JPH0226690A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPH0226690A
JPH0226690A JP17647788A JP17647788A JPH0226690A JP H0226690 A JPH0226690 A JP H0226690A JP 17647788 A JP17647788 A JP 17647788A JP 17647788 A JP17647788 A JP 17647788A JP H0226690 A JPH0226690 A JP H0226690A
Authority
JP
Japan
Prior art keywords
coal ash
wastewater
waste water
added
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17647788A
Other languages
Japanese (ja)
Inventor
Satoshi Okazaki
聡 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Engineering Co Ltd
Original Assignee
Fuji Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Engineering Co Ltd filed Critical Fuji Engineering Co Ltd
Priority to JP17647788A priority Critical patent/JPH0226690A/en
Publication of JPH0226690A publication Critical patent/JPH0226690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE:To perform the separation of flocs from supernatant water by sedimentation within a short time and to further achieve the miniaturization of equipment machinery and the reduction of treatment cost, in the purifying treatment of sewage or livestock waste water, by adding fine particulate coal ash to raw waste water under stirring before a flocculant is added to and mixed with said waste water. CONSTITUTION:Fine particulate coal ash having particle size distribution wherein ash having a particle size of 5-500mum is 70-90wt.% is preliminarily added to raw waste water or pretreated water to be mixed therewith under stirring. When existing coal ash is added at this time, the adhesion/adsorption action of the suspended substance such as colloid or org./inorg. component in waste water becomes active. However, since fine particulate coal ash having said suspended substance adhered thereto and adsorbed thereby has a slow sedimentation speed, a flocculant (e.g., ferric chloride) is further added to and mixed with the waste water. By this method, flocs are separated from supernatant water by sedimentation within an extremely short time. Since this method is low in the dilution rate of raw waste water and good in the dehydration properties of conc. sludge, post-treatment can be easily performed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、廃水処理法に関し、詳しくは下水。[Detailed description of the invention] <Industrial application field> This invention relates to a wastewater treatment method, and more particularly to sewage.

尿尿又は養豚場廃水等の家畜廃水、水産加工廃水その他
の食品加工廃水、各種工場廃水9重金属含有廃水等の浄
化処理を行なう処理法に関する。
This invention relates to a treatment method for purifying livestock wastewater such as urine or pig farm wastewater, fishery processing wastewater and other food processing wastewater, various factory wastewaters, and wastewater containing heavy metals.

〈従来の技術及びその問題点〉 従来、各種廃水例えば生Jim、 m1lll場廃水等
の家畜廃水、各種の食品加工廃水等のaSS、八80D
及びCODを有する廃水の浄化処理法としては、スクリ
ーン等により粗大残渣を除去する固形分離機を通過させ
た後、嫌気性消化処理方法、生汚泥を20〜40倍に希
釈する活性汚泥処理方法或いは濃厚な廃水を比較的長時
間連続してばつ気して腐敗性有機物の安定化を図る好気
性消イヒ方法、近年では大容社のばつ気槽で低負荷運転
されるラグーン処理方法、又嫌気性、好気性処理を繰返
す回分式などの生物処理方法が一般に採用されていた。
<Prior art and its problems> Conventionally, various wastewaters such as raw Jim, livestock wastewater such as mill wastewater, various food processing wastewaters, etc. have been processed using aSS, 880D
The purification treatment method for wastewater containing COD includes an anaerobic digestion treatment method, an activated sludge treatment method in which raw sludge is diluted 20 to 40 times after passing through a solid separator that removes coarse residue using a screen, etc. The aerobic quenching method involves aeration of concentrated wastewater over a relatively long period of time to stabilize putrefying organic matter, and in recent years, the lagoon treatment method in which Daiyosha's aeration tank is operated at low load, and the anaerobic quenching method. Batch-type biological treatment methods, which involve repeated aerobic and aerobic treatments, were generally used.

しかし乍ら、この様な従来処理法は消化槽やばっ気槽な
どに大処理容積を要し、その附属設備。
However, such conventional treatment methods require large processing volumes such as digestion tanks and aeration tanks, and their attached equipment.

処理コスト等が莫大なものになっていた。Processing costs, etc. were enormous.

然るに、生物処理方式は寒冷地の冬期に活性汚泥菌の不
活性化を招き、その処理能力が茗しく低下してしまうた
め、処理設備の安全率が高くとられ、更には設備の大型
化、保温対策の上屋設備や保温設備を要し、又ランニン
グコストが増すなどの問題を有していた。
However, biological treatment methods lead to the inactivation of activated sludge bacteria during the winter in cold regions, and the treatment capacity deteriorates rapidly, so the safety factor of the treatment equipment is set high, and the equipment becomes larger and larger. There were problems such as the need for heat-insulating shed equipment and heat-insulating equipment, and increased running costs.

また、嫌気性消化処理方法、活性汚泥処理方法。Also, anaerobic digestion treatment method, activated sludge treatment method.

好気性消化方法9回方式ラグーン処理方法は発生する余
剰汚泥が高濃度廃水はど増大し、その汚泥を真空脱水機
、ベルトプレス、フィルタープレス。
Aerobic digestion method 9 times method In the lagoon treatment method, the excess sludge generated is increased into high concentration wastewater, and the sludge is processed into a vacuum dehydrator, belt press, and filter press.

遠心脱水機、スクリュープレスなどの脱水機を用いて行
なうが、その汚泥は一般的に難脱水性で、処理量や脱水
ケーキ含水率ともに良好ではなく、大型なばつ気槽容積
、ブロワ−等の附属設備の大型化とともに脱水処理設備
機器が大型なものになっているのが現状である。
This is done using dewatering machines such as centrifugal dehydrators and screw presses, but the sludge is generally difficult to dewater, and the throughput and water content of the dehydrated cake are not good. The current situation is that dehydration processing equipment has become larger as auxiliary equipment has become larger.

