JPH02267143A - Cement product reinforced with high strength fibers and production thereof - Google Patents

Cement product reinforced with high strength fibers and production thereof

Info

Publication number
JPH02267143A
JPH02267143A JP8785589A JP8785589A JPH02267143A JP H02267143 A JPH02267143 A JP H02267143A JP 8785589 A JP8785589 A JP 8785589A JP 8785589 A JP8785589 A JP 8785589A JP H02267143 A JPH02267143 A JP H02267143A
Authority
JP
Japan
Prior art keywords
cement
fibers
reinforcing
high strength
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8785589A
Other languages
Japanese (ja)
Inventor
Keiichi Kosuge
啓一 小菅
Masaaki Mashita
昌章 真下
Etsuro Sakai
悦郎 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP8785589A priority Critical patent/JPH02267143A/en
Publication of JPH02267143A publication Critical patent/JPH02267143A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1077Cements, e.g. waterglass

Abstract

PURPOSE:To obtain concrete products of high strength and satisfactory flame retardancy by using fibers reinforced by adhering a paste mainly containing a cement substance, a ultrafine powder and a high-performance water-reducing agent to the fibers. CONSTITUTION:The fibers for reinforcing concrete are coated with a paste mainly containing a cement substance, an ultrafine powder, and a high performance water-reducing agent by the hand lay-up method or impregnation. The reinforcing material is used in a single form or as a matrix-reinforcing material mainly containing water-hardening substance such as cement. Thus, fiber- reinforced cement products having high strength and satisfactory flame retardancy are obtained without hazardous asbestos.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は高強度繊維補強コンクリート製品及びその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a high-strength fiber-reinforced concrete product and a method for producing the same.

〈従来の技術とその課題〉 従来、繊維補強コンクリート製品、例えば、屋根材、壁
材及びブロック等は、例えば、石綿や耐アルカリガラス
繊維など及びフィブリル化した有機フィルムより製造し
たネットを積層したものを補強繊維として使用し、非常
に有用であることが知られている。
<Conventional technology and its problems> Conventionally, fiber-reinforced concrete products such as roofing materials, wall materials, and blocks are made by laminating nets made of asbestos, alkali-resistant glass fiber, etc., and fibrillated organic films. is known to be very useful as a reinforcing fiber.

しかしながら、石綿を使用した繊維補強コンクリート製
品は、石綿が公害源となることから、使用の禁止が切望
されており、環境規制も強化されている。
However, since asbestos is a source of pollution, it is strongly desired to ban the use of fiber-reinforced concrete products that use asbestos, and environmental regulations are also being tightened.

石綿に代わるtamとして耐アルカリガラス繊維やセラ
ミック繊維があるが、これら繊維は価格が著しく高く、
建材あるいはコンクリート製品への使用には経済的な面
から難しいという課題があった(ガラスの事典、198
5年朝倉書店発行等)。
Alkali-resistant glass fibers and ceramic fibers are available as TAM to replace asbestos, but these fibers are extremely expensive.
There was a problem that it was difficult to use it for building materials or concrete products from an economical point of view (Encyclopedia of Glass, 198
Published by Asakura Shoten, etc.).

また、パルプや合成繊維等の有機繊維は、表面が平滑で
あるため、応力がかかった時に抜けてしまうという課題
や、可燃性を有するので、多量に添加すれば建材として
の難燃性が阻害されるという課題があった。
Additionally, since organic fibers such as pulp and synthetic fibers have smooth surfaces, they can come off when stress is applied, and they are flammable, so adding them in large amounts will inhibit their flame retardancy as building materials. There was an issue of being exposed.

一方、マトリックスであるセメント自体の強度を改善す
る方法が種々検討されているが、基本的には水セメント
比を低下させ、空隙を減少させるため、耐火試験時に爆
裂が発生するなどの課題があった。
On the other hand, various methods are being considered to improve the strength of the cement itself, which is the matrix, but basically they lower the water-cement ratio and reduce the voids, which causes problems such as explosions during fire resistance tests. Ta.

