JPH02268275A - Detection of power factor - Google Patents

Detection of power factor

Info

Publication number
JPH02268275A
JPH02268275A JP8986389A JP8986389A JPH02268275A JP H02268275 A JPH02268275 A JP H02268275A JP 8986389 A JP8986389 A JP 8986389A JP 8986389 A JP8986389 A JP 8986389A JP H02268275 A JPH02268275 A JP H02268275A
Authority
JP
Japan
Prior art keywords
power
load
current
voltage
power factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8986389A
Other languages
Japanese (ja)
Inventor
Masuji Sato
佐藤 万寿治
Hideaki Yoda
秀昭 依田
Shinkichi Shimizu
信吉 清水
Noboru Wakatsuki
昇 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8986389A priority Critical patent/JPH02268275A/en
Publication of JPH02268275A publication Critical patent/JPH02268275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To achieve a detection of a power factor using a specified formula from a power waveform. CONSTITUTION:A current to a load 6 from a power supply source 5 causes a change in magnetic field through a magnetic field generating means 7 to vary resistance values of magnetoresistance elements 8-1 and 8-2. Measuring current is a current flowing through the load 6 and as an element group 8 has diagonal apexes 8a and 8b connected in parallel with the supply source 5, a voltage of the supply source 5 is applied to the apexes 8a and 8b. When a magnetic field generated with the flowing of a load current through the means 7 is applied to the elements 8-1 and 8-2, a corresponding output of the voltage of the supply source 5 is generated at a terminal 9. Since changes in resistance values of the elements 8-1-8-4 cause a change in voltage, an output of the terminal 9 is proportional to a product of a current of the load 6 and a voltage across it to allow measurement of a load power. A microcomputer 29 computes a power factor by a formula I to be shown on a display device 18. Thus, a power factor can be detected simply. In the formula, A is maximum of instantaneous power waveform and B minimum of instantaneous power waveform.

Description

【発明の詳細な説明】 〔概 要〕 電力情報、特に力率を検出する方法に関し、電力波形か
ら簡単に力率を検出し得る方法を提供することを目的と
し、 瞬時電力の波形の最大値Aと最小値Bとから、力率= 
(A+B)/ (A−B)を用いて力率を検出するよう
に構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for detecting power information, particularly power factor, and aims to provide a method for easily detecting power factor from a power waveform. From A and minimum value B, power factor =
The power factor is configured to be detected using (A+B)/(A-B).

〔産業上の利用分野〕[Industrial application field]

本発明は電力情報、特に力率を検出する方法に関し、電
力を使用し力率表示を必要とする全ての産業分野に利用
出来る。
The present invention relates to a method for detecting power information, particularly power factor, and can be used in all industrial fields that use power and require power factor display.

〔従来の技術〕[Conventional technology]

電力と力率とを同時に表示する電力情報表示器は発明者
の知る限り現在のところ存在しない。即ち、従来、例え
ば瞬時電力(あるいは瞬時電力、積算電力)と力率とを
モニタ表示する必要が有る場合には、電力表示器の他に
力率用の専用表示器を別個に使用する必要があった。
As far as the inventor is aware, there is currently no power information display device that displays power and power factor at the same time. That is, conventionally, for example, if it was necessary to display instantaneous power (or instantaneous power, integrated power) and power factor on a monitor, it was necessary to use a dedicated power factor display separately in addition to the power display. there were.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

顧客によっては電力と力率とを一台の機器で同時にモニ
タ表示したいという要望があったが、従来はこれに応え
ることが出来なかった。
Some customers have requested that power and power factor be displayed on a monitor at the same time using one device, but it has not been possible to meet this request in the past.

本発明の目的は電力情報から簡単に力率を検出する方法
を捷案じ、上記の如き要望を充足することにある。
An object of the present invention is to devise a method for easily detecting power factor from power information, and to satisfy the above-mentioned demands.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明によれば、瞬時電力
の波形の最大値Aと最小値Bとから、力率−(A十B)
/ (A  B)を用いて力率を検出することを特徴と
する。
In order to achieve the above object, according to the present invention, from the maximum value A and the minimum value B of the waveform of instantaneous power, the power factor - (A + B)
/ (A B) to detect the power factor.

