JPH02267331A - Exhaust gas recirculation control device for diesel engine - Google Patents

Exhaust gas recirculation control device for diesel engine

Info

Publication number
JPH02267331A
JPH02267331A JP1087887A JP8788789A JPH02267331A JP H02267331 A JPH02267331 A JP H02267331A JP 1087887 A JP1087887 A JP 1087887A JP 8788789 A JP8788789 A JP 8788789A JP H02267331 A JPH02267331 A JP H02267331A
Authority
JP
Japan
Prior art keywords
throttle valve
intake
intake throttle
negative pressure
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1087887A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakamura
寛 中村
Hiroyuki Goto
後藤 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP1087887A priority Critical patent/JPH02267331A/en
Publication of JPH02267331A publication Critical patent/JPH02267331A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To prevent an excessive EGR ratio in the area of low engine speed by providing a stopper mechanism for regulating the opening of an intake throttle valve with a constant pressure control mechanism and controlling the opening regulating position to be changed according to the engine operating state. CONSTITUTION:An EGR valve 7 driven by an actuator 8 is provided at the opening part, to an intake passage 4, of an EGR passage 6 for communicating an exhaust passage 5 with the intake passage 4, as well as an intake throttle valve 9 is provided at the intake passage 4, more on the upstream side than the EGR passage opening part 6a. This intake throttle valve 9 is controlled by the actuator 10 so as to keep intake negative pressure constant, thus functioning as a constant pressure control mechanism. The actuator 10 is provided with a chamber 27 divided into diaphragms 25, 26 and communicated with the atmospheric air and chambers 28, 29 communicated with the negative pressure or the atmospheric air, as well as a stopper member 33 is protrusively provided on the chamber 28 side of the diaphragm 26, and the closing action of the intake throttle valve 9 is regulated by the member 33 to be the fixed opening or less.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ディーゼルエンジンの排気還流(以下、EG
Rともいう、)制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to exhaust gas recirculation (hereinafter referred to as EG) of diesel engines.
(also referred to as R) relates to a control device.

〔従来の技術〕[Conventional technology]

従来から、排気通路と吸気通路とを連通ずるEGR通路
を備え、吸気通路のEGR通路開口部よりも上流側に吸
気絞り弁を設け、吸気絞り弁よりも下流の負圧が略一定
となるように、バキュームモジュレータ等を用いて吸気
絞り弁の開度を調節するようにしたディーゼルエンジン
の排気還流制御装置が知られている(たとえば実公昭6
2−4663号公報、実開昭55−100052号公報
)、また、上記吸気負圧の定圧制御機構において、吸気
絞り弁が一定開度以下には絞られないように、吸気絞り
弁に対して固定のストッパを設けた排気還流制御装置も
知られている(特開昭56−115841号公報)。
Conventionally, an exhaust passage and an intake passage are provided with an EGR passage that communicates with each other, and an intake throttle valve is provided upstream of the EGR passage opening of the intake passage, so that the negative pressure downstream of the intake throttle valve is kept approximately constant. An exhaust recirculation control device for a diesel engine is known in which the opening degree of an intake throttle valve is adjusted using a vacuum modulator or the like (for example, the
(Japanese Utility Model Publication No. 2-4663, Japanese Utility Model Application Publication No. 55-100052), in the above-mentioned constant pressure control mechanism for the intake negative pressure, in order to prevent the intake throttle valve from being throttled below a certain opening degree, An exhaust gas recirculation control device provided with a fixed stopper is also known (Japanese Unexamined Patent Publication No. 115841/1984).

さらに、キースイッチ開放時(オフ時)に、吸気絞り弁
を閉じるようにした装置も知られている(特開昭57−
18430号公報)。
Furthermore, a device is known in which the intake throttle valve is closed when the key switch is opened (off) (Japanese Patent Application Laid-open No. 57-1999).
18430).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記実公昭62−4663号公報、実開昭5
5−100052号公報開示のような吸気負圧の定圧制
御においては、エンジンの略全回転数域にわたって、吸
気負圧を高めてEGR率(EGRガスの吸入空気に対す
る割合)を高め、NOxの低減等をはかることができる
ものの、とくに低回転数側で次のような問題を招(おそ
れがある。
However, the above-mentioned Japanese Utility Model Publication No. 62-4663 and Utility Model Publication No. 5
In the constant pressure control of intake negative pressure as disclosed in Publication No. 5-100052, the intake negative pressure is increased over almost the entire engine speed range to increase the EGR rate (the ratio of EGR gas to intake air) and reduce NOx. Although it is possible to measure the above, it may lead to the following problems, especially at low rotation speeds.

すなわち、吸気負圧を一定に保つには低回転数になる程
吸気絞り弁を絞ることが必要になり、それによって吸入
空気量が減るから、EGR弁リフト量(つまり吸気通路
へのEGR通路の開度)が同じなら、必然的に低回転数
になる程EGR率が増大する。このため、BGR弁リフ
ト量を微小開度で精密に制御しなければ適切なEGR率
が得られず、場合によってはEGR率過多になる。した
がって、高回転数域で要求のEGR率となるような一定
負圧に制御すると、低回転数域でEGR率過多を招きや
すい、EGR率の過多は、黒煙の発生や失火の問題を招
く。
In other words, in order to keep the intake negative pressure constant, the lower the rotation speed, the more it is necessary to throttle the intake throttle valve, which reduces the amount of intake air. If the opening degree) is the same, the EGR rate will inevitably increase as the rotation speed becomes lower. Therefore, unless the BGR valve lift amount is precisely controlled with a minute opening degree, an appropriate EGR rate cannot be obtained, and in some cases, the EGR rate becomes excessive. Therefore, if the pressure is controlled to a constant negative pressure that achieves the required EGR rate in the high rotation speed range, the EGR rate will tend to be excessive in the low rotation speed range.Excessive EGR rate will cause problems such as the generation of black smoke and misfires. .