さらに、補強繊維としてフィブリル化した有機フィルム
より製造したネットを積層したものを使用することも提
案されている(特公昭55−46868号公報)が実質
的な曲げ強度は改善されてなく、繊維量が多いため耐火
性が劣るなどの課題があった。
Furthermore, it has been proposed to use a laminated net made of fibrillated organic film as reinforcing fibers (Japanese Patent Publication No. 55-46868), but the actual bending strength has not been improved, and the fiber content has not been improved. There were problems such as poor fire resistance due to the large amount of

本発明者らは、上記課題を解決すべく種々検討した結果
、特定の組成物を主成分とする混練物を付着した補強繊
維を補強材料として使用することによって、経済的に優
れ、石綿使用の繊維補強コンクリート製品に匹敵する高
強度を有し、しかも、充分な難燃性を有する高強度繊維
補強コンクリート製品が得られる知見を得て、本発明を
完成するに至った。
As a result of various studies to solve the above problems, the present inventors have found that by using reinforcing fibers to which a kneaded material containing a specific composition as a main component is attached as a reinforcing material, it is economically superior and eliminates the use of asbestos. The present invention was completed based on the knowledge that a high-strength fiber-reinforced concrete product having high strength comparable to that of fiber-reinforced concrete products and sufficient flame retardancy can be obtained.

く課題を解決するための手段〉 即ち、本発明はセメント質物質、超微粉、高性能減水剤
及び水を主成分とする混練物を付着した補強繊維を補強
材料としてなる高強度繊維補強コンクリート製品であり
、その製品の製造方法であ以下、本発明の詳細な説明す
る。
Means for Solving the Problems> That is, the present invention provides a high-strength fiber-reinforced concrete product made of reinforcing fibers to which a kneaded material containing cementitious material, ultrafine powder, a high-performance water reducing agent, and water as the main components is attached. The present invention will be described in detail below as a method for manufacturing the product.

本発明で使用するセメント質物質(以下セメント物とい
う)とは、普通・早強・超早強・白色・耐硫酸塩等の各
種ポル1〜ランドセメントや、これらポルトランドセメ
ントにスラグやフライアッシュなどを混合した混合セメ
ントなどのセメン1−1さらには、これら各種セメント
とボブラン反応性物質(以下ポゾラン物という)や潜在
水硬性物質(以下潜在物という)を併用したものである
The cementitious materials (hereinafter referred to as cement materials) used in the present invention include various types of por 1 to land cements such as normal, early strength, super early strength, white, and sulfate resistant, and these portland cements, as well as slag and fly ash. Cement 1-1, such as mixed cement, is a mixture of these various cements and Boblan reactive substances (hereinafter referred to as pozzolans) and latent hydraulic substances (hereinafter referred to as latent substances).

ポゾラン物とは水酸化カルシウムとともに、硬化可能な
反応性のケイ酸を含む物質で、例えば、ライアッシュ、
シラスバルーン、もみがら灰及び高炉スラグ等又はその
混合物である。
Pozzolanic substances are substances that contain reactive silicic acid that can be hardened together with calcium hydroxide, such as lye ash,
These include whitebait balloons, rice husk ash, blast furnace slag, etc., or a mixture thereof.

潜在物とは、例えば、高炉スラグのように、それ自身で
は水硬性を示さないが、アルカリなどの刺激剤と併用す
ることにより、強固に硬化するものである。
The latent material is, for example, a material such as blast furnace slag that does not exhibit hydraulic properties by itself, but becomes strongly hardened when used in combination with a stimulant such as an alkali.

刺激剤としては、各種セメント、水酸化カルシウム及び
セソコウ等の一種又は二種以上が使用可能である。
As the stimulant, one or more of various types of cements, calcium hydroxide, slag, etc. can be used.