〔作 用] 電力を表示するパラメータとしては、積算電力と瞬時電
力とがある。積算電力(単位はWH)は機器が消費した
電力の積算値で瞬時電力を積算することにより得られる
。瞬時電力自体は瞬時電流i (t)と瞬時電圧v(t
)とを乗算したものである。
[Function] Parameters for displaying power include integrated power and instantaneous power. The integrated power (unit: WH) is the integrated value of the power consumed by the device, and is obtained by integrating the instantaneous power. The instantaneous power itself is the instantaneous current i (t) and the instantaneous voltage v (t
).

ここに、瞬時電流1(t)及び瞬時電圧v(t)は次式
により表される。
Here, instantaneous current 1(t) and instantaneous voltage v(t) are expressed by the following equation.

v (t) =v/′TV sin ωt1(t)=j
丁I 5in(ωt+φ)但し、■及び■は実効電圧及
び実効電流である。
v (t) =v/'TV sin ωt1(t)=j
5in (ωt+φ) However, ■ and ■ are the effective voltage and effective current.

従って、瞬時電力ρ(L)は、 ρ(t)  =2VI ・sln ωt−5in(ωを
十φ)となる。ただし、φは電流と電圧の位相差を表わ
す。
Therefore, the instantaneous power ρ(L) is ρ(t) = 2VI·sln ωt−5in (ω is 10φ). However, φ represents the phase difference between current and voltage.

また、このとき、 実効電力 P=VI cosφ(単位:W)皮相電力 
5=VI 力率   cosφ= P/S で表わされる。
Also, at this time, effective power P=VI cosφ (unit: W) apparent power
5=VI Power factor expressed as cosφ=P/S.

2VI ・sin (JJ t−5in(ωを十φ)従
って、P/S = =2sin ωt−5in(ωを十φ)=cosφ−(
cos 2ωt ’ CO3φsin 2ωt−5in
φ) −cosφ−cos (2ωt+φ)=F(ωL、φ)
ここで、電力波形から力率を評価するためにθ=2ωt
とおくと、 f(θ)  =cosφ−cos (θ+φ)故に、 θ、−にπ−φ(kは整数) つまり、θ=θ、のときf(θ)(電力波形)は極値に
なる。
2VI ・sin (JJ t-5in (ω is 10φ) Therefore, P/S = =2 sin ωt-5in (ω is 10φ) = cosφ-(
cos 2ωt' CO3φsin 2ωt-5in
φ) −cosφ−cos (2ωt+φ)=F(ωL,φ)
Here, in order to evaluate the power factor from the power waveform, θ=2ωt
Then, f(θ) = cosφ−cos (θ+φ) Therefore, θ, − is π−φ (k is an integer) In other words, when θ=θ, f(θ) (power waveform) becomes an extreme value. .

kが奇数の場合と偶数の場合とで場合わけする。The cases are divided into cases where k is an odd number and cases where k is an even number.

1 ) k−2n+1  (絶対値が奇数)f(θk)
 =cosφ−cos ((2n+1)π−φ+φ)”
 cosφ−cos (2n + 1) yc= co
sφ+l=A   (A≧O)・(1)2 ) k=2
n  (絶対値が偶数でOを含む)f(θk) =co
sφ−cos 12nx−φ十φ)”cosφ−cos
2n π = −1十cosφ=B  (B≦0)・(2)Aは極
大値(最大値)、Bは極小値(最小値)である。
1) k-2n+1 (absolute value is odd) f(θk)
= cosφ−cos ((2n+1)π−φ+φ)”
cosφ−cos (2n + 1) yc= co
sφ+l=A (A≧O)・(1)2) k=2
n (absolute value is even and includes O) f(θk) = co
sφ-cos 12nx-φ10φ)”cosφ-cos
2n π = −10 cosφ=B (B≦0) (2) A is the local maximum value (maximum value), and B is the local minimum value (minimum value).

A、Bのみを用いてcosφを求めるために次の演算を
行う。
The following calculation is performed to obtain cosφ using only A and B.