〈発明が解決しようとする技術的課題〉そこで、本件出
願人は長年の研究の結果、石炭火力発電所等から出る微
粒石炭灰が此種の廃水処理において、凝集沈降性を著し
く高め、上水を浄化し又凝集沈降したスラッジの脱水性
の向上、脱水ケーキ含水率の低下に極めて効果的である
ことを見出し、開発完成するに至ったものであって、そ
の具体的思想は粒径を異にする石炭灰粒子の粒径範囲と
その粒度分布の範囲を此種廃水処理に最良とする範囲に
調合した微粒石炭灰を添加し、且つ石炭灰の性質を利用
して効果的に短時間で各種廃水の処理を可能にした廃水
処理法を提供することを目的とする。
<Technical problem to be solved by the invention> Therefore, as a result of many years of research, the applicant has found that fine coal ash produced from coal-fired power plants, etc. significantly increases the flocculation and sedimentation properties in this type of wastewater treatment, and It was discovered that it is extremely effective in purifying coagulated sludge, improving the dewatering properties of coagulated and settled sludge, and reducing the water content of the dehydrated cake, leading to the completion of development. The particle size range and particle size distribution range of the coal ash particles to be treated are added to the optimal range for this kind of wastewater treatment, and the properties of the coal ash are utilized to effectively treat the wastewater in a short period of time. The purpose is to provide a wastewater treatment method that enables the treatment of various types of wastewater.

更に、石炭灰は例えば北海道において、火力発電所など
から年間157万6千トンが発生し、そのうち44万7
千トンがセメントや生コンクリート用混和材、盛土、土
地造成、地盤安定材など土木分野で28%程度(昭和6
0年実績)が利和され、残る112万9千トンあまりが
灰捨場などに廃棄処分される。しかし、今模の大■発生
による用地難、環境用t、IIから国策としての有効利
用について関心が最近急速に高まっており、この様な点
から微粒石炭灰を用いた本考案廃水処理法は社会的貢献
度が極めて高いものとなる。
Furthermore, in Hokkaido, for example, 1,576,000 tons of coal ash is generated annually from thermal power plants, of which 447,000 tons
1,000 tons accounted for approximately 28% of the total in the civil engineering field, including cement and ready-mixed concrete admixtures, embankments, land preparation, and ground stabilizing materials (Showa 6).
The remaining 1,129,000 tons will be disposed of in ash dumps, etc. However, there has recently been a rapid increase in interest in its effective use as a national policy due to the land shortage caused by the large-scale occurrence of coal ash, as well as for environmental purposes. The social contribution will be extremely high.

く技術的課題を達成するための手段〉 上記課題を達成するために本発明が講じる技術的手段は
、粒径が5〜500μmのものを重量%で70〜90以
上含有した粒度分布の微粒石炭灰を、原廃水又は前処理
水に添加混合させ、然る俊、その混合原廃水又は前処理
水に凝集剤を添加混合することである。
Means for Achieving the Technical Problem> The technical means taken by the present invention to achieve the above object is to use granular coal with a particle size distribution containing 70 to 90 or more by weight of particles with a particle size of 5 to 500 μm. Ash is added to and mixed with raw wastewater or pretreated water, and a flocculant is added and mixed with the mixed raw wastewater or pretreated water.

く作 用〉 而して、上記した本発明の技術的手段によれば、予め5
〜500μmの粒径のものが重量%で70〜90以上の
含有量の粒度分布になる様に調合した微粒石炭灰を、例
えば養豚場から排水され汚水槽等に堆積貯留される家畜
廃水等の原廃水又は廃水槽から汲み上げらればり気槽(
原水調整槽)にて予備ばり気処理された前処理水に添加
せしめて攪拌混合させる。すると、石炭灰自体が活性炭
に似た細孔を持つ有孔質の球体状で、廃水中の有機質、
無機質成分を吸着する作用があること、又新生石炭灰を
一定条件下でポゾラン作用を起させた既成石炭灰にあっ
ては微粒子相互が多数の枝を出して接着しつつ造粒化(
塊状化)した微細な網目構造を有していることにより、
廃水中のコロイド等の浮遊物や有機質及び無機質成分の
付着、吸着作用が更に強くなってそれらの除去が効果的
に行なわれる。コロイド等の浮遊物や有機質及び無m質
成分を付着及び吸着した微粒石炭灰の沈降速度は遅いの
で微粒石炭灰の添加混合機に原廃水又は前処理水に添加
され撹拌混合せしめられた凝集剤によって、当該微粒石
炭灰相互を凝集させて凝集フロックとなって生成させ、
凝集沈降分離が得られる。
According to the above-mentioned technical means of the present invention, five
Fine coal ash prepared to have a particle size distribution with a particle size of ~500 μm and a content of 70 to 90 or more by weight is used, for example, as livestock wastewater drained from a pig farm and deposited and stored in a sewage tank. Raw wastewater or a flash tank pumped up from a wastewater tank (
It is added to pre-treated water that has been pre-deburred in a raw water adjustment tank) and stirred and mixed. Then, the coal ash itself is porous and spherical with pores similar to activated carbon, and the organic matter in the wastewater,
It has the effect of adsorbing inorganic components, and in the case of pre-formed coal ash, which is made by subjecting fresh coal ash to pozzolanic action under certain conditions, fine particles stick together with many branches and become granulated (
By having a fine network structure (clumps),
The adhesion and adsorption of suspended matter such as colloids and organic and inorganic components in wastewater is further strengthened, and their removal is effectively carried out. Since the settling speed of fine coal ash, which has attached and adsorbed suspended matter such as colloids, organic matter, and amorphous components, is slow, a flocculant is added to raw wastewater or pretreated water in a fine coal ash addition mixer and stirred and mixed. By coagulating the fine coal ash with each other to form agglomerated flocs,
Coagulation sedimentation separation is obtained.

即ち、前記ポゾラン作用による微粒石炭灰の造粒化の際
に発生した微細な網目構造と微粒石炭灰自体が細孔を持
つ有孔質であることにより、廃水中に浮遊するコロイド
等の浮遊物を付着゛及び廃水中の有機質及び無機質成分
を吸着せしめつつ凝集剤による凝集フロックの生成によ
って沈降分離性を高め、それによってコロイ下等の浮遊
物や有機質及び無m質成分は凝集フロックとして沈降濃
縮し、沈澱スラッジと上澄水とに沈降分離される。
That is, due to the fine network structure generated during the granulation of fine coal ash by the pozzolanic action and the fine coal ash itself being porous with pores, suspended matter such as colloids floating in wastewater is reduced. While adsorbing the organic and inorganic components in the wastewater, the flocculant generates coagulated flocs to improve sedimentation and separation properties.As a result, floating matter under the colloid and organic and inorganic components are sedimented and concentrated as flocs. The sludge is separated into precipitated sludge and supernatant water.

〈実施例〉 本発明廃水処理法の実施例を説明すると、本発明におい
て微粒石炭灰の粒径は5〜500μm内に抑えることが
必要である。
<Example> To explain an example of the wastewater treatment method of the present invention, in the present invention, it is necessary to suppress the particle size of the fine coal ash within 5 to 500 μm.