ポゾラン物又は潜在物の使用量は、セメント100重量
部に対し、通常5〜95重量部が好ましく、強度発現性
や爆裂防止の面から、40〜60重量部がより好ましい
The amount of pozzolanic material or latent material to be used is generally preferably 5 to 95 parts by weight, and more preferably 40 to 60 parts by weight from the viewpoint of strength development and explosion prevention.

セメント物の粒度は、特に限定されるものではないが、
通常平均粒径10〜30μ程度である。
The particle size of cement is not particularly limited, but
The average particle size is usually about 10 to 30 microns.

本発明で使用する超微粉とは、平均粒径がセメント質よ
り少なくとも1オーダー低いものであり、特に、混練物
の流動性の面から、平均粒径が2オーダー低いものが好
ましい。
The ultrafine powder used in the present invention has an average particle size that is at least one order of magnitude lower than that of cementitious powder, and in particular, from the viewpoint of fluidity of the kneaded product, one that has an average particle diameter of two orders of magnitude lower is preferable.

具体的には、炭酸カルシウム、シリカゲル、オパール質
けい石、フライアッシュ、スラグ、酸化チタン及び酸化
アルミニュム等が挙げられ、特に、シリコン、含シリコ
ン合金及びジルコニアを製造する際に副生するシリカダ
スト(シリカヒユーム)やシリカ質ダスト、高炉スラグ
の粉砕・分級品の使用が好ましい。
Specific examples include calcium carbonate, silica gel, opal silica, fly ash, slag, titanium oxide, and aluminum oxide. In particular, silica dust (which is a by-product when manufacturing silicon, silicon-containing alloys, and zirconia) It is preferable to use crushed and classified products such as silica fume), siliceous dust, and blast furnace slag.

超微粉の使用量は、セメント物97〜60重量部に対し
、3〜40重量部が好ましい。3重量部未満では高強度
や高接着性を得ることが難しく、40重量部を越えると
、混練物の流動性が低下し、成形物を得ることが難しく
、強度発現も不充分になる傾向がある。
The amount of ultrafine powder used is preferably 3 to 40 parts by weight based on 97 to 60 parts by weight of the cement. If it is less than 3 parts by weight, it is difficult to obtain high strength and high adhesiveness, and if it exceeds 40 parts by weight, the fluidity of the kneaded product decreases, it is difficult to obtain a molded product, and the strength development tends to be insufficient. be.

本発明で使用する高性能減水剤(以下本減水剤という)
とは、多量に添加しても凝結の過遅延や過度の空気連行
を伴わない、分散能力の大きな界面活性剤であって、ナ
フタレンスルポン酸ホルムアルデヒド縮合物の塩、メラ
ミンスルホン酸ホルムアルデヒド縮合物の塩、高分子量
リグニンスルホン酸塩及びポリカルボン酸塩等を主成分
とするものが挙げられる。
High performance water reducing agent used in the present invention (hereinafter referred to as the present water reducing agent)
is a surfactant with a large dispersion ability that does not cause too much delay in condensation or excessive air entrainment even when added in large amounts, and is a surfactant with a large dispersion ability that does not cause excessive condensation delay or excessive air entrainment. Examples include those whose main components are salts, high molecular weight lignin sulfonates, polycarboxylate salts, and the like.

本減水剤は、混練物を低水比で得るために必要なもので
あり、従来の使用量は、セメンl−100重量部に対し
て固形分換算で0.3〜1重量部であったが、本発明で
は、それよりも多量に添加することが好ましい。具体的
には、セメント物と超微粉の混合物(以下粉体という)
100重量部に対し、固形分換算で多くとも10重量部
であり、それより多量に使用すると硬化反応にかえって
悪影響を与える(噴量がある。
This water reducing agent is necessary to obtain a kneaded product with a low water ratio, and the conventional amount used was 0.3 to 1 part by weight in terms of solid content per 100 parts by weight of cement. However, in the present invention, it is preferable to add it in a larger amount. Specifically, a mixture of cement and ultrafine powder (hereinafter referred to as powder)
The amount is at most 10 parts by weight in terms of solid content per 100 parts by weight, and if it is used in a larger amount, it will have an adverse effect on the curing reaction (there is a problem with the amount of spraying).

