JPH02267988A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPH02267988A
JPH02267988A JP8791289A JP8791289A JPH02267988A JP H02267988 A JPH02267988 A JP H02267988A JP 8791289 A JP8791289 A JP 8791289A JP 8791289 A JP8791289 A JP 8791289A JP H02267988 A JPH02267988 A JP H02267988A
Authority
JP
Japan
Prior art keywords
optical
semiconductor
layer
semiconductor device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8791289A
Other languages
Japanese (ja)
Inventor
Shoichi Hanatani
昌一 花谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8791289A priority Critical patent/JPH02267988A/en
Publication of JPH02267988A publication Critical patent/JPH02267988A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection

Abstract

PURPOSE:To achieve shortening of working time and improvement in yielding rate and contrive the decrease of production cost and improvement in reliability by forming a light modulation element on the surface of a semiconductor and integrating a semiconductor laser and a light modulator monolithicall. CONSTITUTION:This device is composed of: a semiconductor laser LD 91; a light modulation element 90; a higher-order diffraction grating region 6 which performs photocoupling; and an opening 12 through which modulated light is taken out from the light modulation element 90 to the outside. The LD 91 is composed of: an n<-> type InP substrate 1; an InGaAs waveguide layer 2; an InGaAsP active layer 3; a p<-> type InP clad layer 4; a p<-> type InGaAsP cap layer 5; a p<-> side electrode 13; an n<-> side electrode 14; the higher-order diffraction grating region 6 for photocoupling. Subsequently, the light modulation element 90 is composed of: a p<+-> type InGaAsP layer 7; a p<-> type InP layer 8; an InGaAsP layer 9; an n<-> type InP layer 10; and an n<-> side electrode 11. Further, the light modulation element 90 is an electric field absorption type light modulator having the InGaAsP layer 9 as an absorption layer. In this way, the decrease of a manufacturing cost and improvement in reliability are achieved by causing the LD, i.e. a light source, and the light modulation element to be integrated monolithically.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光フアイバ伝送システム、光信号処理システム
において電気信号を光信号に変換する光半導体装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical semiconductor device that converts an electrical signal into an optical signal in an optical fiber transmission system or an optical signal processing system.

〔従来の技術〕[Conventional technology]

近年の光フアイバ伝送の急速な普及に伴い。 With the rapid spread of optical fiber transmission in recent years.

Gb/S以上、数十−以上の長距離・大容址光伝送の検
討が活発になっている。このような長距離・大容諷光フ
ァイバ伝送において、従来からの半導体レーザ(以下L
Dと略す)への注入電流を変調する直接変調方式に対し
、チャーピングによる伝送品質劣化の少ない外部変調方
式が注目されている。すなわち、LDをDC光源として
用い、そのレーザ光を光変調器により変調を行う方式で
ある。
Long-distance, large-capacity optical transmission of Gb/S or more, tens of Gb/s or more, is being actively studied. In such long-distance, large-capacity optical fiber transmission, conventional semiconductor lasers (L
In contrast to the direct modulation method that modulates the current injected into the input signal (abbreviated as D), an external modulation method that causes less deterioration in transmission quality due to chirping is attracting attention. That is, this is a method in which an LD is used as a DC light source and the laser light is modulated by an optical modulator.

上記の外部変調方式に用いる光変調器として有望なもの
に、エレクトロニクスレターズ、第23巻、第23号、
第1232頁から第1234頁(1987)  (t<
1ectronics Lettars、 vol、 
23 。
Promising optical modulators for use in the above external modulation method include Electronics Letters, Volume 23, No. 23;
Pages 1232 to 1234 (1987) (t<
1 electronics Letters, vol.
23.

&23.pp1232〜1234 (1987))にお
いて論じられているような電界吸収型のものがある。
&23. There are electroabsorption types such as those discussed in pp. 1232-1234 (1987).