この理由は5μm以下の粒径だと、凝集剤による凝集フ
ロックの生成に際し、後述する塩化第2鉄などの無機系
凝集剤の添加量をより多量に必要とし、又コロイド等の
浮遊物の除去分離を高めるために凝集フロックの粗大化
を促進される後述する高分子凝集剤の添加量をより多量
に必要となるばかりか、凝集フロックの沈降分離性が低
下する原因になり、500μm以上の粒径だと、凝集フ
ロックの生成に関与せず、廃水中の有機物及び無機物成
分を確実に吸着することなく凝集フロックは沈降してし
まう結果となって有機質及び無機質成分の吸着が効率よ
く行なわれなくなるからである。
The reason for this is that if the particle size is 5 μm or less, a larger amount of inorganic flocculant such as ferric chloride, which will be described later, will be required to be added when forming flocs using a flocculant, and the removal of suspended matter such as colloids In order to improve the separation, it is not only necessary to add a larger amount of the polymer flocculant described below, which promotes coarsening of the flocs, but also causes a decrease in the sedimentation separability of the flocs. If the diameter is large, it will not participate in the generation of flocs, and the flocs will settle without reliably adsorbing organic and inorganic components in wastewater, resulting in inefficient adsorption of organic and inorganic components. It is from.

石炭灰の粒度分布は、第1図に粒径加積曲線にて例示し
た分布表の斜線部内5〜500μ雇範囲の粒径を有する
石炭灰粒子を70〜90重量%以上、望ましくは80重
量%以上の分布割合で調合含有さ1てなり、その化学成
分は下記に示す成分表の如く5LCh 、 Al703
が全体の70〜80%を占めるものである。
The particle size distribution of coal ash is such that coal ash particles having a particle size in the range of 5 to 500 μm are contained in the shaded area of the distribution table exemplified by the particle size accumulation curve in Figure 1 in an amount of 70 to 90% by weight or more, preferably 80% by weight. The chemical composition is 5LCh, Al703 as shown in the composition table below.
accounts for 70 to 80% of the total.

−1j[瓦− そして、この石炭灰は自然処理の有無で新生灰と既成法
とに分けられますが、新生石炭灰の粒子形状は第2図の
電子顕微鏡写真に見られる様に活性炭に似た細孔を有づ
る有孔質の球体状であり、この球体状新生石炭灰等は一
定条件下、例えば−定期間(3ケ月〜1年以上)自然の
水分と加圧とによって第3図の電子顕微鏡写真に見られ
る様にポゾラン反応を起し、そのポゾラン作用で粒子相
互が接着しつつ造粒化せしめて微細な網目構造を構成し
た粗目となる。
-1j [Tile] This coal ash can be divided into fresh ash and pre-processed coal ash depending on whether or not it has been treated naturally, but the particle shape of fresh coal ash is similar to activated carbon, as seen in the electron micrograph in Figure 2. The spherical newly formed coal ash, etc., is formed by natural moisture and pressure for a period of time (3 months to 1 year or more), as shown in Figure 3. As seen in the electron micrograph, a pozzolanic reaction occurs, and the pozzolanic action causes the particles to adhere to each other and granulate, forming a coarse mesh structure with a fine network structure.

尚、上述した新生灰とは例えば火力発電所の貯炭サイロ
から搬出されたばかりの灰のことであり、一方、既成法
とは灰処理地(灰捨地)などで約1年以上加湿転圧処理
されてポゾラン反応を起し、造粒化された塊状灰のこと
であ−る。
The above-mentioned fresh ash is, for example, ash that has just been removed from a coal storage silo at a thermal power plant.On the other hand, the ready-made ash refers to ash that has been humidified and compacted at an ash processing site (ash disposal site) for about one year or more. This is lumpy ash that is granulated by a pozzolanic reaction.

而して、本発明においては上記粒度分布に調合含有され
た新生石炭灰を直接原廃水又は前処理水(廃水)に添加
混合させて吸着反応を起させる方法と、上記粒度分布の
新生灰等の所望な石炭灰を灰処理地などで予めポゾラン
反応を起させて造粒化させた既成法として原廃水又は前
処理水に添加混合させて付着及び吸着作用を利用する方
法との双方を用いて廃水処理を行なう。
Therefore, in the present invention, there is a method of directly adding and mixing fresh coal ash blended and contained in the above particle size distribution to raw wastewater or pretreated water (wastewater) to cause an adsorption reaction, and a method of causing an adsorption reaction, and fresh coal ash etc. having the above particle size distribution. Both methods are used: a ready-made method in which the desired coal ash is granulated by causing a pozzolanic reaction in advance at an ash treatment site, and a method in which it is added to and mixed with raw wastewater or pre-treated water to utilize adhesion and adsorption effects. wastewater treatment.

次に、以上の如き5〜500μmの粒径の石炭灰粒子を
70〜90重量%以上、望ましくは80重坦%以上含有
させた粒度分布の微粒石炭灰による廃水処理法を第4図
に示す処理設備チャート図により説明する。
Next, Fig. 4 shows a wastewater treatment method using fine coal ash having a particle size distribution containing 70 to 90% by weight or more, preferably 80% by weight or more of coal ash particles having a particle size of 5 to 500 μm as described above. This will be explained using a processing equipment chart.

まず、実施の一例として養豚場等から排水される下記の
成分(原水分析値)を有する養豚廃水(原廃水)の処理
法を説明すると、 原水pH7,5 原水B OD    17000 ppr原水S S 
    5900 ppmこの養豚廃水を固形物分離機
(1)を通過させて残渣を除去した模、予備ばり気槽(
原水調整槽)(2)に送りこのばつ気槽(2)内にて2
4時間、原水1イに対し1時間当り70イの空気をブロ
ワ−(3)より送り込み混合させてばっ気処理を行なう
First, as an example of implementation, we will explain how to treat pig farming wastewater (raw wastewater) discharged from a pig farm etc. and having the following components (raw water analysis values): Raw water pH 7.5 Raw water B OD 17000 ppr Raw water S S
5900 ppm This pig farming wastewater was passed through the solids separator (1) to remove the residue, and the preliminary aeration tank (
2 in the aeration tank (2).
For 4 hours, 70 liters of air per hour was sent from the blower (3) to 1 liter of raw water to mix and aerate.