以上の材料の他、必要に応し不活性な無機粉体(以下無
機粉という)や骨材を使用することができる。
In addition to the above-mentioned materials, inert inorganic powder (hereinafter referred to as inorganic powder) or aggregate can be used as necessary.

無機粉を構成する成分的な制限は特になく、酸化物や非
酸化物系のセラミックス粉などが使用可能である。具体
的には、シリカ、アルミナ、ムライト、マグネシア、ス
ピネル、炭化けい素及び各種窒化物等があり、経済性を
考慮すると、石粉などの鉱物質微粉末の使用が好ましい
There are no particular restrictions on the components of the inorganic powder, and oxide and non-oxide ceramic powders can be used. Specifically, there are silica, alumina, mullite, magnesia, spinel, silicon carbide, various nitrides, etc. Considering economic efficiency, it is preferable to use fine mineral powder such as stone powder.

また、本発明で使用する骨材は、特に制限されるもので
はないが、より硬質な骨材が好ましい。
Further, the aggregate used in the present invention is not particularly limited, but a harder aggregate is preferable.

特に、モース硬度6以上、好ましくは7以上、又は、ヌ
ープ圧子硬度700kg/mm2以」二、好ましくは8
00kg/m+n2以上のいずれかの基準で選択される
ものを使用することは、強度を著しく向上させる面から
好ましい。
In particular, Mohs hardness is 6 or more, preferably 7 or more, or Knoop indenter hardness is 700 kg/mm2 or more, preferably 8
It is preferable to use one selected on the basis of any criterion of 00 kg/m+n2 or more from the viewpoint of significantly improving the strength.

上記基準を満足するものとしては、けい石、エメリー、
黄鉄鉱、磁鉄鉱、黄玉、ローソン石、コランダム、ツェ
ナサイト及びスピネル等が挙げられる。
Those that meet the above criteria include silica, emery,
Examples include pyrite, magnetite, pyrite, lawsonite, corundum, zenasite, and spinel.

さらに、上記材料の他、通常コンクリ−1−に使用され
ている、例えば、膨張材、象、硬材及び収縮低減剤等、
あるいは、各種の化学混和剤などの混和材料の併用も可
能である。
Furthermore, in addition to the above-mentioned materials, materials commonly used in concrete 1-, such as expansive materials, hardwoods, hardwoods, and shrinkage reducing agents, etc.
Alternatively, it is also possible to use admixture materials such as various chemical admixtures.

本発明で使用する補強材料とは、上記材料を主成分とす
る混練物を付着してなる補強繊維である。
The reinforcing material used in the present invention is a reinforcing fiber formed by adhering a kneaded material containing the above-mentioned material as a main component.

補強繊維の成分は、一般に使用されているものでよく、
例えば、ビニロン・ポリプロピレン・ポリエチレン・ア
クリロニトリル・アラミド・セルロース等の天然又は合
成の有機繊維、スチール・ステンレス・アルミナ等の金
属・天然・合成鉱物繊維及び炭素繊維等が挙げられる。
The reinforcing fiber components may be those commonly used.
Examples include natural or synthetic organic fibers such as vinylon, polypropylene, polyethylene, acrylonitrile, aramid, and cellulose; metal, natural, and synthetic mineral fibers such as steel, stainless steel, and alumina; and carbon fibers.