このようなデバイスを伝送システムで使用する場合、上
記論文にも示されているが、光変調器の光入出力部に光
結合系が必要になる。その−例を第2図に示す、すなオ
〕ち、光送信器99は、光変調器90、電気配線パター
ンを有する基板92、光源(LD)91、光源91と光
変調器90のための光学的結合系、ここでは特に光ファ
イバ93、光変調器90と伝送路97のための光学的結
合系の光ファイバ94とから構成される。光源91から
出た光は光ファイバ93を介して光変調器90に人力さ
れる。
When such a device is used in a transmission system, an optical coupling system is required at the optical input/output section of the optical modulator, as shown in the above paper. An example of this is shown in FIG. The optical coupling system here is particularly composed of an optical fiber 93, an optical coupling system for an optical modulator 90, and an optical fiber 94 for a transmission line 97. Light emitted from a light source 91 is inputted to an optical modulator 90 via an optical fiber 93.

この時光ファイバ93と光変調器90の光学的結合は他
に光学素子を用いないバットジヨイント(butt j
oint)系で行なわれる。具体的な光結合イメージを
第3図に示す。基板92は人力信号データをボンディン
グワイヤ95を介して光変、11iIwI90に送る。
At this time, optical coupling between the optical fiber 93 and the optical modulator 90 is performed using a butt joint that does not use any other optical element.
oint) system. A concrete image of optical coupling is shown in Fig. 3. The board 92 sends the human input signal data to the light changer 11iIwI 90 via the bonding wire 95.

光変調器90はこの信号を人力光に重畳し、信号光とし
て第2図の光ファイバ94を介して伝送路97に送出す
る。この時の光変調器90と光ファイバ94の光学的結
合も前述のようなバット・ジヨイント系で行なわれる。
The optical modulator 90 superimposes this signal on the human power light and sends it as signal light to the transmission line 97 via the optical fiber 94 in FIG. 2. At this time, optical coupling between the optical modulator 90 and the optical fiber 94 is also performed by the above-mentioned butt joint system.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図、第3図に示す上記従来技術において、光送信器
99の畠性能化には、光変調器90の光入出力部、光源
91の光出力部の光結合系を高効率にしなければならな
い。このためには精密な光軸位置合わせ技術の他に、光
軸固定技術が必要になる。すなわち、各光部品の高効率
な光結合系を構成後、光部品の接着剤の硬化過程の収縮
等で光部品が光軸ずれを生じないようにする技術である
In the prior art shown in FIGS. 2 and 3, in order to improve the performance of the optical transmitter 99, the optical coupling system of the optical input/output section of the optical modulator 90 and the optical output section of the light source 91 must be made highly efficient. Must be. This requires not only precise optical axis positioning technology but also optical axis fixing technology. That is, this is a technique that prevents the optical components from shifting their optical axes due to shrinkage during the curing process of the adhesive of the optical components after constructing a highly efficient optical coupling system for each optical component.

このような光結合の技術は、現在[、L)モジュールで
人手による調整も熟練を要することから歩悄りが低く、
生産コスト島の原因となっている。光変調器を用いる場
合、このような光結合系の箇所が増えるだけでなく、光
変調素子自体が発光素子でないために余計に光学的結合
の調整を困難にしている。
Currently, this type of optical coupling technology has a low speed because the manual adjustment of the [, L) module requires skill.
This is the cause of the production cost island. When using an optical modulator, not only the number of such optical coupling systems increases, but also the optical modulating element itself is not a light emitting element, making it even more difficult to adjust the optical coupling.

本発明の目的は上記従来技術の問題点を解決する方法を
提供することにある6 〔課題を解決するための手段〕 上記目的は、光源であるLDと光I&調素子をモノリシ
ック集積化することにより達成される。すなわち、半導
体内に活性層を含む導波路を有するLl)の導波路方向
の一方の終端部にレーザ光をLL)の表面方向に取り出
す光結合機構を設け、その光結合機構に対向する半導体
(t、U)表1r+iに半導体光変調素子を設け、さら
にその光変調素子の表面に外部ヘレーザ光を送出する光
結合機構を設けることにより達成される。
An object of the present invention is to provide a method for solving the above-mentioned problems of the prior art.6 [Means for Solving the Problems] The above object is to monolithically integrate an LD as a light source and an optical I & control element. This is achieved by That is, an optical coupling mechanism for extracting laser light toward the surface of LL) is provided at one end in the waveguide direction of Ll), which has a waveguide including an active layer in the semiconductor, and a semiconductor (LL) facing the optical coupling mechanism is provided. t, U) This can be achieved by providing a semiconductor optical modulator in Table 1r+i and further providing an optical coupling mechanism on the surface of the optical modulator for transmitting laser light to the outside.