逆に低回転数側で要求のEGR率になるような一定負圧
に制御すると、高回転数側ではEGR率が低くなりすぎ
、NOx低減率等目標とする排気ガス浄化性能が得られ
なくなるおそれがある。
On the other hand, if the pressure is controlled to a constant negative pressure such that the required EGR rate is achieved on the low rotation speed side, the EGR rate will become too low on the high rotation speed side, and the target exhaust gas purification performance such as NOx reduction rate may not be achieved. There is.

このような問題に対し、特開昭56−115841号公
報開示のように、ストッパを設けて吸気絞り弁が一定開
度以下には絞られないようにすることは、吸入空気量の
絞りすぎを防止できることから、低回転数域での前記E
GR率過多の問題を回避するのに有効な方法と考えられ
る。
To solve this problem, as disclosed in JP-A-56-115841, providing a stopper to prevent the intake throttle valve from being throttled below a certain opening degree prevents the intake air amount from being throttled too much. Since it can be prevented, the above E in the low rotation speed range
This is considered to be an effective method to avoid the problem of excessive GR rate.

しかし特開昭56−115841号公報のように固定の
ストッパを設けてしまうと、エンジンがどのような状態
のときにあってもそのストッパで規制される開度以下に
は吸気絞り弁を絞れないことになるが、それでは吸気絞
り弁制御による次のような優れた効果を放棄してしまう
ことになる。つまり、特開昭57−18430号公報に
も開示されているように、エンジン停止時(キーオフ時
)に吸気絞り弁を閉じることにより、吸入空気量を極め
て小さく抑えて慣性で回転しているエンジンの圧縮抵抗
を小さく抑え、衝撃や振動を抑制して静かにエンジンを
停止させることができる。エンジン停止時に吸気絞り弁
を全閉にできなければ、このような効果は得られない。
However, if a fixed stopper is provided as in JP-A-56-115841, the intake throttle valve cannot be throttled below the opening regulated by the stopper no matter what state the engine is in. However, in this case, the following excellent effects of intake throttle valve control would be abandoned. In other words, as disclosed in Japanese Unexamined Patent Publication No. 57-18430, by closing the intake throttle valve when the engine is stopped (when the key is off), the amount of intake air is kept extremely small and the engine rotates due to inertia. This reduces compression resistance, suppresses shock and vibration, and allows the engine to shut down quietly. This effect cannot be obtained unless the intake throttle valve can be fully closed when the engine is stopped.

本発明は、上述の如き種々の問題点に着目し、エンジン
全回転数域にわたって、高いが過多にはならない最適な
EGR率に制御できるとともに、加減速、エンジン停止
時等エンジンの運転状態に応した最適な吸気絞り状態に
制御可能な排気還流側’<B装置を提供することを目的
とする。
The present invention focuses on the various problems mentioned above, and makes it possible to control the EGR rate to an optimum EGR rate that is high but not excessive over the entire engine speed range, and also to respond to engine operating conditions such as acceleration/deceleration and when the engine is stopped. It is an object of the present invention to provide an exhaust gas recirculation side '<B device that can control the intake throttle to an optimal intake throttle state.

〔課題を解決するための手段〕[Means to solve the problem]

この目的に沿う本発明のディーゼルエンジンの排気還流
制御■装置は、排気通路と吸気通路とを連通ずるEGR
通路を備え、吸気通路の前記BGR通路開口部よりも上
流に吸気絞り弁を有し、該吸気絞り弁下流の負圧を横知
して該負圧を略一定に保つよう吸気絞り弁の開度を調節
可能な定圧制御機構を備えたディーゼルエンジンの排気
還流制御装置において、前記吸気絞り弁の開度を調節す
るアクチュエータ又は吸気絞り弁自身のいずれかに対し
、吸気絞り弁の一定開度以下への閉方向作動を規制可能
な、かつ該規制位置をエンジンの運転条件に応じて前記
一定開度よりもさらに吸気絞り弁低開度側に変更可能な
ストッパ機構を設けたものから成る。
The exhaust recirculation control device for a diesel engine according to the present invention that meets this purpose is an EGR system that connects an exhaust passage and an intake passage.
and an intake throttle valve upstream of the BGR passage opening of the intake passage, and the intake throttle valve is opened so as to know the negative pressure downstream of the intake throttle valve and keep the negative pressure substantially constant. In an exhaust recirculation control device for a diesel engine equipped with a constant pressure control mechanism that can adjust the opening degree of the intake throttle valve, either the actuator that adjusts the opening degree of the intake throttle valve or the intake throttle valve itself is controlled to have an opening degree of the intake throttle valve below a certain degree. The stopper mechanism is provided with a stopper mechanism that can restrict the closing direction of the intake throttle valve, and that can change the restriction position to a lower opening than the constant opening according to engine operating conditions.

〔作用〕[Effect]

このような排気還流制御装置においては、エンジンの運
転状態に応じて、吸気負圧を略一定に保つように吸気絞
り弁の開度を調節する定圧制御と、定圧制御機構の存在
にも拘らず吸気絞り弁を半開、全閉等の一定開度に保持
する制御とに選択される。
In such an exhaust recirculation control device, there is a constant pressure control that adjusts the opening of the intake throttle valve to keep the intake negative pressure approximately constant depending on the engine operating condition, and a constant pressure control mechanism. Control is selected to maintain the intake throttle valve at a constant opening such as half open or fully closed.

定圧制御中に排気還流を行なうと、吸気負圧が安定して
いるため容易に所定のEGR率に保たれて排気ガス浄化
性能が向上される。この定圧制御のまま低回転数域に入
ると、前述の如< EGR率が過多になるおそれがある
が、吸気絞り弁はストッパ機構により一定開度(たとえ
ば半開)以下への閉方向作動が強制的に規制されるので
、吸気絞りが抑えられて吸入空気量が確保され、EGR
率過多が防止される。また、エンジン運転条件に応じて
、たとえばエンジン停止時にあっては、上記ストッパ機
構による規制位置が吸気絞り弁低開度側(たとえば全閉
位置)に変更され、吸入空気量が大きく抑えられて静か
なエンジン停止が可能になる。
When exhaust gas recirculation is performed during constant pressure control, since the intake negative pressure is stable, the EGR rate is easily maintained at a predetermined level, and the exhaust gas purification performance is improved. If the engine enters the low rotation speed range with this constant pressure control, there is a risk that the EGR rate will become excessive as mentioned above, but the intake throttle valve is forced to close to a certain opening (for example, half open) by the stopper mechanism. Since the intake throttle is restricted and the amount of intake air is secured, EGR
Excessive rates are prevented. Additionally, depending on the engine operating conditions, for example when the engine is stopped, the restriction position by the stopper mechanism is changed to the lower opening side of the intake throttle valve (for example, the fully closed position), which greatly suppresses the amount of intake air and makes it quieter. This makes it possible to stop the engine.