補強繊維の使用形態としては、チョツプドファイバー以
外に、繊維によって得られた、例えば、ネット、ロッド
、マント及び織物等の繊維集合体などが挙げられ、その
うち、薄物製品では、その経済性の面から、ネット状製
品が好ましく、補強効果、軽量化及び経済性の面から、
有機繊維のネット状製品が特に好ましい。
In addition to chopped fibers, reinforcing fibers can be used in fiber aggregates such as nets, rods, cloaks, and woven fabrics. From this point of view, net-like products are preferable, and from the viewpoints of reinforcing effect, weight reduction, and economic efficiency,
Net-like products of organic fibers are particularly preferred.

補強繊維の使用量は、高強度繊維補強セメント製品中の
水硬性物質を主成分とする組成物100体積部に対し、
10体積部以下が好ましく、5体積部以下がより好まし
く、2体積部以下が最も好ましい。
The amount of reinforcing fiber used is 100 parts by volume of a composition whose main component is a hydraulic substance in a high-strength fiber-reinforced cement product.
The amount is preferably 10 parts by volume or less, more preferably 5 parts by volume or less, and most preferably 2 parts by volume or less.

また、本発明において、混練物を付着してなる補強繊維
とは、混練物が補強繊維の表面や隙間に存在する補強繊
維である。
Furthermore, in the present invention, the reinforcing fibers to which a kneaded material is attached are reinforcing fibers in which the kneaded material is present on the surface or in gaps of the reinforcing fibers.

混練物の付着方法は、ハンドレーアノブ法、含浸法、ロ
ール圧延法及びプレス成形法等が考えられる。
Possible methods for applying the kneaded material include the Handley-Arnob method, impregnation method, roll rolling method, and press molding method.

ハンドレーアツブ法とは、例えば、ネット等の補強繊維
を裁断して型の上に敷き詰め、その補強繊維の上から、
混練物を、はけやローラーで塗り込んで作製する方法で
ある。
The Handley Atsushi method is, for example, cutting reinforcing fibers such as net and laying them on a mold, and then placing the reinforcing fibers over the reinforcing fibers.
This method involves applying the kneaded material with a brush or roller.

含浸法とは、例えば、混練物の入った容器の中に補強繊
維を潜らせ、補強繊維に混練物を付着させるものである
The impregnation method is, for example, a method in which reinforcing fibers are immersed in a container containing a kneaded material, and the kneaded material is attached to the reinforcing fibers.

また、ロール圧延法やプレス成形法とは、補強繊維に混
練物を接触させ、ロールにより圧延するか、プレスによ
り圧力を加えることにより、繊維間の隙間をなくし、よ
り付着力を強固にするものである。
Additionally, the roll rolling method and press molding method are methods in which a kneaded material is brought into contact with the reinforcing fibers and rolled with rolls or pressure is applied with a press to eliminate gaps between the fibers and strengthen the adhesion. It is.

補強材料の使用方法は、補強材料単独で使用しても良く
、必要に応じて、セメントなどの水硬性物質を主成分と
するマトリックスを補強材料の両面又は片面、あるいは
、補強材料をマトリックスの両面に配置することができ
る。
The reinforcing material may be used alone, and if necessary, a matrix mainly composed of a hydraulic substance such as cement may be used on both sides or one side of the reinforcing material, or the reinforcing material may be used on both sides of the matrix. can be placed in

マトリックスは、特に制限を受けるものではなく、通常
の流し込み成形、押し出し成形、抄造法及び乾式プレス
法等で得られるセメント製品等のほか、ALCなどの利
用も可能であり、必要に応じて繊維などを配合すること
もできる。
The matrix is not particularly limited, and in addition to cement products obtained by ordinary pour molding, extrusion molding, paper making, dry pressing, etc., it is also possible to use ALC, etc., and if necessary, fibers etc. can also be blended.

さらに、本発明では、混練物に多量の骨材を加えたもの
を使用しても良い。
Furthermore, in the present invention, a kneaded material containing a large amount of aggregate may be used.