〔作用〕[Effect]

に集積化させ、LL)と光変調素子の光学的結合はL 
り側に作り込まれた光結合装置によって行なわれること
になる。したがって従来の光変調器で問題になった光変
fJs索子の先人出力部、1、D光出力部の光学的結合
のための光軸合わせ調整作業時間増や光軸ずれによる歩
留り低−トからのコスト高は従来のLL)モジュール並
になる。光弯調素子表[111に設けた光結合装置によ
ってはそれ以上の改善が大きく見込める。また、LL)
と光変調素子がモノリシックに集積化されているため装
置の小型化が図れる。
The optical coupling between LL) and the light modulation element is L
This will be done by an optical coupling device built into the opposite side. Therefore, problems with conventional optical modulators such as increased work time for optical axis alignment adjustment and optical axis misalignment for optical coupling of the predecessor output section, 1, and D optical output section of the optical variable fJs probe, and low yield due to optical axis misalignment. The cost from start to finish is comparable to that of the conventional LL) module. Further improvements can be expected depending on the optical coupling device provided in the light curve adjustment element table [111]. Also, LL)
Since the optical modulation element and the optical modulation element are monolithically integrated, the device can be miniaturized.

さらに本方式によればL L)側の残りのもう一方の導
波路終端部に同様な光結合機構を設け、その上に同一プ
ロセスで光変調素子を設けることができる。この素子を
第二の光度、151.M子として用いて伝送域を2倍に
することやLL)の光モニタとして用いること等、^機
能化が図れる。
Furthermore, according to this method, a similar optical coupling mechanism can be provided at the other end of the remaining waveguide on the LL) side, and an optical modulation element can be provided thereon in the same process. This element has a second luminous intensity, 151. Functionalization can be achieved by using it as an M element to double the transmission range, or as an optical monitor for LL).

〔実施例〕〔Example〕

第1図は本発明の一実施例の光半導体装置である。 FIG. 1 shows an optical semiconductor device according to an embodiment of the present invention.

本実施例の光半導体装置は、LL)91.光変調素子9
0.L[)91と光変;111+素子90の光結合を行
う^゛h次回折格子領域6、光変調素子90から全調光
を外部に取り出す開口部12とから構成される。LL)
91は、n−1nP基扱1、InGaAs4波層2、I
 n G a A s F活性層3、p−1n Pクラ
ッド層4、p −1n G a A s Pキャップ層
5、p−側電極13、n−側電極14、光結合用高次回
折格子領域6とから構成され、光変調素子90は、p 
+−I n G a A s P層7、p−In1’層
8、l n G a A s P層9、n−1nP層1
0、n側電極11とから構成される。
The optical semiconductor device of this example is LL)91. Light modulation element 9
0. It is composed of an ^h-order diffraction grating region 6 that performs optical coupling between L[) 91 and the light modulation element 90, and an opening 12 that takes out all the dimming from the light modulation element 90 to the outside. LL)
91 is n-1nP base treatment 1, InGaAs 4-wave layer 2, I
nGaAsF active layer 3, p-1nP cladding layer 4, p-1nGaAsP cap layer 5, p-side electrode 13, n-side electrode 14, high-order diffraction grating region for optical coupling 6, and the light modulation element 90 is composed of p
+-In Ga As P layer 7, p-In1' layer 8, In Ga As P layer 9, n-1nP layer 1
0 and an n-side electrode 11.

次に本実施例の動作について述べる。Next, the operation of this embodiment will be described.

LL)91の共振器は高次回折格子6ともう一方の導波
路終端部のチップへき開面とで構成される。
The resonator of LL) 91 is composed of a high-order diffraction grating 6 and a chip cleavage plane at the other end of the waveguide.