さらに、減速時等にも吸気絞り弁を上記一定開度位置に
規制することにより、適切な吸気量を確保して吸気こも
り音の低減等をはかることが可能となる。
Furthermore, by regulating the intake throttle valve to the above-mentioned constant opening position even during deceleration, etc., it is possible to ensure an appropriate amount of intake air and reduce intake noise.

〔実施例〕〔Example〕

以下に、本発明の望ましい実施例を、図面を参照して説
明する。
Preferred embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図は、本発明の一実施例に係るディー
ゼルエンジンの排気還流制御装置を示している0図にお
いて、1はディーゼルエンジン本体、2は燃料噴射ポン
プ、3はECU (電子制御装置)を示している。4は
エンジン1への吸気通路、5はエンジン1からの排気通
路であり、排気通路5と吸気通路4とを連通するEGR
通路6が設けられている。このEGR通路6の吸気通路
4への開口部6aには、EGR弁7が設けられており、
該EGR弁7はダイヤフラムを有するアクチュエータ8
によって作動されるようになっている。
1 and 2 show an exhaust recirculation control device for a diesel engine according to an embodiment of the present invention. In FIG. 0, 1 is a diesel engine main body, 2 is a fuel injection pump, and 3 is an ECU (electronic control equipment) is shown. 4 is an intake passage to the engine 1, 5 is an exhaust passage from the engine 1, and an EGR connecting the exhaust passage 5 and the intake passage 4.
A passage 6 is provided. An EGR valve 7 is provided at the opening 6a of the EGR passage 6 to the intake passage 4.
The EGR valve 7 has an actuator 8 having a diaphragm.
It is designed to be operated by.

吸気通路4のEGR通路開ロ部6aよりも上流には、吸
気絞り弁9が設けられている。吸気絞り弁9は、ダイヤ
フラムを有するアクチュエータ10によって開度が調節
できるようになっている。
An intake throttle valve 9 is provided upstream of the EGR passage opening portion 6a of the intake passage 4. The opening degree of the intake throttle valve 9 can be adjusted by an actuator 10 having a diaphragm.

アクチュエータ8.10作動のための制御系は次のよう
に構成されている。
The control system for actuating actuator 8.10 is constructed as follows.

11はバキュームポンプであり、ここで駆動用負圧が発
生される。バキュームポンプ11がらの負圧は、EVR
V (電気式負圧調整弁) 12と、VSV(バキュー
ムスイッチングバルブ)13とに導入される。EVRV
12では、バキュームポンプ11がらの負圧のアクチュ
エータ8への導入を制御する。
Reference numeral 11 denotes a vacuum pump, in which driving negative pressure is generated. The negative pressure from the vacuum pump 11 is EVR
It is introduced into V (electric negative pressure regulating valve) 12 and VSV (vacuum switching valve) 13 . EVRV
At 12, the introduction of negative pressure from the vacuum pump 11 to the actuator 8 is controlled.

つまり、各種センサから入力されるエンジン運転状態の
情報に基づき、ECU3内でEGR弁用アクチュエータ
8へ供給する制御負圧の目標値が演算される。この目標
値はその時のエンジン運転状態において最適なEGR率
を与えるEGR弁開度となるよう定められている。EC
U3は上記目標値に対応するデユーティ信号をEVRV
12に与える。EVRV12はデユーティ信号に応じて
バキュームポンプ11からの負圧と大気圧とのアクチュ
エータ8への導入割合を調節する。また、排気還流時に
は、vsvtsは圧力センサ14に上記制御負圧を供給
し、ECU3は、圧力センサ14で検出される実際の制
御負圧と目標値との偏差に基づいてデユーティ信号を修
正して実際の制?B負圧が目標値に一敗するようフィー
ドバック制御を行なう、■5V15は排気還流停止時に
は、吸気負圧を圧力センサ14に供給する。
That is, the target value of the control negative pressure to be supplied to the EGR valve actuator 8 is calculated within the ECU 3 based on information on the engine operating state inputted from various sensors. This target value is determined to be the EGR valve opening that provides the optimum EGR rate under the engine operating state at that time. EC
U3 converts the duty signal corresponding to the above target value to EVRV.
Give to 12. The EVRV 12 adjusts the rate at which negative pressure from the vacuum pump 11 and atmospheric pressure are introduced into the actuator 8 in accordance with the duty signal. Also, during exhaust gas recirculation, the vsvts supplies the control negative pressure to the pressure sensor 14, and the ECU 3 corrects the duty signal based on the deviation between the actual control negative pressure detected by the pressure sensor 14 and the target value. Actual system? B Feedback control is performed so that the negative pressure reaches the target value. (5) 5V15 supplies intake negative pressure to the pressure sensor 14 when exhaust gas recirculation is stopped.