このばっ気処理は嫌気化した廃水(Wt廃水)を、好気
性に保持し且つ有機物質の酸化分解を促進させると共に
、廃水を十分に撹拌混合させて均一化するものである。
This aeration treatment maintains anaerobic wastewater (Wt wastewater) in an aerobic state, promotes oxidative decomposition of organic substances, and thoroughly stirs and mixes the wastewater to homogenize it.

そして、予備ばっ気処理された後、反応槽A。Then, after preliminary aeration treatment, the reaction tank A.

B、C,D (4)(5)(6)(7)に順を追って送
られる廃水(前処理水)に対し、下記の順次で添加され
る各薬品と撹拌混合させつつ反応させるものである。
B, C, D (4) (5) (6) The wastewater (pre-treated water) sent in order to (7) is reacted with each chemical added in the following order while stirring and mixing. be.

予め、5%(又は70%)の濃度になる様に計量された
上記粒度分布の微粒石炭灰を溶解槽(8)内に投入して
該槽(8)内に貯留した清水に溶解混合させる。尚、石
炭灰は水溶性でないため懸濁液となり、反応槽A(4)
に供給が行なわれる時には溶解槽(8)及び供給槽(9
)の撹拌機(70)(11)によって常時撹拌混合され
つづけられるものであり、この際の両撹拌機(70) 
 (11)の回転数は200〜400 rl)lが好ま
しいものである。
Fine coal ash with the above particle size distribution, which has been weighed in advance to have a concentration of 5% (or 70%), is put into the dissolution tank (8) and dissolved and mixed with the fresh water stored in the tank (8). . In addition, since coal ash is not water-soluble, it becomes a suspension, and is removed from reaction tank A (4).
When the supply is carried out, the dissolution tank (8) and the supply tank (9
) are constantly stirred and mixed by the stirrers (70) and (11), and at this time both stirrers (70)
The rotation speed of (11) is preferably 200 to 400 rl)l.

予備ばつ気槽(2)から原水ポンプ(12)により一旦
計量槽(1’3)に送られ該槽(13)にて一定量に計
量されて反応槽A(4)に送水された廃水には石炭灰注
薬ポンプ(可変容量ポンプ)(14)によって懸濁液化
された微粒石炭灰が供給添加され、この石炭灰は反応促
進撹拌機(15)により廃水に撹拌混合される。それに
よって、廃水中のコロイド等の浮遊物が微粒石炭灰に付
着し且つ有機質及び無機質成分の吸着反応が行なわれる
The wastewater is sent from the pre-aeration tank (2) by the raw water pump (12) to the metering tank (1'3), where it is metered to a certain amount and then sent to the reaction tank A (4). A coal ash dosing pump (variable capacity pump) (14) supplies and adds suspended fine coal ash, and this coal ash is stirred and mixed into wastewater by a reaction accelerating agitator (15). As a result, suspended matter such as colloids in the wastewater adheres to the fine coal ash, and an adsorption reaction of organic and inorganic components takes place.

懸濁液化された微粒石炭灰の添加量は前記反応槽A(4
)の廃水に対し、6000 pal (6000G /
 m )にするものであり、該反応槽A(4)の容量は
微粒石炭灰のによるコロイド等の浮遊物の付着と有機質
及び無機質成分の吸着反応が十分に行なわれる所要時間
、例えば5〜70分以上とし゛て前記付着及び吸着反応
が確実に行なわれる様にする。
The amount of the suspended fine coal ash added was determined by the amount of the suspended fine coal ash in the reaction tank A (4
) wastewater, 6000 pal (6000G /
m), and the capacity of the reaction tank A (4) is the time required for the adhesion of suspended matter such as colloids by fine coal ash and the adsorption reaction of organic and inorganic components to be sufficiently performed, for example, 5 to 70 m). It is ensured that the adhesion and adsorption reactions are carried out for at least 1 minute.

そして、微粒石炭灰が撹拌混合された廃水(混合液)は
次の反応槽B(5)に自然流下し、この槽B(5)内で
凝集剤貯槽(16)から注薬ポンプ(17)により供給
された無機系凝集剤例えば塩化第2鉄、ポリ塩化アルミ
ニウム、又は硫酸バンドなど、本実施例にあっては塩化
第2鉄が添加され、撹拌機(18)により撹拌混合され
て廃水中に浮遊するコロイド等の浮遊物が凝集された凝
集フロックとなって生成されるものである。
Then, the wastewater (mixed liquid) in which the fine coal ash is stirred and mixed flows down naturally to the next reaction tank B (5), and in this tank B (5), it is passed from the flocculant storage tank (16) to the chemical injection pump (17). An inorganic flocculant such as ferric chloride, polyaluminum chloride, or aluminum sulfate, in this example, ferric chloride is added and mixed by a stirrer (18) to the wastewater. A floc is produced by agglomerating floating substances such as colloids.

ここで、塩化第2鉄の添加台は廃水(原廃水)に対し、
8000 ppm (8000牙/ i )が最良であ
った。
Here, the addition table of ferric chloride is added to wastewater (raw wastewater).
8000 ppm (8000 tusks/i) was the best.

尚、この塩化第2鉄の添加量は原廃水の性状によって大
きく異なるものであるが、第5図に示した表(花嶋、他
:都市と廃棄物Vol、8.Nn2参照)から明らかな
様に混合水pHがpH4前後でCOD除去効果が高いこ
とから、塩化第2鉄の添加量は混合水がpH4前侵にな
る様にpH計(19)によって制御しながらその添加量
を調整する方法が効果的である。
The amount of ferric chloride added varies greatly depending on the properties of the raw wastewater, but as is clear from the table shown in Figure 5 (see Hanajima et al.: Cities and Waste Vol. 8.Nn2). Since the COD removal effect is high when the pH of the mixed water is around pH 4, the amount of ferric chloride added is controlled by a pH meter (19) so that the mixed water reaches pH 4, and the amount of ferric chloride added is adjusted. is effective.

pH4前後でC()D (又はBOD)除去効果が高い
のは、廃水中の腐植酸類が酸性側で不溶性のフミン酸と
して共沈するためと考えられる。
The reason why the C()D (or BOD) removal effect is high at around pH 4 is thought to be because humic acids in wastewater co-precipitate as insoluble humic acids on the acidic side.