A I +l B I  I 1 + cosφl+l
−1+cosφ 1 +cosφ+l  cosφ w cosφ         ・・・(3)かくして
、電力波形の最大値(極大値)A、最小値(極小値)B
に着目し、IAI−IBI/IAI+IB+より力率c
osφが算出できることが判る。
A I +l B I I 1 + cosφl+l
−1+cosφ 1 +cosφ+l cosφ w cosφ ... (3) Thus, the maximum value (local maximum value) A and the minimum value (local minimum value) B of the power waveform
Focusing on the power factor c from IAI-IBI/IAI+IB+
It can be seen that osφ can be calculated.

〔実施例〕〔Example〕

第1図は本発明の一実施例の基本構成を示す図である。 FIG. 1 is a diagram showing the basic configuration of an embodiment of the present invention.

第1図において、5は電力供給源、6は負荷、7は磁界
を発生する手段、8は磁気抵抗素子群、8a、8bはブ
リッジ接続された磁気抵抗素子群の対角頂点、9は電力
値測定端子、Hexは磁界発生手段が発生する磁界を示
す。
In FIG. 1, 5 is a power supply source, 6 is a load, 7 is a means for generating a magnetic field, 8 is a magnetoresistive element group, 8a and 8b are diagonal vertices of the bridge-connected magnetoresistive element group, and 9 is a power source. The value measurement terminal Hex indicates the magnetic field generated by the magnetic field generating means.

電力供給源5から負荷6に供給される電力を測定する上
記電力計において、磁界発生手段7は、負荷6と直列に
挿入され、一方の対角頂点8a。
In the above-mentioned wattmeter that measures the power supplied from the power supply source 5 to the load 6, the magnetic field generating means 7 is inserted in series with the load 6, and is located at one diagonal vertex 8a.

8aはブリッジ接続の磁気抵抗素子群8の電力供給源5
または負荷6と並列的に接続される。磁気抵抗素子群8
の少なくとも1個の素子は前記磁界発生手段7が発生す
る磁界により抵抗値が変化するように配置され、磁気抵
抗素子群の他方の対角頂点8b、8bから取り出した出
力9により、電力を求めることで構成する。
8a is a power supply source 5 for the bridge-connected magnetoresistive element group 8;
Or connected in parallel with the load 6. Magnetoresistive element group 8
At least one element is arranged so that its resistance value changes depending on the magnetic field generated by the magnetic field generating means 7, and the electric power is determined by the output 9 taken out from the other diagonal vertex 8b, 8b of the magnetoresistive element group. It consists of things.

磁界発生手段7を介して電力供給源5から負荷6に流れ
る電流値が、磁界変化を発生して磁気抵抗素子8−1.
8−2の抵抗値を変化させる。また測定電流は当然負荷
6を流れる電流である。磁気抵抗素子群8は、その一方
の対角頂点8a。
The current value flowing from the power supply source 5 to the load 6 via the magnetic field generating means 7 generates a magnetic field change and causes the magnetoresistive element 8-1.
Change the resistance value of 8-2. Moreover, the measured current is naturally the current flowing through the load 6. The magnetoresistive element group 8 has one diagonal vertex 8a.

8bが、第1図では電力供給源5と並列接続されている
から、電力供給源5の電圧が対角頂点8a。
8b is connected in parallel with the power supply source 5 in FIG. 1, so that the voltage of the power supply source 5 is at the diagonal apex 8a.

8bに印加される。磁界発生手段7に負荷電流が流れな
いときは磁気抵抗素子群のブリッジは平衡しているため
、端子9には出力が生じない。磁界発生手段7に負荷電
流が通過したことによる磁界が、磁気抵抗素子8−1〜
8−4のうちで例えば8−1と8−2に対し印加された
とき、その抵抗値が変化するため、ブリッジの平衡が崩
れて、前述の供給源5の電圧に対応する出力が端子9に
生じる。このとき素子8−1〜8−4のうち、1個に影
響を与えれば良い。ここで磁気抵抗素子8−1〜8−4
の抵抗値変化が負荷6に流れる電流に比例し、且つその
変化によりブリッジ接続の平衡を崩し電圧変化を生じさ
せるから、出力端子9の出力は負荷6に流れる電流とそ
の両端の電圧の積に比例して、負荷電力を測定できる。
8b. When no load current flows through the magnetic field generating means 7, the bridge of the magnetoresistive element group is balanced, so no output is generated at the terminal 9. The magnetic field caused by the load current passing through the magnetic field generating means 7 is generated by the magnetic resistance elements 8-1 to 8-1.
When the voltage is applied to, for example, 8-1 and 8-2 among 8-4, the resistance value changes, causing the bridge to become unbalanced, and the output corresponding to the voltage of the aforementioned supply source 5 to be applied to terminal 9. occurs in At this time, it is sufficient to affect one of the elements 8-1 to 8-4. Here, magnetoresistive elements 8-1 to 8-4
The change in the resistance value of is proportional to the current flowing through the load 6, and this change disrupts the balance of the bridge connection and causes a voltage change, so the output of the output terminal 9 is the product of the current flowing through the load 6 and the voltage across it. The load power can be measured proportionally.