吸気絞り弁9下流の負圧がフィルタ16を通してバキュ
ームモジュレータ17に導入され、該負圧が略一定に保
たれるようバキュームモジュレータ17、アクチュエー
タ10を介して吸気絞り弁9の開度を調節できるように
なっている。バキュームモジュレータ17は、第2図に
も示すように、ダイヤフラム弁構造を有し、スプリング
18を備えたダイヤフラム室19に吸気負圧に導入され
、他室20は大気に連通されている。ダイヤフラム21
の弁体22部分には、バキュームポンプ11からの負圧
が導入されており、吸気負圧が設定値よりも高いときに
は弁体22がダイヤフラム室19側に移動し、バキュー
ムポンプ11からの負圧がブリードされてアクチュエー
タ10への出力負圧が下がり、吸気絞り弁9が開方向に
、吸気負圧が目標値(設定値)に達するまで開度調節さ
れる。吸気負圧が設定値よりも低いときには、弁体22
がバキュームポンプ11からの負圧のブリードを止め、
バキュームポンプ11からの負圧がそのままアクチュエ
ータlOに出力され、吸気絞り弁9が閉方向に、吸気板
圧が目標値(設定値)に達するまで開度調節される。し
たがって、これらは、吸気負圧を略一定に保つよう吸気
絞り弁9の開度を調節する定圧制御機構を構成している
The negative pressure downstream of the intake throttle valve 9 is introduced into the vacuum modulator 17 through the filter 16, and the opening degree of the intake throttle valve 9 can be adjusted via the vacuum modulator 17 and the actuator 10 so that the negative pressure is kept approximately constant. It has become. As shown in FIG. 2, the vacuum modulator 17 has a diaphragm valve structure, and negative intake pressure is introduced into a diaphragm chamber 19 provided with a spring 18, and another chamber 20 is communicated with the atmosphere. diaphragm 21
Negative pressure from the vacuum pump 11 is introduced into the valve body 22 of the valve body 22, and when the intake negative pressure is higher than the set value, the valve body 22 moves to the diaphragm chamber 19 side, and the negative pressure from the vacuum pump 11 is introduced into the valve body 22. is bled, the output negative pressure to the actuator 10 decreases, and the opening of the intake throttle valve 9 is adjusted in the opening direction until the intake negative pressure reaches a target value (set value). When the intake negative pressure is lower than the set value, the valve body 22
stops the negative pressure from bleeding from the vacuum pump 11,
The negative pressure from the vacuum pump 11 is directly output to the actuator IO, and the opening of the intake throttle valve 9 is adjusted in the closing direction until the intake plate pressure reaches a target value (set value). Therefore, these constitute a constant pressure control mechanism that adjusts the opening degree of the intake throttle valve 9 so as to keep the intake negative pressure substantially constant.

バキュームモジュレータ17とアクチュエータ1゜との
間には、VSV23とVSV24が介装されている。V
SV23は、アクチュエータ10への出力を、上記定圧
制御機構を介した負圧又はバキュームポンプ11からの
元圧のいずれか一方を選択する。VSV24は、アクチ
ュエータ10への出力を、VSV23からの負圧又は大
気圧のいずれか一方を選択する。
A VSV 23 and a VSV 24 are interposed between the vacuum modulator 17 and the actuator 1°. V
The SV 23 selects either the negative pressure via the constant pressure control mechanism or the source pressure from the vacuum pump 11 as the output to the actuator 10 . The VSV 24 selects either the negative pressure from the VSV 23 or the atmospheric pressure as the output to the actuator 10 .

吸気絞り弁9の開度を調節するアクチュエータ10は、
ダイヤフラム25.26によって分割された、大気に連
通する室27、VSV24からの圧力が導入されるA室
28、VSV13により切換えられるバキュームポンプ
11からの負圧又は大気圧のいずれか一方が導入される
B室29を有している。ダイヤフラム25側に、吸気絞
り弁9との連結ロッド30が設けられ、ダイヤフラム2
5の動きに伴うロッド30の動きを介して吸気絞り弁9
の開度が調節される。
The actuator 10 that adjusts the opening degree of the intake throttle valve 9 is
A chamber 27 divided by diaphragms 25 and 26 and communicating with the atmosphere, a chamber A 28 into which pressure from the VSV 24 is introduced, and either negative pressure or atmospheric pressure from the vacuum pump 11 switched by the VSV 13 is introduced. It has a B chamber 29. A connecting rod 30 with the intake throttle valve 9 is provided on the diaphragm 25 side, and the diaphragm 2
Through the movement of the rod 30 with the movement of the intake throttle valve 9
The opening degree is adjusted.

A室28内には、スプリング31が設けられ、座部32
に対しダイヤフラム25をロッド30側(吸気絞り弁9
を開く方向)に付勢している。
A spring 31 is provided in the A chamber 28, and a seat 32
diaphragm 25 on the rod 30 side (intake throttle valve 9
(opening direction).

ダイヤフラム2GのA室28側には、ストッパ部材33
が突設されており、ダイヤフラム25がダイヤフラム2
6側に移動してストッパ部材33の先端に当接したとき
、ダイヤフラム25のそれ以上のダイヤフラム26側へ
の移動、したがって吸気絞り弁9の一定開度以下への閉
方向作動を規制可能となっている。
A stopper member 33 is provided on the A chamber 28 side of the diaphragm 2G.
is provided protrudingly, and the diaphragm 25 is connected to the diaphragm 2.
When it moves to the 6 side and comes into contact with the tip of the stopper member 33, it becomes possible to restrict further movement of the diaphragm 25 toward the diaphragm 26 side, and therefore prevent the intake throttle valve 9 from operating in the closing direction below a certain opening degree. ing.

このストッパ部材33は、ダイヤフラム26上に設けら
れているのでダイヤフラム26の動きとともに移動する
。B室29にはダイヤフラム26をダイヤフラム25方
向に付勢するスプリング34が設けられているので、B
室29に大気圧が導入されている場合にはスプリング3
4によってダイヤフラム26が座部材32に押しつけら
れストッパ部材33は第2図の位置に保持されるが、B
室29にバキュームポンプ11からの負圧が導入される
場合には、スプリング34の力に抗してダイヤフラム2
6がB室29を縮小する方向に移動し、それに伴ってス
トッパ部材33も同じ方向に移動されるようになってい
る。したがって、ストッパ部材33によるダイヤフラム
25の移動規制を介しての吸気絞り弁9の開度規制位置
は、上記ストッパ部材33の移動により、吸気絞り弁9
をさらに低開度(たとえば全開)とする規制位置に変更
可能となっている。
Since this stopper member 33 is provided on the diaphragm 26, it moves with the movement of the diaphragm 26. Since the B chamber 29 is provided with a spring 34 that biases the diaphragm 26 in the direction of the diaphragm 25,
When atmospheric pressure is introduced into the chamber 29, the spring 3
4, the diaphragm 26 is pressed against the seat member 32 and the stopper member 33 is held in the position shown in FIG.
When negative pressure is introduced into the chamber 29 from the vacuum pump 11, the diaphragm 2 resists the force of the spring 34.
6 moves in a direction to reduce the size of chamber B 29, and accordingly, stopper member 33 is also moved in the same direction. Therefore, the opening degree of the intake throttle valve 9 is controlled by the movement of the diaphragm 25 by the stopper member 33.
can be changed to a regulation position where the opening degree is even lower (for example, fully open).