凝集フロックが生成された反応槽B(5)内の廃水は反
応槽C(6)に自然流下し、この槽C(6)内で消石灰
供給槽(23)から注薬ポンプ(21)によって供給さ
れた消石灰が添加され、撹拌機(22)により撹拌混合
されてpH調整が行なわれる。
The wastewater in reaction tank B (5) in which coagulated flocs have been generated naturally flows down to reaction tank C (6), and in this tank C (6), it is supplied from the slaked lime supply tank (23) by a dosing pump (21). The hydrated slaked lime is added and stirred and mixed by a stirrer (22) to adjust the pH.

この消石灰は、予め5%(又は70%)になる様に計量
せしめ消石灰溶解槽(20)にて清水に溶解混合せしめ
て反応槽(6)に供給するものであるが、この消石灰は
水溶性でないために懸濁液となり、反応槽C(6)に供
給が行なわれる時には溶解槽(20)及び供給槽(23
)の撹拌機(24)  (25)によって常時撹拌混合
されつづけられるものであり、その添加量はpH計(2
6)により廃水pHが5.8〜8.6、好ましくは6〜
8にpH調整される様に制御されるものである。本実施
例にあっては消石灰の添加量は約2000 ppmであ
った。
This slaked lime is measured in advance to make it 5% (or 70%), dissolved and mixed with clean water in the slaked lime dissolving tank (20), and then supplied to the reaction tank (6). When the reaction tank C (6) is supplied, the dissolution tank (20) and the supply tank (23
) are continuously stirred and mixed by the stirrers (24) and (25), and the amount added is determined by the pH meter (25).
6) makes the wastewater pH 5.8-8.6, preferably 6-8.6.
It is controlled so that the pH is adjusted to 8. In this example, the amount of slaked lime added was about 2000 ppm.

尚、消石灰はpH調整剤(塩化第2鉄の添加により廃水
中が酸性側、例えばpH4になるので)として、水酸化
ナトリウムを用いても良く任意である。
Note that sodium hydroxide may optionally be used as a pH adjuster for slaked lime (because the addition of ferric chloride makes the wastewater acidic, for example, pH 4).

pH2整が行なわれた反応槽C(6)内の廃水は反応槽
D(7)に自然流下し、この槽D(7)内で高分子凝集
剤溶解槽(27)から注薬ポンプ(28)によって供給
された高分子凝集剤(アニオン系)が添加され、撹拌f
i(29)により撹拌混合される。高分子凝集剤が添加
混合されると凝集フロックは粗大フロックに生成されて
望ましい凝集沈降分離が得られるものである。
The wastewater in the reaction tank C (6), which has been adjusted to pH 2, naturally flows down into the reaction tank D (7), and in this tank D (7), it flows from the polymer flocculant dissolving tank (27) to the chemical injection pump (28). ) is added and stirred f
i (29) for stirring and mixing. When a polymer flocculant is added and mixed, the flocs are formed into coarse flocs, and desired flocculation and sedimentation separation can be obtained.

この高分子凝集剤は、予め0.1%のlI麿になる様に
4聞せしめ溶解槽(27)にて清水に溶解混合せしめて
反応4i!D(7)に供給するものである。
This polymer flocculant was dissolved and mixed in clean water in a dissolution tank (27) for 4 hours to give a concentration of 0.1%, and then reacted 4i! This is what is supplied to D(7).

尚、この高分子凝集剤溶解槽(27)の撹拌機(30)
及び各反応mA、B、C,D (4)(5)(6)(7
)の撹拌el (15)  (18)  (22)  
(29)の回転数は200〜400rpa+が適当であ
る。
In addition, the stirrer (30) of this polymer flocculant dissolving tank (27)
and each reaction mA, B, C, D (4) (5) (6) (7
) stirring el (15) (18) (22)
The appropriate rotational speed of (29) is 200 to 400 rpa+.

凝集フロックが粗大フロック化されて凝集沈降分離が得
られた反応槽D(7)内の廃水はシックナー(31)に
自然流下し、このシックナー(31)内で粗大フロック
化した廃水中のコロイド等の浮遊物、有機質及び無機質
成分を付着及び吸着した石炭灰はシックナー(31)の
底に沈降するものであり、これによって上澄水と浮遊物
及び有機質。
The wastewater in the reaction tank D (7), in which the flocs have been turned into coarse flocs and flocculation sedimentation separation has been obtained, naturally flows into the thickener (31), where the colloids, etc. in the wastewater that has been turned into coarse flocs are collected. The coal ash to which suspended matter, organic matter, and inorganic components have adhered and adsorbed settles to the bottom of the thickener (31), thereby separating the suspended matter and organic matter from the supernatant water.

無機質成分が石炭灰と粗大凝集フロック化した沈澱スラ
ッジとに沈降分離(分離処理)が行なわれるものである
Sedimentation separation (separation treatment) is performed on coal ash and precipitated sludge whose inorganic components are coarsely flocculated.

上記シックナー(31)内における凝集フロックの沈降
速度は2〜4 i/Hで、通常の活性汚泥処理法の生物
フロックの沈降速度が約0.4 m/H(70m/日)
であるのに対し、約5〜70倍となった。
The sedimentation rate of the flocs in the thickener (31) is 2 to 4 i/H, and the sedimentation rate of biological flocs in the normal activated sludge treatment method is approximately 0.4 m/H (70 m/day).
However, the increase was approximately 5 to 70 times.

従って、上述した養豚廃水等の原廃水の処理が短時間に
行なわれるため、シックナー(31)や8槽の水面積負
荷が大幅に軽減され、沈降分離面積も小さくてすむため
に処理設備の小型化を図ることができる。
Therefore, the above-mentioned treatment of raw wastewater such as pig farming wastewater is carried out in a short time, so the water area load on the thickener (31) and 8 tanks is significantly reduced, and the sedimentation separation area is also small, resulting in a more compact treatment facility. can be achieved.

尚、凝集フロックの沈降速度は第6図に示した様に微粒
石炭灰の添加ωの増加に伴(、Z増大することが明らか
であり、微粒石炭灰600Opp−添加時のSVは38
%、700001)pl添加時テ34%、20000p
pm添加時で32%であり、微粒石炭灰の添加量の増加
に伴い濃縮する傾向にあることが分る。又、凝集フロッ
クの沈降速度は高分子凝集剤の添加量の増加によっても
増大するものであるが、一定値以上添加しても過剰添加
となって効果は漸減するものであり、適正添加量として
は20〜301)l)1位が望ましいものである。
As shown in Figure 6, it is clear that the sedimentation velocity of the flocs increases with the addition of fine coal ash ω (, Z), and the SV when 600 Opp of fine coal ash is added is 38.
%, 700001) Te 34% when pl is added, 20000p
It is 32% when pm is added, and it can be seen that there is a tendency to concentrate as the amount of fine coal ash added increases. In addition, the sedimentation rate of coagulated flocs increases as the amount of polymer flocculant added increases, but even if it is added above a certain value, it becomes excessive addition and the effect gradually decreases. is 20-301)l) 1st place is desirable.