したがって電4413.14を介してLl)91に順バ
イアスをかけキャリアを注入すると上で述べた共振器に
よりレーザ作用が実現する。この時、レーザの発振波長
λeと回折格子のピッチΔには次のような関係がある。
Therefore, when carriers are injected by applying a forward bias to Ll) 91 via the electric current 4413.14, a laser action is realized by the above-mentioned resonator. At this time, the oscillation wavelength λe of the laser and the pitch Δ of the diffraction grating have the following relationship.

m λ8  netl n etaは有効、M折率、mは整数である。m = 
1のとき1次回折格子、m = 2のとき2次回折格子
、以−トその整数倍になるにつれて3次回折格子、4次
回折格子・・・・・・どなる、高次の回折格子になるに
つれて導波方向以外への発光成分が増加する。ここでI
nGaAsP活性層3の自然放出光のピーク波長を1.
3μmに設定すると、2次回折格子のピッチAは約48
00人になる。このように作られた高次回折格子6を用
いるとLL)出射光は、第1図に示すように15.17
となり、15はそのままLL)チップ表面に形成された
光変調素子90内部に導入される。
m λ8 netl n eta is effective, M refractive index, and m is an integer. m=
When m = 1, it becomes a 1st-order diffraction grating, when m = 2, it becomes a 2nd-order diffraction grating, and as it becomes an integer multiple, it becomes a 3rd-order diffraction grating, a 4th-order diffraction grating, and so on. As the wavelength increases, the amount of light emitted in directions other than the waveguide direction increases. Here I
The peak wavelength of spontaneous emission light of the nGaAsP active layer 3 is set to 1.
When set to 3 μm, the pitch A of the second-order diffraction grating is approximately 48
There will be 00 people. When using the high-order diffraction grating 6 made in this way, the output light (LL) will be 15.17 mm as shown in FIG.
15 is directly introduced into the light modulation element 90 formed on the chip surface (LL).

光変調素子90はl n G a A s P層9を吸
収層とする電界吸収型光変調器である。したがって電極
11.13を介して素子90に逆バイアスをかけると人
力光15は吸収M9で吸収されるが、逆バイアスがリセ
ットされると吸収層9は吸収作用まま透過し、開口部1
2より出射光16として出射される。これを店に2値の
データ信号を光変調素子90に逆バイアス印加してやる
と従来の半導体レーザを用いて行なわれている光のオン
/オフ(ONloFF)信号16が出力される。
The optical modulation element 90 is an electro-absorption optical modulator having the lnGaAsP layer 9 as an absorption layer. Therefore, when a reverse bias is applied to the element 90 through the electrodes 11.13, the human-powered light 15 is absorbed by the absorption layer M9, but when the reverse bias is reset, the absorption layer 9 is transmitted through the absorption layer 9, and the aperture 1
2, the light is emitted as emitted light 16. When a binary data signal is applied with a reverse bias to the optical modulation element 90, an optical on/off (ONLOFF) signal 16, which is performed using a conventional semiconductor laser, is output.