尚、本実施例ではストッパ部材33をダイヤフラム26
のA室28側に設けたが、第9図の33Aの如くダイヤ
フラム25のA室28側に設けても同様の機能が得られ
る。又第10図の33Bの如く吸気絞り弁部材を構成す
るロッド30と一体に設けてもよい。
In this embodiment, the stopper member 33 is replaced by the diaphragm 26.
Although it is provided on the A chamber 28 side of the diaphragm 25, the same function can be obtained even if it is provided on the A chamber 28 side of the diaphragm 25 as shown at 33A in FIG. Alternatively, it may be provided integrally with the rod 30 constituting the intake throttle valve member as shown in 33B in FIG.

EVRV12、VSV13.15.23.24ハ、EC
U3からの指令に基いて作動される。ECU3には、燃
料噴射ポンプ2に付設されたレバー開度センサ35から
エンジン負荷信号としてのアクセル開度信号が、エンジ
ン回転数センサ36からエンジン回転数が、それぞれ人
力され、その他にも、アクセル開度を調整する調整抵抗
37からの信号、圧力センサ14からの信号、エンジン
水温センサ38からの信号が入力されている。さらにE
CU3には、車速センサ39からの信号、自動変速機を
備えた車両にあってはそのニュートラル(N)ポジショ
ン信号40、さらにはイグニッションスイッチ41から
の信号(エンジンのオン、オフ信号)が人力されており
、イグニッションスイッチ41の信号は、VSvI3作
動のための信号としても使用されている。ECU3から
はさらに、ニアコンディショナアンプへの信号42、自
動変速機への信号43が出力されている。
EVRV12, VSV13.15.23.24ha, EC
It is operated based on a command from U3. The ECU 3 receives an accelerator opening signal as an engine load signal from a lever opening sensor 35 attached to the fuel injection pump 2, an engine rotational speed from an engine rotational speed sensor 36, and also receives an accelerator opening signal as an engine load signal. A signal from an adjustment resistor 37 for adjusting temperature, a signal from a pressure sensor 14, and a signal from an engine water temperature sensor 38 are input. Further E
The CU 3 receives a signal from a vehicle speed sensor 39, a neutral (N) position signal 40 in the case of a vehicle equipped with an automatic transmission, and a signal from an ignition switch 41 (engine on/off signal). The signal from the ignition switch 41 is also used as a signal for operating VSvI3. The ECU 3 further outputs a signal 42 to the near conditioner amplifier and a signal 43 to the automatic transmission.

なお、44は負圧を利用して燃料噴射量の最大値を規制
するためのブーストコンペンセータ、45は燃料カット
弁をそれぞれ示している。
Note that 44 represents a boost compensator for regulating the maximum value of the fuel injection amount using negative pressure, and 45 represents a fuel cut valve.

上記のように構成された装置の作用について説明する。The operation of the device configured as above will be explained.

まず吸気絞り弁9の作動制御について、表−1および第
3図ないし第6図を参照しつり説明する。
First, the operation control of the intake throttle valve 9 will be explained with reference to Table 1 and FIGS. 3 to 6.

吸気絞り弁9の開度はアクチュエータ10を介して制j
11され、アクチュエータ10の作動は、■S■13.
23.24およびバキュームモジュレータ17によって
制御される。吸気絞り弁9の作動モードは表−1に示・
すようになる。
The opening degree of the intake throttle valve 9 is controlled via an actuator 10.
11, and the operation of the actuator 10 is as follows:■S■13.
23, 24 and vacuum modulator 17. The operation mode of the intake throttle valve 9 is shown in Table-1.
It becomes like this.

イグニッションスイッチ41がオンからオフに切り換っ
た時すなわちエンジン停止時には、■s■13.23.
24全てがオフとされ、第3図に示すように、A室28
、B室29ともに、吸気絞り弁9を動かすのに十分なバ
キュームポンプ11からの一定負圧が導入され(図の斜
線部は負圧導入を示す)、吸気絞り弁9は全閉に保持さ
れる。したがって、運転中のエンジンを停止する際、吸
気絞り弁9が全開とされることにより空気吸入量が強く
絞られ、慣性で回転しているエンジンの圧縮抵抗が小さ
く抑えられて衝撃や振動の発生が抑制され、エンジンは
静かに停止される。またこのとき燃料カント弁45によ
り燃料供給もカットされ、燃焼は自然にかつ静かに停止
される。
When the ignition switch 41 is switched from on to off, that is, when the engine is stopped, ■s■13.23.
24 are all turned off, and as shown in FIG.
, B chamber 29, a constant negative pressure from the vacuum pump 11 sufficient to move the intake throttle valve 9 is introduced (the shaded area in the figure indicates the introduction of negative pressure), and the intake throttle valve 9 is kept fully closed. Ru. Therefore, when the engine is stopped while it is running, the intake throttle valve 9 is fully opened to strongly restrict the amount of air intake, and the compression resistance of the engine, which is rotating due to inertia, is suppressed to a small level, causing shocks and vibrations. is suppressed and the engine is quietly stopped. At this time, the fuel supply is also cut off by the fuel cant valve 45, and combustion is stopped naturally and quietly.