出力端子9は増幅器25及びA/D変換器26を介して
マイクロコンピュータ29に接続されている。このマイ
クロコンピュータ29は上記電力計からの出力(電力波
形)から力率を演算し、表示装置1日に表示する。
The output terminal 9 is connected to a microcomputer 29 via an amplifier 25 and an A/D converter 26. This microcomputer 29 calculates the power factor from the output (power waveform) from the wattmeter and displays it on a display device.

第2図は本発明を電力モニタ付コンセントとして実現し
た実施例を示す図である。
FIG. 2 is a diagram showing an embodiment in which the present invention is implemented as an outlet with a power monitor.

本実施例は第2図に示すように、筐体14の側面に商用
電力用のプラグ15及びコンセント16が設けられ、表
面がキーボード17となり、該キーボードに瞬時電力(
単位:W)、積算電力(単位:WH)及び力率(単位な
し)を表示する液晶表示装置18と電力料金の積算か瞬
時かを切換えるキー22と、クリアキー23と、力率表
示用のキー26と、料金体系入力用のテンキー24等が
設けられ、内部に第1図に示す回路が収納されている。
In this embodiment, as shown in FIG. 2, a commercial power plug 15 and an outlet 16 are provided on the side surface of the casing 14, and a keyboard 17 is provided on the surface of the casing 14.
A liquid crystal display device 18 for displaying integrated power (unit: W), integrated power (unit: WH), and power factor (no unit), a key 22 for switching whether the power charge is integrated or instantaneous, a clear key 23, and a key for displaying the power factor. A key 26, a numeric keypad 24 for inputting a fee structure, etc. are provided, and a circuit shown in FIG. 1 is housed inside.

第3図は瞬時電圧、瞬時電流の波形及び電力波形を示す
もので、電圧■と電流Iは位相のみがφだけずれており
、その他は同一レベル(ω同一)で示しである。前述の
如く、電力波形の極大値A、極小値Bが求まれば力率c
osφは(3)式から求まる。
FIG. 3 shows the instantaneous voltage, instantaneous current waveforms, and power waveforms. Only the phases of the voltage (2) and the current (I) are shifted by φ, and the rest are shown at the same level (the same ω). As mentioned above, if the local maximum value A and local minimum value B of the power waveform are found, the power factor c
osφ is determined from equation (3).

尚、瞬時電力は第3図に示す電力波形から例えば1〜4
ms毎にサンプリングして、1秒間のサンプリング合計
値の平均値として表わされ、また瞬時電力値の累積値を
WHで表示したものが積算電力である。これらの演算処
理はMPU 29内で処理される。
Incidentally, the instantaneous power is, for example, 1 to 4 from the power waveform shown in Figure 3.
The integrated power is expressed as the average value of the total sampling value for 1 second by sampling every ms, and the cumulative value of the instantaneous power values is expressed as WH. These calculation processes are processed within the MPU 29.

以上の如くして、1つの表示器で瞬時電力、積算電力、
力率の3つの電力情報が電力波形から簡単に求められる
As described above, one display can display instantaneous power, integrated power,
Three pieces of power information, including the power factor, can be easily obtained from the power waveform.