而して、斯る実施例のシックナー(31)での沈降分離
処理によって得られた上澄水の濃度分析値は下記の通り
The concentration analysis values of the supernatant water obtained by the sedimentation separation treatment using the thickener (31) of this example are as follows.

処理水DH7,7 処理水BOD   98Gppm(除去率91.1%)
処理水83    17Dl)l(除去率99,1%)
になった。
Treated water DH7.7 Treated water BOD 98Gppm (removal rate 91.1%)
Treated water 83 17Dl)l (removal rate 99.1%)
Became.

但し、薬品の添加量は 微粒石炭灰   6000 ppm 塩化第2鉄   aooo ppm (無機系凝集剤) 消  石  灰     200G  DI)1高分子
凝集剤   20 Elf)1 (アニオン系) の場合である。
However, the amounts of chemicals added are as follows: fine coal ash 6000 ppm ferric chloride aooo ppm (inorganic flocculant) slaked lime 200G DI) 1 polymer flocculant 20 Elf) 1 (anionic type).

また、凝集フロックがシックナー(31)で沈降分離し
て得られなシックナーアンダーの汚泥、所謂濃縮スラッ
ジの脱水性を第7図に示した。
Further, Fig. 7 shows the dewaterability of sludge under the thickener, so-called concentrated sludge, which is obtained by sedimentation and separation of flocs in the thickener (31).

断る第7図に示した脱水性は、前述した下記の成分を有
する養豚廃水に対し、 塩化第2鉄   aooo pp+t (無機系凝集剤) 消石灰 2000 ppH 高分子凝集剤   20 ppm を添加し、5〜5ooμ扉の粒径の石炭灰粒子を80重
量%以上含有する粒度分布の微粒石炭灰の添加量を70
00〜20000ppmまで変化させた際の加圧等は同
一条件下で同、−ベルトプレスにて得られた脱水性を示
す。
The dehydration properties shown in Figure 7 were obtained by adding ferric chloride aooo pp+t (inorganic flocculant) slaked lime 2000 ppH and polymer flocculant 20 ppm to the pig farming wastewater having the following components as described above. The amount of fine coal ash added with a particle size distribution containing 80% by weight or more of coal ash particles with a particle size of 5ooμ door is 70%.
When changing the pressure from 00 to 20,000 ppm, the dehydration properties obtained under the same conditions are the same as those obtained with the -belt press.

従って、第7図から明らかな様に、微粒石炭灰の添加量
の増加に伴い濾過速度は60〜450に9DSS/h、
mで増大し、又脱水ケーキの含水率も83〜55%まで
低下し、脱水性が著しく向上したことが分る。
Therefore, as is clear from Fig. 7, as the amount of fine coal ash added increases, the filtration rate increases from 60 to 450, 9 DSS/h,
The water content of the dehydrated cake also decreased to 83 to 55%, indicating that the dehydration property was significantly improved.

シックナー(す)内で分離処理された上澄水はA−バー
水となって処理水槽(32)に流下貯留された優、生物
処理(活性汚泥処理法など)にかけられて放流又は再利
用されると共に、シックナーアンダーの濃縮スラッジは
シックナー(31)のレーキ掻き寄せl1l(33)に
よってシックナー(31)中央に集泥され、汚泥中法き
ポンプ(34)によってインテークタンク(35)に引
き&かれて該タンク(35)に貯留される インテークタンク(35)に貯留された濃縮スラッジは
ベルトプレス、真空脱水機、フィルタープレス、−遠心
脱水機等の所望な脱水機により脱水処理され、脱水ケー
キとして脱水ケーキ置Jl(36)に堆積排出される。
The supernatant water separated and treated in the thickener becomes A-bar water, which is stored downstream in the treated water tank (32), subjected to biological treatment (activated sludge treatment method, etc.), and then released or reused. At the same time, the concentrated sludge under the thickener is collected in the center of the thickener (31) by the rake raking l1l (33) of the thickener (31), and is drawn into the intake tank (35) by the sludge pump (34). The concentrated sludge stored in the intake tank (35) is dehydrated by a desired dehydrator such as a belt press, vacuum dehydrator, filter press, or centrifugal dehydrator, and is dehydrated as a dehydrated cake. It is deposited and discharged to the cake tray Jl (36).

脱水機として本実施例にあってはベルトブレ、ス(31
)を用いており、インテークタンク(35)内の濃縮ス
ラッジは汚泥供給ポンプ(38)によって一定量ベルト
プレス(31)に送泥されて脱水処理されるものである
。尚、この際濃縮スラッジのフロック形成状態によって
は70ツキレータ槽(39)で上述した高分子凝集剤を
再添加、望ましい添加量としては20〜40 ppml
ij度を再添加することによってベルトプレス(37)
による脱水性が向上するものである。
In this embodiment, the dehydrator uses belt shake, su (31
), and the concentrated sludge in the intake tank (35) is sent by a sludge supply pump (38) to a belt press (31) in a fixed amount for dewatering treatment. At this time, depending on the floc formation state of the concentrated sludge, the above-mentioned polymer flocculant is added again in the 70-thickelator tank (39), and the desirable addition amount is 20 to 40 ppml.
Belt press (37) by re-adding ij degree
This improves dehydration properties.

