invention, in which (1) shows the case where the gas generated in the selective chlorination furnace is directly led to the condensation system of the titanium tetrachloride production process, and (2) shows the case where the gas generated in the selective chlorination furnace The case is shown in which the material is partially cooled, condensed and collected before being introduced into the condensation system of the titanium tetrachloride manufacturing process. Figures 2 and 3 are general flowcharts for the production of synthetic rutile, with Figure 2 recovering chlorine in a gaseous state from the chloride produced, and Figure 3 recovering the chloride produced in solid form and then recovering the chlorine. It is something to be collected.

Claims (1)

【特許請求の範囲】 1、低品位チタン含有鉱石の主に鉄成分等を塩素化し、
揮発除去することによって合成ルチルを製造する工程に
おいて、選択塩素化炉からの生成ガスを四塩化チタン製
造工程の凝縮系に導入し同工程で処理することを特徴と
する合成ルチルの製造方法。 2、低品位チタン含有鉱石の主に鉄成分等を塩素化し、
揮発除去することによって合成ルチルを製造する工程に
おいて、選択塩素化炉からの生成ガスを、四塩化チタン
より沸点の高い塩化ガス成分を凝縮補集し、生成ガスの
残余を四塩化チタン製造工程の凝縮系に導入し同工程で
処理することを特徴とする合成ルチルの製造方法。
[Claims] 1. Chlorinating mainly iron components of low-grade titanium-containing ore,
A method for producing synthetic rutile, which comprises introducing the generated gas from a selective chlorination furnace into a condensation system of a titanium tetrachloride production process and treating it in the same process, in the process of producing synthetic rutile by volatilization removal. 2. Chlorinate mainly iron components of low-grade titanium-containing ores,
In the process of producing synthetic rutile by volatilization removal, the produced gas from the selective chlorination furnace is condensed and collected to collect the chloride gas component whose boiling point is higher than that of titanium tetrachloride, and the remainder of the produced gas is used in the titanium tetrachloride production process. A method for producing synthetic rutile characterized by introducing it into a condensed system and treating it in the same process.
JP17773188A 1988-07-15 1988-07-15 Production of synthetic rutile Pending JPH0226829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17773188A JPH0226829A (en) 1988-07-15 1988-07-15 Production of synthetic rutile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17773188A JPH0226829A (en) 1988-07-15 1988-07-15 Production of synthetic rutile

Publications (1)

Publication Number Publication Date
JPH0226829A true JPH0226829A (en) 1990-01-29

Family

ID=16036134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17773188A Pending JPH0226829A (en) 1988-07-15 1988-07-15 Production of synthetic rutile

Country Status (1)

Country Link
JP (1) JPH0226829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277733A (en) * 1990-07-25 1995-10-24 Anglo American Corp South Africa Ltd Recovery of titanium value

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277733A (en) * 1990-07-25 1995-10-24 Anglo American Corp South Africa Ltd Recovery of titanium value

Similar Documents

Publication Publication Date Title
JP6320368B2 (en) Method for processing titanium-containing raw materials
US5935545A (en) Process for producing an aqueous solution comprising ferric chloride
JPH06501741A (en) Production of synthetic rutile
EP0585347A1 (en) METHOD FOR PURIFYING TiO 2? ORE.
US3803287A (en) Method for producing titanium concentrate
US20140308197A1 (en) Production of titanium compounds and metal by sustainable Methods
CN111989413B (en) Method for processing titanomagnetite ore material
US4046853A (en) Production of titanium tetrachloride
US20210156003A1 (en) Recovery of metals from pyrite
JPH09504828A (en) Improving the quality of titanium-containing raw materials
CA1205291A (en) Recovery of titanium values
CN115301716B (en) Comprehensive utilization process for solid waste of red mud, fly ash, steel slag and coal gangue
JPH0226829A (en) Production of synthetic rutile
AU2002226423B2 (en) Fluidized bed chloride method for obtaining metal oxide concentrate, especially titanium dioxide
US3560152A (en) Vapor phase production of titanium dioxide pigments
US3227545A (en) Metallurgical process
US4046854A (en) Recovery of titanium tetrachloride
US4137292A (en) Purification of titanium trichloride
CA2335739C (en) Process for chlorine recovery
CN111979413A (en) Production method of titanium-rich material
US4519988A (en) Two stage chlorination of titaniferous ore
DE3781702T2 (en) METHOD FOR SELECTIVELY CHLORINE IRON IN TITANEOUS ORES.
JPS6314826A (en) Smelting method for titanium ore
JP2537617B2 (en) Treatment method for magnesia silicate nickel ore
EP0765943A1 (en) Removal of radionuclides from titanium bearing ores