減速時には、VSV13がオンとなってB室29が大気
開放され、VSV23.24はオフとされてA室28に
はバキュームポンプ11からの負圧が導入される。この
とき、第4図に示すように、ダイヤフラム26は座部3
2側に寄せられて一定位置に保持され、ダイヤフラム2
5は、ダイヤフラム26とともに一定位置に保持された
ストッパ部材33の先端に当たった位置に保持され、吸
気絞り弁9は半開位置に保持される。吸気絞り弁9を半
開に保つことにより、低負荷になっても所定量以上の吸
入空気量が確保され、減速時の吸気こもり音が低減され
る。
During deceleration, the VSV 13 is turned on and the B chamber 29 is opened to the atmosphere, and the VSV 23.24 is turned off and negative pressure from the vacuum pump 11 is introduced into the A chamber 28. At this time, as shown in FIG. 4, the diaphragm 26
The diaphragm 2 is held in a fixed position by the diaphragm 2.
5 is held at a position that abuts the tip of a stopper member 33 that is held at a fixed position together with the diaphragm 26, and the intake throttle valve 9 is held at a half-open position. By keeping the intake throttle valve 9 half-open, a predetermined amount or more of intake air is ensured even when the load is low, and intake muffled noise during deceleration is reduced.

全負荷時(加速時)には、VSV13.24がオンとさ
れ、A室28、B室29ともに大気圧が導入され、第5
図に示すように、吸気絞り弁9は全開状態に保たれる。
At full load (acceleration), VSV13.24 is turned on, atmospheric pressure is introduced into both chamber A 28 and chamber B 29, and the fifth
As shown in the figure, the intake throttle valve 9 is kept fully open.

吸気は実質的に絞られず、十分な吸入空気量が確保され
、スモークの抑制等が実現される。
The intake air is not substantially throttled, ensuring a sufficient amount of intake air and suppressing smoke.

中、低負荷域においては、VSV13.23オン、VS
V24オフとされ、B室29は大気開放、A室28には
、バキュームモジュレータ17からの出力負圧が導入さ
れ、吸気負圧が略一定圧になるよう吸気絞り弁9の開度
が制御される。このときのバキュームモジュレータ17
の作動は、前述の通りである。
In medium and low load range, VSV13.23 on, VS
V24 is turned off, the B chamber 29 is opened to the atmosphere, the output negative pressure from the vacuum modulator 17 is introduced into the A chamber 28, and the opening degree of the intake throttle valve 9 is controlled so that the intake negative pressure becomes approximately constant pressure. Ru. Vacuum modulator 17 at this time
The operation is as described above.

この定圧制御により、吸気負圧安定に保たれるとともに
吸入空気量不足が防止されるので、所定のEGR率が容
品に得られ、目標とする排気ガス浄化性能が得られる。
This constant pressure control keeps the intake negative pressure stable and prevents a shortage of intake air, so that a predetermined EGR rate can be achieved and the target exhaust gas purification performance can be achieved.

低速(低回転数)低負荷域においては、各VSV13.
23.24の作動モードは上記中、低負荷域におけるモ
ードと同じである。しかし、B室29に大気圧が導入さ
れ、ダイヤフラム26、ストッパ部材33が第2図に示
した一定位置に保持された状態にあるので、バキューム
モジュレータ17からのA室28に導入された負圧によ
り吸気絞り弁9を閉方向に移動させようとするダイヤフ
ラム25の動きがストッパ部材33の先端によって規制
され、結局吸気絞り弁9は半開状態に保たれる。したが
って、低回転数でも十分な空気量が確保され、吸気負圧
は低くなる。その結果、従来問題であった、定圧制御を
採用した場合の、低回転数域におけるEGR率過多が防
止される。
In the low speed (low rotation speed) low load range, each VSV13.
The operating modes of 23 and 24 are the same as the modes in the low load range mentioned above. However, since atmospheric pressure is introduced into the B chamber 29 and the diaphragm 26 and the stopper member 33 are held at the fixed positions shown in FIG. 2, the negative pressure introduced into the A chamber 28 from the vacuum modulator 17 As a result, the movement of the diaphragm 25 that attempts to move the intake throttle valve 9 in the closing direction is regulated by the tip of the stopper member 33, and the intake throttle valve 9 is ultimately kept in a half-open state. Therefore, a sufficient amount of air is ensured even at low rotational speeds, and the intake negative pressure is reduced. As a result, excessive EGR rate in the low rotational speed range is prevented when constant pressure control is adopted, which has been a problem in the past.

上記各作動領域について、EGRの作動、停止制御を加
えて、エンジン回転数とアクセル開度(負荷)とに関す
るマツプで表わせば、第7図に示すようになる。第7図
において、斜線部が定圧制御領域101であり、領域1
02が吸気絞り弁9の全開領域、領域103が吸気絞り
弁9の半開領域、二重斜線領域104が、アクチュエー
タ10のA室28にバキュームモジュレータ17からの
負圧が導入され定圧制御特性の作動は成立するものの、
現実にはストッパ部材33によって動きが規制され、吸
気絞り弁9が半開状態に保たれる領域である。EGRの
オン、オフは、作動境界線111 と112 との間の
領域でオンとされ、定圧制御領域で最適なEGR率とさ
れる0作動境界線111 と113との間の領域105
は、相当高負荷ではあるが吸気絞り弁9は全開ではなく
、吸気絞り弁9のコントロールにより吸気騒音の低減等
が可能な領域である。この領域は全負荷に近いので、E
GRはオフとされる。
For each of the above-mentioned operating regions, if EGR operation and stop control are added and expressed as a map regarding engine speed and accelerator opening (load), the result will be as shown in FIG. 7. In FIG. 7, the shaded area is the constant pressure control area 101, and area 1
02 is the fully open region of the intake throttle valve 9, region 103 is the half open region of the intake throttle valve 9, and double hatched region 104 is the region where the negative pressure from the vacuum modulator 17 is introduced into the A chamber 28 of the actuator 10, resulting in the operation of constant pressure control characteristics. Although it holds true,
In reality, this is a region where the movement is regulated by the stopper member 33 and the intake throttle valve 9 is kept in a half-open state. EGR is turned on and off in the region between the operating boundaries 111 and 112, and in the region 105 between the 0 operating boundaries 111 and 113, where the optimum EGR rate is achieved in the constant pressure control region.
Although the load is quite high, the intake throttle valve 9 is not fully open, and the intake noise can be reduced by controlling the intake throttle valve 9. Since this region is close to full load, E
GR is turned off.