本実施例の形成は従来からある半導体製造技術により容
易にljf能である。すなわちn−1nP 基板を用意
し、その上に分布帰還型(1)FB:1)istrib
uted−Feedback)半導体レーザの回折格子
を形成するのと同様に2光束干渉露光法等を適用して、
高次回折格子領域6を作る2次に、表面処理を施してか
ら液相エピタキシャル法や金属有機物化学気相堆積法等
を用いてn−InGaAs  導波層2.1 n G 
a A s P活性層3、p−1nP クラッド層4、
p −f nQ a A、 s Pキャップ層5、p+
−i n G a A s P層’/、p−1nP層8
、InGaAsP層9、n−1n)’層10を順に成長
させる。その後、二酸化シリコン膜の形成およびバター
ニングを行い、光変11Jl素子90を覆う保護膜とす
る。次にエツチングにより不必要なn−1n P層10
、l n G a A SPPO2p−1nP層8、p
+−InGaAsP層を取り除く。前記保護膜を除去し
た後1例えばAu−Ge−Niからなるn側電極11,
14.’l°i・Pt’Auからなるn側電極13を形
成すると第1図にボす本実施例の装置が形成される。
This embodiment can be easily formed using conventional semiconductor manufacturing techniques. In other words, an n-1nP substrate is prepared, and a distributed feedback type (1) FB:1) istrib is placed on it.
(Uted-Feedback) Applying the two-beam interference exposure method, etc. in the same way as forming the diffraction grating of a semiconductor laser,
After forming the high-order diffraction grating region 6, the n-InGaAs waveguide layer 2.1 nG is formed using a liquid phase epitaxial method, a metal-organic chemical vapor deposition method, etc. after surface treatment.
a As P active layer 3, p-1nP cladding layer 4,
p −f nQ a A, s P cap layer 5, p+
-i n Ga As P layer'/, p-1nP layer 8
, InGaAsP layer 9, and n-1n)' layer 10 are grown in this order. Thereafter, a silicon dioxide film is formed and buttered to form a protective film covering the photovariable 11Jl element 90. Next, an unnecessary n-1n P layer 10 is etched.
, l n G a A SPPO2p-1nP layer 8,p
+-Remove the InGaAsP layer. After removing the protective film 1, an n-side electrode 11 made of, for example, Au-Ge-Ni,
14. When the n-side electrode 13 made of 'l°i.Pt'Au is formed, the device of this embodiment shown in FIG. 1 is formed.

ここで、前記の説明からもわかるように本発明において
、本光半導体装置の形成法・形成手順は本質的な問題で
はない。活性層や吸収層に多η【風子井戸構造等を適用
することがμf能である。製造にあたってのポイントは
Ll)の発振波長と光変調素子の吸収波長が合致するよ
う、LL)の活性層。
Here, as can be seen from the above description, in the present invention, the method and procedure for forming the present optical semiconductor device are not essential problems. Applying a multi-η [wind well structure, etc.] to the active layer and absorption layer is a μf function. The key point in manufacturing is the active layer of LL) so that the oscillation wavelength of Ll) matches the absorption wavelength of the optical modulation element.

光変調素子の吸収層の成分と回折格子のピッチを設計す
ることである。
This involves designing the components of the absorption layer of the light modulation element and the pitch of the diffraction grating.

本発明には様々な応用が考えられるのでそのうちのいく
つかについて以ドに列挙する。
Since the present invention has various possible applications, some of them will be listed below.

第1図の実施例において、LIJ活性層の上にp−In
GaAsP 導波層を形成し、図中の高次回折格子6の
代わりに、上記導波にIlに高次回折格子領域を形成し
、光カシプリングにより、前記実施例と同様な構成がp
(能である。
In the embodiment of FIG. 1, p-In is placed on top of the LIJ active layer.
A GaAsP waveguide layer is formed, and instead of the high-order grating 6 in the figure, a high-order diffraction grating region is formed in Il of the waveguide, and by optical coupling, a structure similar to that of the previous example can be obtained.
(It is Noh.

第4図に示すようにLD構造を第1次回折格子領域18
を持つL) FB型にすることが可能である。
As shown in FIG. 4, the LD structure is
L) with FB type.

製造において第1図の例に対してD FB用の一次回折
格子形成プロセスが付加されるだけである。
In manufacturing, only a first-order diffraction grating formation process for DFB is added to the example shown in FIG.

第5図の実施例に示すように、高次回折格子の代わりに
レーザの一端向に半導体基数主面に対し傾斜をもたせる
こと(19)により、レーザ光出力を基板表1hJ側に
取り出すこともできる。
As shown in the embodiment of FIG. 5, the laser light output can be taken out to the substrate surface 1hJ side by making one end of the laser inclined with respect to the main surface of the semiconductor base (19) instead of the high-order diffraction grating. can.

第6図の実施例は光変調素子の光出力部の光ファイバへ
の集光効率を上げたものである。すなわち、発光ダイオ
ード等で光出力を上げ、ファイバとの光結合効率を高め
るために光出力部をドーム状20に加工する手法を適用
したものである。
In the embodiment shown in FIG. 6, the efficiency of focusing light onto the optical fiber at the light output section of the light modulation element is increased. That is, a method is applied in which the light output part is processed into a dome shape 20 in order to increase the light output using a light emitting diode or the like and to increase the optical coupling efficiency with the fiber.