マ) IJソックス補強材料の成形方法は、一般には硬
化前に一体化させるが、硬化後、再度、混練物や接着剤
を用いて一体化させることも可能である。
M) The method for forming the IJ sock reinforcing material is generally to integrate it before curing, but it is also possible to integrate it again after curing using a kneaded material or an adhesive.

〈実施例) 以下、実施例を挙げ、本発明をさらに詳細に説明する。<Example) Hereinafter, the present invention will be explained in more detail by giving examples.

実施例1 セメント物−A60.3重量部、超微粉13.7重量部
、本減水剤1.6重量部及び水16.4重量部を千代田
技研工業■製オムニミキサーにより混練し、表−1に示
す補強繊維を使用してハンドレーアンプ法により混練物
を付着させ、補強材料とした。
Example 1 60.3 parts by weight of cement-A, 13.7 parts by weight of ultrafine powder, 1.6 parts by weight of this water reducing agent and 16.4 parts by weight of water were kneaded using an omni mixer manufactured by Chiyoda Giken Kogyo ■. A kneaded material was attached using the reinforcing fiber shown in Figure 1 by the Handley Amplifier method to obtain a reinforcing material.

セメント物−A39.1重量部、セメント物−B33.
4重量部、骨材16.7重量部及び水10.8重量部を
用いて作製した7トリツクスに、上記補強材料を挟み、
プレス圧100kg/cm2のプレス成形により、長さ
90cm、幅45cm、厚さ0.5cmの板状体を成形
して、常法により養生硬化し、曲げ強度を測定した。比
較のため、補強材料を挟まずに成形硬化して、同様の試
験を行った。結果を表−1に併記する。
Cement material-A39.1 parts by weight, cement material-B33.
The reinforcing material was sandwiched between 7 Tricks made using 4 parts by weight, 16.7 parts by weight of aggregate, and 10.8 parts by weight of water,
A plate-shaped body having a length of 90 cm, a width of 45 cm, and a thickness of 0.5 cm was formed by press molding at a press pressure of 100 kg/cm 2 , and cured and hardened by a conventional method, and the bending strength was measured. For comparison, a similar test was conducted by molding and curing without sandwiching the reinforcing material. The results are also listed in Table-1.

表−1 曲げ強度(kg/cm”ゝ 〈使用材料〉 セメント物−八:ユニオンセメント社製、早強ポルトラ
ンドセメント B:電源開発社製、電光フライアッ シュ :日本重化社製、シリカヒユーム :第−工業製薬社製、商品名[セ ルフロー110PJ主成分 C:帝国産業社製、無機物含有ポリ プロピレンネット TR−11/12 D:東洋化学社製、ポリプロピレン 製ネット試作品 E:カネボウ社製、ビニロン製ネッ ト  タフベルA−5300 F:日本石油化学社製、ポリエチレ ン製ネ ッ ト  ワリフ MS−28:砕砂 :水道水 超微粉 本減水剤 補強繊維 骨材 水 〈発明の効果〉 本発明により、有害な石綿を含有せず、高強度を有し、
しかも、充分な難燃性を有する高強度繊維補強セメント
製品を提供することが可能となった。
Table-1 Bending strength (kg/cm”ゝゝゝゝ〈Materials used〉) Cement material-8: Manufactured by Union Cement Co., Ltd., Early strength Portland cement B: Manufactured by Electric Power Development Co., Ltd., Lightning fly ash: Manufactured by Nippon Heavy Industries, Ltd., Silica hume: No.-8 Manufactured by Kogyo Seiyaku Co., Ltd., product name [Cellflow 110PJ Main component C: Manufactured by Teikoku Sangyo Co., Ltd., inorganic-containing polypropylene net TR-11/12 D: Manufactured by Toyo Kagaku Co., Ltd., polypropylene net prototype E: Manufactured by Kanebo Co., Ltd., vinylon net Toughbell A-5300 F: Manufactured by Nippon Petrochemical Co., Ltd., polyethylene net warif MS-28: Crushed sand: Tap water ultra-fine powder, water reducer, reinforced fiber aggregate, water <Effects of the invention> The present invention eliminates the presence of harmful asbestos. , has high strength,
Furthermore, it has become possible to provide a high-strength fiber-reinforced cement product that has sufficient flame retardancy.