上記定圧制御領域101および領域104における(た
とえば第7図の特性線114(たとえば無負荷時特性線
)上における)エンジン回転数と、吸気負圧、EGR率
、NOx低減率との関係を示せば、第8図に示すように
なる0図における破線は吸気絞り弁がない場合の特性、
−点鎖線は従来の定圧制御による特性、実線が本発明に
よる特性を示している。とくに、従来の定圧制御特性か
ら分岐している部分a、b、cが、ストッパ部材33を
介して吸気絞り弁9が半開状態に保たれているときの特
性を示しており、吸気絞り弁9下流の吸気負圧がエンジ
ン回転数の低下とともに低減され、EGR率は、全体と
して高水準に保たれつつ、低回転数域での過多状態が回
避されている。
The relationship between the engine speed in the constant pressure control region 101 and the region 104 (for example, on the characteristic line 114 (for example, no-load characteristic line) in FIG. 7), intake negative pressure, EGR rate, and NOx reduction rate is shown below. , the broken line in Figure 0 as shown in Figure 8 is the characteristic when there is no intake throttle valve,
- The dotted chain line shows the characteristic by conventional constant pressure control, and the solid line shows the characteristic by the present invention. In particular, portions a, b, and c that diverge from the conventional constant pressure control characteristics show the characteristics when the intake throttle valve 9 is kept in a half-open state via the stopper member 33, and the intake throttle valve 9 The downstream intake negative pressure is reduced as the engine speed decreases, and the EGR rate is maintained at a high level as a whole, while an excessive state in the low speed range is avoided.

さらに上記実施例では、アクチュエータlO内に吸気絞
り弁と連結されたダイヤフラム25と、連結されないダ
イヤフラム26とを設ける共に、一方のダイヤフラムに
他方のダイヤフラムと対面するストッパ部材33.33
A、33Bを設けたので、1つのアクチュエータ10と
1つの吸気絞り弁9.30により定圧制御と定開度制御
の両方を行なうことができる。
Further, in the above embodiment, a diaphragm 25 connected to the intake throttle valve and a diaphragm 26 not connected are provided in the actuator lO, and the stopper member 33, 33 on one diaphragm faces the other diaphragm.
Since A and 33B are provided, both constant pressure control and constant opening degree control can be performed using one actuator 10 and one intake throttle valve 9.30.

なお、以上の実施例においては、ストッパ部材33を備
えたストッパ機構をアクチュエータ10に組み込んだが
、この機構に限定されず、たとえば吸気通路内に出没可
能なストッパ部材を設け、吸気絞り弁自身の動きを直接
規制し、該規制位置を変更することも可能である。
In the above embodiment, a stopper mechanism including the stopper member 33 is incorporated into the actuator 10, but the mechanism is not limited to this, and for example, a stopper member that can move in and out of the intake passage may be provided to control the movement of the intake throttle valve itself. It is also possible to directly regulate and change the regulating position.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のディーゼルエンジンの排
気還流制御装置によるときは、定圧制御機構を備えた吸
気絞り弁の開度を規制可能なストッパ機構を設け、その
開度規制位置をエンジン運転状態に応じて変更制御可能
としたので、従来の定圧制御で問題であった低回転数域
におけるEGR率過多を防止し、全回転数域にわたって
過多のない最適なEGR率に制御Bすることが可能にな
る。
As explained above, when using the exhaust recirculation control device for a diesel engine according to the present invention, a stopper mechanism capable of regulating the opening of the intake throttle valve equipped with a constant pressure control mechanism is provided, and the opening regulation position is adjusted depending on the engine operating condition. Since it is possible to change the EGR rate according to the current speed, it is possible to prevent excessive EGR rate in the low rotation speed range, which was a problem with conventional constant pressure control, and to control the EGR rate to the optimum level without excessive over the entire rotation speed range. become.

また、エンジン運転条件に応じて、たとえばエンジン停
止時にはストッパ機構による規制位置を変更して吸気絞
り弁を全開にすることもできるので、衝撃、振動を抑え
静かにエンジンを停止させることができる。さらに、減
速時の吸気こもり音の低減、加速時のスモーク抑制等も
はかることができる。
Further, depending on the engine operating conditions, for example, when the engine is stopped, the restriction position by the stopper mechanism can be changed to fully open the intake throttle valve, so that shocks and vibrations can be suppressed and the engine can be stopped quietly. Furthermore, it is possible to reduce intake noise during deceleration and suppress smoke during acceleration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るディーゼルエンジンの
排気還流制御装置の全体構成図、第2図は第1図のシス
テムの拡大部分構成図、第3図は第1図の吸気絞り弁の
全閉制御状態を示す部分構成図、 第4図は吸気絞り弁の半開制御状態を示す部分構成図、 第5図は吸気絞り弁の全開制御状態を示す部分構成図、 第6図は吸気絞り弁の吸気負圧定圧制御状態を示す部分
構成図、 第7図は吸気絞り弁およびEGRの制i1状態をエンジ
ン回転数とアクセル開度に関して表わしたマツプ、 第8図はエンジン回転数と吸気負圧、EGR率、NOx
低減率との関係図、 第9図は第2図の装置の変形例を示す部分断面図、 第10図は第2図の装置のさらに別の変形例を示す部分
断面図、 である。 1・・・・・・ディーゼルエンジン 2・・・・・・燃料噴射ポンプ 3・・・・・・ECU (電子制御装W)4・・・・・
・吸気通路 5・・・・・・排気通路 6・・・・・・EGR通路 7・・・・・・EGR弁 8・・・・・・EGR用アクチュエータ9・・・・・・
吸気絞り弁 10・・・・・・アクチュエータ 11・・・・・・バキュームポンプ 12・・・・・・EVRV (電気代負圧調整弁)13
.15.23.24−− V S V (ハキュームス
イチングバルブ) 14・・・・・・圧力センサ 17・・・・・・バキュームモジュレータ21.25.
26・・・・・・ダイヤフラム32・・・・・・座部 33.33A、33B・・・・・・ストッパ部材35・
・・・・・レバー開度センサ 36・・・・・・エンジン回転数センサ41・・・・・
・イグニッションスイッチ45・・・・・・燃料カット
弁 ト気ヤく肛屈
FIG. 1 is an overall configuration diagram of an exhaust recirculation control device for a diesel engine according to an embodiment of the present invention, FIG. 2 is an enlarged partial configuration diagram of the system shown in FIG. 1, and FIG. 3 is an intake throttle valve shown in FIG. 1. 4 is a partial configuration diagram showing a fully closed control state of the intake throttle valve. FIG. 5 is a partial configuration diagram showing a fully open control state of the intake throttle valve. A partial configuration diagram showing the intake negative pressure constant pressure control state of the throttle valve, Fig. 7 is a map showing the intake throttle valve and EGR control i1 state in terms of engine speed and accelerator opening, and Fig. 8 shows the engine speed and intake air. Negative pressure, EGR rate, NOx
FIG. 9 is a partial sectional view showing a modification of the device shown in FIG. 2; FIG. 10 is a partial sectional view showing still another modification of the device shown in FIG. 2. 1... Diesel engine 2... Fuel injection pump 3... ECU (electronic control unit W) 4...
・Intake passage 5... Exhaust passage 6... EGR passage 7... EGR valve 8... EGR actuator 9...
Intake throttle valve 10... Actuator 11... Vacuum pump 12... EVRV (electricity bill negative pressure regulating valve) 13
.. 15.23.24--VSV (vacuum switching valve) 14...Pressure sensor 17...Vacuum modulator 21.25.
26...Diaphragm 32...Seat portion 33.33A, 33B...Stopper member 35.
... Lever opening sensor 36 ... Engine rotation speed sensor 41 ...
・Ignition switch 45...Fuel cut valve is bent.