第7図の実施例は、レーザの両端面に高次回折格子領域
を設け、それに対向する半導体表1r【1に同一もしく
は別個の光変調素子を設けたものである。
In the embodiment shown in FIG. 7, high-order diffraction grating regions are provided on both end faces of the laser, and the same or separate optical modulation elements are provided on the semiconductor table 1r[1 opposite to the high-order diffraction grating regions.

例えば同一プロセスにより2個の光変調素子を設けた場
合、2個とも光変調器として用いることもできるが、一
方の素子を逆バイアス状態に固定してレーザのモニタ・
ホトダイオード23として用いることができる。−個の
チップにレーザ91、光変調器90、モニタホトダイオ
ード23が比較的簡単なプロセスで集積化1丁能となる
For example, if two optical modulation elements are provided by the same process, both can be used as optical modulators, but one element can be fixed in a reverse bias state to monitor the laser.
It can be used as a photodiode 23. - The laser 91, the optical modulator 90, and the monitor photodiode 23 can be integrated into one chip by a relatively simple process.

第8図の実施例は、第7図の実施例に、レーザ部と光変
調素子部の間に溝24を設け、電気的分離を強化し、晶
周波特性を教書したものである。
The embodiment shown in FIG. 8 is the same as the embodiment shown in FIG. 7 by providing a groove 24 between the laser section and the optical modulation element section to strengthen the electrical isolation and improve the crystal frequency characteristics.

第9図の実施例は、レーザ部を多電極化(13゜25)
して、波長aJ変光源26とし、波長多重伝送等へ応用
できるようにしたものである。なお、今まで述べてきた
ものは、波長1.3〜1.55μm、半導体材料はIn
P系中心であるが、0.7〜0.9μmの波長域には半
導体材料にGaA rI As系を用いればよい。
In the embodiment shown in Fig. 9, the laser section has multiple electrodes (13°25).
This makes the wavelength aJ variable light source 26 applicable to wavelength multiplex transmission and the like. The wavelengths described so far are 1.3 to 1.55 μm, and the semiconductor material is In.
Although mainly P-based, GaA rI As-based semiconductor materials may be used for the wavelength range of 0.7 to 0.9 μm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体レーザの終端部にレーザ光を半
導体表面に取り出すカップリング装置を設け、それに対
向する半導体表面に光変調素子を形成し、半導体レーザ
と光変調器をモノリシック集積化することにより、レー
ザと光変調器の光結合の問題がなくなるため、作業時間
の短縮9歩留り向上がuf能となり、主題コストの低減
、信頼性の向上が達成できる。さらに、モノリシック集
積化されることで装置の小型化が可能である。同一プロ
セスでレーザ用のモニタホトダイオード等も可能となり
、装置の高機能化、信頼性向上ができる。
According to the present invention, a coupling device for extracting laser light to the semiconductor surface is provided at the terminal end of the semiconductor laser, and an optical modulation element is formed on the semiconductor surface opposite to the coupling device, so that the semiconductor laser and the optical modulator are monolithically integrated. This eliminates the problem of optical coupling between the laser and the optical modulator, which reduces work time and improves yield, making it possible to reduce costs and improve reliability. Furthermore, monolithic integration allows for miniaturization of the device. The same process can also be used to produce monitor photodiodes for lasers, increasing the functionality and reliability of equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例になる光半導体装置の所面図
、第2図は従来の光変調器を用いた光送信器の概略を下
す平面図、第3図は従来例の光変調器光入力部の斜視図
、第4図乃至第9図は本発明の他の実施例になる光半導
体装置の断面図である。 第 ■ 及−1人と、・1 卒 ■ 茅 凹 第 ■ 1丁1コ、7ノろ /D 几−■ルしt D 第 因 D 亭 ] 図 L′F) 卒 ム 図 ソ  v 第 因 しD
Fig. 1 is a top view of an optical semiconductor device according to an embodiment of the present invention, Fig. 2 is a schematic plan view of an optical transmitter using a conventional optical modulator, and Fig. 3 is a schematic plan view of an optical transmitter using a conventional optical modulator. A perspective view of a modulator light input section and FIGS. 4 to 9 are cross-sectional views of an optical semiconductor device according to another embodiment of the present invention. No. ■ And - 1 person and ・1 Soku ■ Kayoko No. ■ 1-cho 1-ko, 7 noro/D 几-■Rushit D No. D tei] Figure L'F) Somu-zu So v No. 1 ShiD