次に実施の2例として水産加工場から排出される下記の
成分を有する水産加工廃水(ミール工場廃水)の本発明
処理法から得られたシックナー(31)での上澄水の濃
度分析値を見ると、原水pH6,5 原水800     27800 ppm原水COD 
     14700 ppm原水S S      
 17600 pp醜ヘキサン抽出物質  3191)
E1m上述した実施の1例と同様に24時間予備ばっ気
処理した後、 微粒石炭灰     70000 ppm塩化第2鉄 
    12000 DI)1(無機系凝集剤) 消石灰   3500 ppm 高分子凝集剤      30 ppmを200〜40
0 rp−の回転数で撹拌混合させ凝集反応後、シック
ナー(31)で沈降分離されて処理水4!(32)に流
下貯留された上澄水は、処理水pl−17,5 処理水BOD   454ppl除去率98.4%)処
理水COD   70705pp除去率99.3%)処
理水83    38ppl除去率99.8%)ヘキサ
ン抽出物質 1  ppm未満 (除去率99.1%) 脱水ケーキ濾過速度 230にgDss/h、 ■脱水
ケーキ含水率   61% であった。
Next, as a second practical example, we will look at the concentration analysis values of supernatant water in the thickener (31) obtained from the treatment method of the present invention of seafood processing wastewater (meal factory wastewater) having the following components discharged from a seafood processing plant. and raw water pH 6.5 raw water 800 27800 ppm raw water COD
14700 ppm raw water S S
17600 pp ugly hexane extract 3191)
E1m After pre-aeration for 24 hours in the same manner as in the example of implementation described above, fine coal ash 70000 ppm ferric chloride
12000 DI) 1 (Inorganic flocculant) Slaked lime 3500 ppm Polymer flocculant 30 ppm 200-40
After stirring and mixing at a rotational speed of 0 rp-, the flocculation reaction is performed, and the treated water is separated by sedimentation using a thickener (31). The supernatant water flowing down and stored in (32) is treated water pl-17.5 Treated water BOD 454 ppl removal rate 98.4%) Treated water COD 70705 ppl removal rate 99.3%) Treated water 83 38 ppl removal rate 99.8 %) Hexane extracted substance: Less than 1 ppm (removal rate: 99.1%) Dehydrated cake filtration rate: 230 gDss/h, (2) Dehydrated cake moisture content: 61%.

〈発明の効果〉 本発明廃水処理法は叙上の如く詳述した処理法であるか
ら、望ましい凝集沈降分離が得られ、極めて短時間で上
澄水とコロイド等の浮遊物、有機質及び無機質成分を凝
集フロックとして沈降分離することが出来る。即ち、粒
径が5〜500umのものを重量%で70〜90以上含
有した粒度分布の微粒石炭灰を、廃水処理の凝集沈降分
離の際の付着と吸着の核として作用させ、その固体比重
が2.1前後で他の廃水中のコロイド等の浮遊物や有機
質及び無機質成分の比重より大きいため沈降性の良い凝
集フロックを凝集剤によって生成させて行なう望ましい
凝集沈降分離が得られるものである。
<Effects of the Invention> Since the wastewater treatment method of the present invention is the treatment method described in detail above, desirable coagulation sedimentation separation can be obtained, and supernatant water and suspended matter such as colloids, organic and inorganic components can be separated in an extremely short time. It can be separated by sedimentation as flocs. That is, fine coal ash with a particle size distribution of 70 to 90% by weight or more of particles with a particle size of 5 to 500 um is used as a nucleus for adhesion and adsorption during coagulation sedimentation separation in wastewater treatment, and its solid specific gravity is Since the specific gravity of around 2.1 is higher than the specific gravity of suspended matter such as colloids and organic and inorganic components in other wastewater, desirable flocculation-sedimentation separation can be obtained by using a flocculant to generate flocs with good sedimentation properties.

従って、床法又は養豚廃水等の家畜廃水、水産加工廃水
その他の食品廃水、各種工場廃水等の高SS、高BOD
及びCODを有する廃水において、従来生物処理方法で
は数十倍の希釈を要し、実大なばつ気槽容積、プロワ−
等の附属設備を要し、一方嫌気性消化処理方法では処理
時間が数週間を要し、結果的に設備機器の大型化を招き
、ランニングコストが嵩み、又余剰汚泥は高濃度廃水は
ど増大し、fi脱水性で脱水処理t WA水ケーキ含水
率が良好でなかつたのに対し、原廃水をそのまま若しく
は2〜3倍程度の低い希釈状態で容易且つ短時間(数分
〜30分)に沈降分離させて上澄水と濃縮スラッジに凝
集分離することができるため、設備機器の小型化と処理
コストの低減化を図ることが出来る。
Therefore, high SS and high BOD of livestock wastewater such as bed method or pig farming wastewater, fishery processing wastewater and other food wastewater, various factory wastewater, etc.
Conventional biological treatment methods require dilution of several tens of times for wastewater containing COD and COD, and require a large aeration tank volume and a processor.
On the other hand, the anaerobic digestion method requires several weeks of processing time, resulting in larger equipment and higher running costs. Although the water content of WA water cake was not good, it is easy and short (several minutes to 30 minutes) to use raw wastewater as it is or dilute it as low as 2 to 3 times. Since the sludge can be separated by sedimentation and coagulated into supernatant water and concentrated sludge, it is possible to downsize equipment and reduce processing costs.

しかも、凝集分離される濃縮スラッジは石炭灰が消石灰
とともに脱水助剤として作用するため、その脱水性が良
好で、脱水ケーキ含水率が従来処理法と比べて著しく低
いために後処理における乾燥、焼却、埋立処分等におい
てそれらの負荷を軽減することができ、有益である。
Furthermore, the concentrated sludge that is coagulated and separated has good dewatering properties because the coal ash acts as a dewatering aid together with slaked lime, and the water content of the dehydrated cake is significantly lower than in conventional treatment methods, so it is not necessary to dry or incinerate it during post-processing. , it is possible to reduce the burden on landfill disposal, etc., which is beneficial.

又、家畜廃水、水産加工廃水その他の食品廃水などの脱
水ケーキは有機成分を多聞に含有しており、肥料や土壌
改良剤として極めて有効であり、脱水ケーキ含水率が上
述した様に低いことによってこれら肥料や土壌改良剤な
どをフンポストとして製品化する際の乾燥コストを低減
する上で極めて有利である。
In addition, dehydrated cakes such as livestock wastewater, seafood processing wastewater, and other food wastewaters contain a large amount of organic components and are extremely effective as fertilizers and soil conditioners. This is extremely advantageous in reducing the drying cost when commercializing these fertilizers, soil conditioners, etc. as dung posts.

更に、この様に優れた浄化作用、脱水促進作用を持つ微
粒石炭灰は火力発電所などから廃棄物として多量に発生
し、その有効な利用方法として本発明の廃水処理法は安
価な廃水処理と廃棄物の有効利用という点で極めて効果
的である。
Furthermore, fine coal ash, which has such excellent purification and dehydration promoting effects, is generated in large quantities as waste from thermal power plants, etc., and the wastewater treatment method of the present invention is an inexpensive wastewater treatment method that can effectively utilize it. It is extremely effective in terms of effective use of waste.