Claims (1)

【特許請求の範囲】[Claims] 1.排気通路と吸気通路とを連通するEGR通路を備え
、吸気通路の前記EGR通路開口部よりも上流に吸気絞
り弁を有し、該吸気絞り弁下流の負圧を検知して該負圧
を略一定に保つよう吸気絞り弁の開度を調節可能な定圧
制御機構を備えたディーゼルエンジンの排気還流制御装
置において、前記吸気絞り弁の開度を調節するアクチュ
エータ又は吸気絞り弁自身のいずれかに対し、吸気絞り
弁の一定開度以下への閉方向作動を規制可能な、かつ該
規制位置をエンジンの運転条件に応じて前記一定開度よ
りもさらに吸気絞り弁低開度側に変更可能なストッパ機
構を設けたことを特徴とするディーゼルエンジンの排気
還流制御装置。
1. An EGR passage that communicates an exhaust passage and an intake passage is provided, and an intake throttle valve is provided upstream of the EGR passage opening of the intake passage, and negative pressure downstream of the intake throttle valve is detected and the negative pressure is reduced. In an exhaust recirculation control device for a diesel engine equipped with a constant pressure control mechanism capable of adjusting the opening degree of an intake throttle valve to maintain a constant value, the invention provides a method for controlling either an actuator that adjusts the opening degree of the intake throttle valve or the intake throttle valve itself. a stopper that is capable of regulating the closing direction operation of the intake throttle valve below a certain opening degree, and that is capable of changing the regulating position to a lower opening side of the intake throttle valve than the constant opening degree according to engine operating conditions; An exhaust recirculation control device for a diesel engine characterized by being provided with a mechanism.
JP1087887A 1989-04-10 1989-04-10 Exhaust gas recirculation control device for diesel engine Pending JPH02267331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1087887A JPH02267331A (en) 1989-04-10 1989-04-10 Exhaust gas recirculation control device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1087887A JPH02267331A (en) 1989-04-10 1989-04-10 Exhaust gas recirculation control device for diesel engine

Publications (1)

Publication Number Publication Date
JPH02267331A true JPH02267331A (en) 1990-11-01

Family

ID=13927387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087887A Pending JPH02267331A (en) 1989-04-10 1989-04-10 Exhaust gas recirculation control device for diesel engine

Country Status (1)

Country Link
JP (1) JPH02267331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017708A (en) * 2010-07-09 2012-01-26 Daihatsu Motor Co Ltd Method of controlling intake throttle valve for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017708A (en) * 2010-07-09 2012-01-26 Daihatsu Motor Co Ltd Method of controlling intake throttle valve for internal combustion engine

Similar Documents

Publication Publication Date Title
JPS6118659B2 (en)
EP1798394B1 (en) Internal combustion engine with supercharger
JPS6352227B2 (en)
JPS6128819B2 (en)
JPS6145051B2 (en)
JPH02267331A (en) Exhaust gas recirculation control device for diesel engine
JPH029080Y2 (en)
JPS6054491B2 (en) compression ignition internal combustion engine
US4231336A (en) Exhaust gas recirculation system for an internal combustion engine
JP2591148B2 (en) Exhaust recirculation control device for diesel engine
JP2742605B2 (en) Exhaust recirculation control device for diesel engine
JPH02267358A (en) Exhaust gas recirculation control device for diesel engine
JPH02267359A (en) Exhaust gas recirculatoin control device for diesel engine
JPH02267361A (en) Exhaust gas recirculation control device for diesel engine
JPH02267330A (en) Exhaust gas recirculation control device for diesel engine
JPH0350369A (en) Apparatus for controlling exhaustion rotary flow of diesel engine
US4206731A (en) Exhaust gas recirculation for an internal combustion engine
US4182293A (en) Exhaust gas recirculation system for an internal combustion engine
JP3252633B2 (en) Exhaust gas recirculation system for internal combustion engine
JPS6240105Y2 (en)
JPS6231656Y2 (en)
JPS6320853Y2 (en)
JPS6032369Y2 (en) Exhaust gas recirculation device
JPS6319585Y2 (en)
JPH02267360A (en) Exhaust gas recirculation control device for diesel engine