Claims (1)

【特許請求の範囲】 1、半導体内に活性層を含む導波路が設けられている半
導体レーザにおいて、導波路方向の一方の終端部にレー
ザ光を該半導体表面に取り出す機構と該レーザ光取り出
し機構に対向する半導体表面に形成された該レーザ光に
光変調を加える半導体光変調素子と該半導体光変調素子
表面に該変調レーザ光を外部に取り出す光結合装置を有
することを特徴とする光半導体装置。 2、請求項1記載の光半導体装置において、半導体レー
ザが分布帰還型構造であることを特徴とする光半導体装
置。 3、請求項1もしくは2記載の光半導体装置において、
レーザ光取り出し機構が導波路方向に沿つて形成された
高次数の回折格子であることを特徴とする光半導体装置
。 4、請求項1もしくは2記載の光半導体装置において、
レーザ光取り出し機構が、レーザ光が半導体表面に向う
ように傾斜を有する鏡であることを特徴とする光半導体
装置。 5、請求項1乃至4記載の光半導体装置において、変調
レーザ光を外部に取り出す光結合装置が該半導体光変調
素子表面の電極に設けた開口部であることを特徴とする
光半導体装置。 6、請求項1乃至4記載の光半導体装置において、変調
レーザ光を外部に取り出す光結合装置が半導体光変調素
子表面をレンズ状(ドーム状)に加工し、電極に設けた
開口部であることを特徴とする光半導体装置。 7、請求項1乃至6記載の光半導体装置において、もう
一方の導波路終端部に同様なレーザ光取り出し機構を設
け、該取り出し機構に対向する半導体表面に同様な半導
体光変調素子を設け、モニタ用ホトダイオードもしくは
第2の光変調器とすることを特徴とする光半導体装置。 8、請求項1乃至7記載の光半導体装置において、半導
体に溝を設け、レーザ部、光変調部、モニタホトダイオ
ード部をそれぞれ電気的に分離することを特徴とする光
半導体装置。 9、請求項1乃至8記載の光半導体装置において、レー
ザ部の電極を複数個に分け、波長可変レーザとしたこと
を特徴とする光半導体装置。
[Claims] 1. In a semiconductor laser in which a waveguide including an active layer is provided in a semiconductor, a mechanism for extracting laser light to the surface of the semiconductor at one end in the direction of the waveguide, and a mechanism for extracting the laser light An optical semiconductor device comprising: a semiconductor light modulator that applies optical modulation to the laser light formed on a semiconductor surface facing the semiconductor light modulator; and an optical coupling device that extracts the modulated laser light to the outside on the surface of the semiconductor light modulator. . 2. The optical semiconductor device according to claim 1, wherein the semiconductor laser has a distributed feedback structure. 3. In the optical semiconductor device according to claim 1 or 2,
An optical semiconductor device characterized in that the laser beam extraction mechanism is a high-order diffraction grating formed along the waveguide direction. 4. The optical semiconductor device according to claim 1 or 2,
An optical semiconductor device characterized in that the laser beam extraction mechanism is a mirror that is inclined so that the laser beam is directed toward the semiconductor surface. 5. The optical semiconductor device according to claim 1, wherein the optical coupling device for extracting the modulated laser beam to the outside is an opening provided in an electrode on the surface of the semiconductor optical modulator. 6. In the optical semiconductor device according to claims 1 to 4, the optical coupling device for extracting the modulated laser beam to the outside is an opening formed in the electrode by processing the surface of the semiconductor optical modulator into a lens shape (dome shape). An optical semiconductor device characterized by: 7. In the optical semiconductor device according to claims 1 to 6, a similar laser beam extraction mechanism is provided at the other end of the waveguide, a similar semiconductor optical modulation element is provided on the semiconductor surface facing the extraction mechanism, and a monitor An optical semiconductor device characterized in that it is used as a photodiode or a second optical modulator. 8. The optical semiconductor device according to claim 1, wherein a groove is provided in the semiconductor to electrically isolate the laser section, the optical modulation section, and the monitor photodiode section. 9. The optical semiconductor device according to claim 1, wherein the electrode of the laser section is divided into a plurality of parts to form a wavelength tunable laser.
JP8791289A 1989-04-10 1989-04-10 Optical semiconductor device Pending JPH02267988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8791289A JPH02267988A (en) 1989-04-10 1989-04-10 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8791289A JPH02267988A (en) 1989-04-10 1989-04-10 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH02267988A true JPH02267988A (en) 1990-11-01