依って、所期の目的を達成し得た。Therefore, the intended purpose was achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明廃水処理法の実施例を示し、第1図は微粒
石炭灰の粒度分布を示す分布表、第2図は石炭灰粒子の
電子顕微鏡写真、第3図は石炭灰のポゾラン作用を示寸
電子顕微鏡写真、第4図は廃水の処理設備チャート図、
第5図は凝集剤(無機系凝集剤)の添加量とCOD除去
除去上梁関係を示1表、第6図は微粒石炭灰の添加量と
凝集フロックの沈降速度との関係を示す表、第7図は微
粒石炭灰の添加量と濃縮スラッジの脱水性(脱水ケーキ
含水率)との関係を示す表である。 凍仇撞秦〆添加計×703圏 (eu、  JIFJJ’ffZ’fF天8.000P
PM、:Mh/#2000PPM−あンめ子凝倶削2o
序シ乏添釦降 第 図 2  34  5  6  7 8 9 70  II
   +2 13H *4a’4−24’k1.:ヨ! MPHl: Q[I
!歇膠石炭灰オψロ琥XIO” mb、)シノーIト、′)f7/i:lζBOOOPP
ト<Jスj)ダミ2000ρPト→讐’lJ:r’?1
−J1e*リ 20PPM  k21taM’J−手続
ンm正書(方式) 昭和63年70月17日 1、事件の表示 昭和 63 年 特 許 願 第 号 2、発明の名称 廃水処理法 3、補正をする者 事件との関係 氏名(名称)
The drawings show an example of the wastewater treatment method of the present invention, Fig. 1 is a distribution table showing the particle size distribution of fine coal ash, Fig. 2 is an electron micrograph of coal ash particles, and Fig. 3 shows the pozzolanic effect of coal ash. Dimensional electron micrograph, Figure 4 is a chart of wastewater treatment equipment,
Figure 5 is Table 1 showing the relationship between the amount of flocculant (inorganic flocculant) added and COD removal, and Figure 6 is a table showing the relationship between the amount of fine coal ash added and the settling speed of coagulated flocs. FIG. 7 is a table showing the relationship between the amount of fine coal ash added and the dewaterability of concentrated sludge (dehydrated cake moisture content). Frozen Qin addition meter x 703 area (eu, JIFJJ'ffZ'fF heaven 8.000P
PM, :Mh/#2000PPM-Anmeko hard shaving 2o
2 34 5 6 7 8 9 70 II
+2 13H *4a'4-24'k1. :Yo! MPHL: Q[I
! Coal ash o ψ ro 琥
t<Jsuj) Dami 2000ρPt→enemy'lJ:r'? 1
-J1e*li 20PPM k21taM'J-Procedure m official book (method) July 17, 1985 1, Display of the case 1988 Patent Application No. 2, Name of the invention Wastewater Treatment Law 3, Person making the amendment Name related to the incident

Claims (1)

【特許請求の範囲】[Claims] 粒径が5〜500μmのものを重量%で70〜90以上
含有した粒度分布の微粒石炭灰を、原廃水又は前処理水
に添加混合させ、然る後、その混合原廃水又は前処理水
に凝集剤を添加混合することを特徴とした廃水処理法。
Fine coal ash with a particle size distribution containing 70 to 90 or more by weight of particles with a particle size of 5 to 500 μm is added and mixed to raw wastewater or pretreated water, and then added to the mixed raw wastewater or pretreated water. A wastewater treatment method characterized by adding and mixing a coagulant.
JP17647788A 1988-07-15 1988-07-15 Treatment of waste water Pending JPH0226690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17647788A JPH0226690A (en) 1988-07-15 1988-07-15 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17647788A JPH0226690A (en) 1988-07-15 1988-07-15 Treatment of waste water

Publications (1)

Publication Number Publication Date
JPH0226690A true JPH0226690A (en) 1990-01-29

Family

ID=16014356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17647788A Pending JPH0226690A (en) 1988-07-15 1988-07-15 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPH0226690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195369A (en) * 2012-03-22 2013-09-30 Taiheiyo Cement Corp Extracting method of coal ash particle, and estimation method of composition phase ratio of cement and manufacturing method of cement using extracting method concerned

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195369A (en) * 2012-03-22 2013-09-30 Taiheiyo Cement Corp Extracting method of coal ash particle, and estimation method of composition phase ratio of cement and manufacturing method of cement using extracting method concerned

Similar Documents

Publication Publication Date Title
CN104261652B (en) High-effective sludge dehydration flocculation agent
JP3570888B2 (en) Waste treatment method
JP3400292B2 (en) Waste treatment method
JP3480904B2 (en) Method and apparatus for recovering phosphorus from sludge
KR100342171B1 (en) Composition of chemicals for simultaneous removing nitrogen and phosphorus in wastewater and method for treating wastewater using the same
KR100313187B1 (en) Rapid mixing coagulant system for treating wastewater and method thereof
JPH03118896A (en) Method for removing the solid phase from a liquid substance, particularly waste water purification method
JPS6048200A (en) Treatment of sludge
JPH0226690A (en) Treatment of waste water
CN115321713A (en) Solid-liquid separation and recycling method for pig raising wastewater
CN1266821A (en) Polyaluminium chloride and chitin compounded efficient flocculant and its preparing process
CN107628680B (en) Water purifying agent for wastewater treatment and production method and use method thereof
JP3487488B2 (en) Sewage treatment method
DE4141639C1 (en) Prodn. of humus-like substrate from purified sewage - comprises using solid sewage residue to condition sewage and reduce incandescence
JPS61220800A (en) Treatment of organic sludge
JPH0632833B2 (en) Organic wastewater treatment method
CN107117696A (en) A kind of preparation method and application of novel adsorption molysite composite flocculation agent
JPH0662354B2 (en) Highly concentrated organic composting method
JPH08238500A (en) Method for treating sludge
JPS62100494A (en) Purification of human excretion waste water by solid-liquid separation and organic fertilizer production
KR20230170303A (en) System for fertilizing inorganic sludge before dehydration
JP2999730B2 (en) Sewage treatment method
CN118255498A (en) Treatment method for deep dehydration and cooperative solidification of river and lake sediment, culture soil and application
JPS58143897A (en) Dehydration of sludge
JPH06269799A (en) Treatment of sludge