Claims (2)

【特許請求の範囲】[Claims] (1)セメント質物質、超微粉、高性能減水剤及び水を
主成分とする混練物を付着した補強繊維を補強材料とし
てなる高強度繊維補強コンクリート製品。
(1) A high-strength fiber-reinforced concrete product made of reinforcing fibers to which a kneaded material containing cementitious material, ultrafine powder, high-performance water reducing agent, and water as the main components is attached.
(2)請求項1記載の補強材料を使用することを特徴と
する高強度繊維補強コンクリート製品の製造方法。
(2) A method for manufacturing a high-strength fiber-reinforced concrete product, which comprises using the reinforcing material according to claim 1.
JP8785589A 1989-04-10 1989-04-10 Cement product reinforced with high strength fibers and production thereof Pending JPH02267143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8785589A JPH02267143A (en) 1989-04-10 1989-04-10 Cement product reinforced with high strength fibers and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8785589A JPH02267143A (en) 1989-04-10 1989-04-10 Cement product reinforced with high strength fibers and production thereof

Publications (1)

Publication Number Publication Date
JPH02267143A true JPH02267143A (en) 1990-10-31

Family

ID=13926500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8785589A Pending JPH02267143A (en) 1989-04-10 1989-04-10 Cement product reinforced with high strength fibers and production thereof

Country Status (1)

Country Link
JP (1) JPH02267143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003796A1 (en) * 1997-07-16 1999-01-28 Toho Rayon Co., Ltd. Reinforcing material, method of production thereof, reinforcing/repairing method using the reinforcing material, reinforcing/repairing structure, and structural element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003796A1 (en) * 1997-07-16 1999-01-28 Toho Rayon Co., Ltd. Reinforcing material, method of production thereof, reinforcing/repairing method using the reinforcing material, reinforcing/repairing structure, and structural element

Similar Documents

Publication Publication Date Title
RU2492054C2 (en) Method of making cement-based armor plates
JP4562988B2 (en) Structural cladding panel
WO2015095778A1 (en) Improved fire core compositions and methods
JPS62297265A (en) Carbon fiber composite high strength refractories
WO2015130677A1 (en) Improved fire core compositions and methods
US6846358B2 (en) Fire door core
CA2645402A1 (en) Cement-based fire door core
JP4648668B2 (en) Inorganic board and method for producing the same
JP2002166406A (en) Method for manufacturing woody cement board
EP0222339B1 (en) Glass fiber-reinforced cement press molded body and process for the production thereof
JPH02267146A (en) Concrete composition reinforced with high-strength fiber, product using the composition and production of the product
JP3245487B2 (en) Method for producing inorganic multilayer molded article
JPH02267143A (en) Cement product reinforced with high strength fibers and production thereof
JPS61500905A (en) How to adjust the properties of concrete
JP2006069807A (en) Inorganic board and its manufacturing method
KR102323611B1 (en) Method of repairing and reinforcing concrete structures using high tensile fiber
JPS60151263A (en) Reinforced polymer cementitious material
JP2006069806A (en) Inorganic board and its manufacturing method
JPH0214860A (en) Building material and production thereof
JP2002012465A (en) Extrusion compact and its manufacturing method
JPH0872195A (en) Laminate
JP2002293602A (en) Papermaking process of hydraulic material
JP2008156136A (en) Refractory coating material for plaster
JPH0733492A (en) Hydraulic inorganic composition
JP4198868B2 (en) Manufacturing method of fiber reinforced inorganic board