Family

ID=13928130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8791289A Pending JPH02267988A (en) 1989-04-10 1989-04-10 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH02267988A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503887A (en) * 2005-08-05 2009-01-29 ゼネラル・ナノ・オプティクス・リミテッド Injection laser
WO2014175447A1 (en) * 2013-04-26 2014-10-30 浜松ホトニクス株式会社 Semiconductor laser device
WO2015008627A1 (en) * 2013-07-16 2015-01-22 浜松ホトニクス株式会社 Semiconductor laser device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503887A (en) * 2005-08-05 2009-01-29 ゼネラル・ナノ・オプティクス・リミテッド Injection laser
WO2014175447A1 (en) * 2013-04-26 2014-10-30 浜松ホトニクス株式会社 Semiconductor laser device
JPWO2014175447A1 (en) * 2013-04-26 2017-02-23 浜松ホトニクス株式会社 Semiconductor laser device
US9660415B2 (en) 2013-04-26 2017-05-23 Hamamatsu Photonics K.K. Semiconductor laser device
WO2015008627A1 (en) * 2013-07-16 2015-01-22 浜松ホトニクス株式会社 Semiconductor laser device
JPWO2015008627A1 (en) * 2013-07-16 2017-03-02 浜松ホトニクス株式会社 Semiconductor laser device
US9793681B2 (en) 2013-07-16 2017-10-17 Hamamatsu Photonics K.K. Semiconductor laser device

Similar Documents

Publication Publication Date Title
US6940885B1 (en) Systems, methods, and apparatuses for optically pumped vertical cavity surface emitting laser devices
US8774571B2 (en) Optical device, optical module, and method for manufacturing optical device
US8145017B2 (en) Optical module
US10637208B1 (en) Silicon photonics based tunable laser
US20080166134A1 (en) Optical Transmitter Having a Widely Tunable Directly Modulated Laser and Periodic Optical Spectrum Reshaping Element
US20110267676A1 (en) Method and system for hybrid integration of an opto-electronic integrated circuit
US20100316074A1 (en) Semiconductor laser
JP6723451B2 (en) Tunable laser device and method of manufacturing tunable laser device
JP5212475B2 (en) Tunable optical transmitter
JPH11211924A (en) Optical circuit for wavelength multiplexing communication
CN106663916B (en) Semiconductor laser device
US6947453B2 (en) Tunable diffractive device
US20110051772A1 (en) Semiconductor laser device
JP2013140225A (en) Laser light source
JP2008004633A (en) Optical module and packaging method
JPH02267988A (en) Optical semiconductor device
US20090268762A1 (en) Optical intergrated device
JP2010034114A (en) Laser device, laser module, and wavelength multiplexing optical communication system
JP6610834B2 (en) Tunable laser device
EP0411145A1 (en) Integrated optical semiconductor device and method of producing the same
JP3245940B2 (en) Semiconductor optical integrated device
US10714896B2 (en) Multi-wavelength light source and optical module using the same
JPH07142699A (en) Semiconductor optical integrated device and manufacture thereof
JP2527007B2 (en) Optical functional element
Okamoto et al. Monolithic integration of a 10 Gb/s Mach-Zehnder modulator and a widely tunable laser based on a 2-ring loop-filter