[発明の効果] 以上の如く、本発明によれば電力波形から力率を簡単に
求めることができ、必要に応じて瞬時電力、積算電力と
共に1台の表示器で力率を表示することができる。
[Effects of the Invention] As described above, according to the present invention, the power factor can be easily determined from the power waveform, and if necessary, the power factor can be displayed together with the instantaneous power and the integrated power on a single display. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は本発明を
適用した電力表示器の外観を示す斜視図、第3図は、電
圧、電流、電力波形を示す図。 5・・・電力供給源、   7・・・磁界発生手段、1
8・・・表示器、 29・・・マイクロコンピュータユニット。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a perspective view showing the external appearance of a power display to which the present invention is applied, and FIG. 3 is a diagram showing voltage, current, and power waveforms. 5...Power supply source, 7...Magnetic field generating means, 1
8...Display unit, 29...Microcomputer unit.

Claims (1)

【特許請求の範囲】[Claims] 瞬時電力の波形の最大値Aと最小値Bとから、次式:力
率=(A+B)/(A−B)を用いて検出する方法。
A method of detecting from the maximum value A and minimum value B of the instantaneous power waveform using the following formula: power factor = (A + B) / (A - B).
JP8986389A 1989-04-11 1989-04-11 Detection of power factor Pending JPH02268275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8986389A JPH02268275A (en) 1989-04-11 1989-04-11 Detection of power factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8986389A JPH02268275A (en) 1989-04-11 1989-04-11 Detection of power factor

Publications (1)

Publication Number Publication Date
JPH02268275A true JPH02268275A (en) 1990-11-01

Family

ID=13982623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8986389A Pending JPH02268275A (en) 1989-04-11 1989-04-11 Detection of power factor

Country Status (1)

Country Link
JP (1) JPH02268275A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018961A3 (en) * 2000-08-29 2002-07-04 Delta Design Inc Controlling of the temperature of a dut using external current sensors
JP2011197749A (en) * 2010-03-17 2011-10-06 Yokogawa Electric Corp Temperature adjusting device
JP2013113758A (en) * 2011-11-30 2013-06-10 Ricoh Co Ltd Power detection sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018961A3 (en) * 2000-08-29 2002-07-04 Delta Design Inc Controlling of the temperature of a dut using external current sensors
US6518782B1 (en) 2000-08-29 2003-02-11 Delta Design, Inc. Active power monitoring using externally located current sensors
JP2004507765A (en) * 2000-08-29 2004-03-11 デルタ・デザイン・インコーポレイテッド Active power monitoring using an externally installed current sensor
JP2011197749A (en) * 2010-03-17 2011-10-06 Yokogawa Electric Corp Temperature adjusting device
JP2013113758A (en) * 2011-11-30 2013-06-10 Ricoh Co Ltd Power detection sensor

Similar Documents

Publication Publication Date Title
US6483291B1 (en) Apparatus for measuring electrical power consumption
CA1254619A (en) Low cost self-contained transformerless solid state electronic watthour meter having thin film ferromagnetic current sensor
KR20090014902A (en) Electricity meter with a function for detecting failure of current transformer
WO2015020706A1 (en) Method and apparatus to diagnose current sensors polarities and phase associations for a three-phase electric power system
JPS5946558A (en) Wattmeter
JPH02268275A (en) Detection of power factor
US6429643B1 (en) Device for measuring power using switchable impedance
JPH01237461A (en) Plug socket with power monitor
KR20030042661A (en) Apparatus for measuring leakage current
JP2007298330A (en) Method and device for measuring insulation resistance
JP3056046B2 (en) Small power consumption measuring device
US6535000B2 (en) Method and apparatus for determining the internal impedance of a distribution transformer and sensing DC current through an AC power meter
JPH10300790A (en) Plug receptacle indicating electric rate
JP2751269B2 (en) Electromagnetic flow meter
JP3856710B2 (en) Electronic AC ammeter
JP3253792B2 (en) Power factor measuring device for three-phase unbalanced circuit
EP1198717B1 (en) Apparatus and method for fault detection on conductors
JPH086305Y2 (en) Field error measuring instrument for electricity meter
JPS6033411Y2 (en) Earth fault resistance meter
JP2001083191A (en) Watthour meter
KR100196822B1 (en) Method and device for driving a digital multimeter accomplishing a function of wattmeter
JP3509585B2 (en) Watt hour meter
JPS6110194Y2 (en)
KR200221678Y1 (en) A wattmeter which has a indicating function of present gas rate
JPS60107573A (en) Measuring device