JPH02265689A - Water treatment apparatus - Google Patents

Water treatment apparatus

Info

Publication number
JPH02265689A
JPH02265689A JP8537689A JP8537689A JPH02265689A JP H02265689 A JPH02265689 A JP H02265689A JP 8537689 A JP8537689 A JP 8537689A JP 8537689 A JP8537689 A JP 8537689A JP H02265689 A JPH02265689 A JP H02265689A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic separation
water
channel
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8537689A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yamada
信幸 山田
Hideki Nagata
英樹 永田
Shintarou Hatate
幡手 伸太郎
Takashi Amamiya
隆 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP8537689A priority Critical patent/JPH02265689A/en
Publication of JPH02265689A publication Critical patent/JPH02265689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To enhance purifying effect by providing a magnetic treatment flow passage magnetically treating water to be treated and magnetic separation flow passages having filter elements consisting of a large number of ferromagnetic fine wires arranged thereto to attract and remove magnetic fine particles in an apparatus main body. CONSTITUTION:A water treatment apparatus A arranged in a building is constituted so that a non-magnetic cell 35 consisting of a magnetic treatment tank 36 forming a magnetic generation part M by upper and lower permanent magnets 31, 32 and forming a magnetic treatment flow passage P1 in said part M and a magnetic separation tank 37 forming a plurality of magnetic separation flow passages P2 by partition plates 38-42 is arranged in a return frame composed of soft iron in a detachable manner. The water to be treated from an inflow pipe 33 is magnetically treated in the magnetic treatment flow passage P1 and successively flows through each of the magnetic separation flow passages P2 provided with a large number of ferromagnetic fine wires 50 under tension and flows out from an outflow pipe 34 while floated and suspended magnetic fine particles are attracted and removed. By this method, paramagnetic fine particles can be also removed efficiently.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、磁場を利用して水質の改善或いは水の浄化を
行うことを目的とした水処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a water treatment device for improving water quality or purifying water using a magnetic field.

(ロ)従来の技術 従来、上記を目的とした水処理装置としては、以下の形
態のものがある。
(b) Prior Art Conventionally, water treatment apparatuses for the above purpose include the following types.

■ 特開昭63−116797号や特開昭63−270
593に記載されている水処理装置であり、水中に懸濁
磁性微粒子として浮遊している常磁性赤さび(Feze
s)の微粒子を強磁性黒さび(Fe>04)の微粒子に
変えて凝集させ、効果的に水槽内に沈澱させ除去するこ
とができる。
■ JP-A-63-116797 and JP-A-63-270
593, which treats paramagnetic red rust (Feze) floating as suspended magnetic particles in water.
The fine particles of s) can be changed into fine particles of ferromagnetic black rust (Fe>04), aggregated, and effectively precipitated in the water tank for removal.

■ 特開昭63−270593号に記載されている水処
理装置であり、配管壁についた常磁性赤さびのスケール
を強磁性黒さびに変え、効果的・に剥離させ又、特開昭
63−224796号に記載されている水処理装置であ
り、処理水が磁界内を通過する流速が0.8 m/se
c以上の場合には、磁気処理の効果が顕著に顕れ、下流
側の給水管の管壁に固着しているスケールを磁気処理に
よって除去できる。
■ This is a water treatment device described in JP-A No. 63-270593, which converts paramagnetic red rust scale on pipe walls into ferromagnetic black rust and effectively removes it. This is a water treatment equipment described in the above issue, and the flow rate at which the treated water passes through the magnetic field is 0.8 m/sec.
c or more, the effect of the magnetic treatment becomes significant, and the scale adhering to the wall of the water supply pipe on the downstream side can be removed by the magnetic treatment.

■ 特開昭59−43208号や特開昭60−4820
9号に記載されている水処理装置であり、強磁性細線の
周囲に形成される高勾配磁界によって非常に小さい微粒
子も吸着除去できる。また、磁場をなくすことによって
簡単に吸着した微粒子の洗浄ができる。
■ JP-A-59-43208 and JP-A-60-4820
This water treatment device is described in No. 9, and is capable of adsorbing and removing even very small particles using a high gradient magnetic field formed around a ferromagnetic thin wire. Furthermore, by eliminating the magnetic field, adsorbed particles can be easily cleaned.

(ハ)発明が解決しようとする課題 しかし、上記した水処理装置は、それぞれ、未だ、以下
の解決すべき課題を有していた。
(c) Problems to be Solved by the Invention However, each of the water treatment apparatuses described above still has the following problems to be solved.

■の水処理装置では、自然沈澱によるものであるため、
極小の微粒子は除去できず、また、水槽のメンテナンス
も止水しないと行うことができない。
■The water treatment equipment uses natural sedimentation, so
Very small particles cannot be removed, and aquarium maintenance cannot be performed unless the water is turned off.

■の水処理装置では、剥離して下流に流れたスケールが
不適当な場所に堆積したり、バルブ等の目詰まりの原因
となる。
In the water treatment equipment (2), scale that has peeled off and flowed downstream may accumulate in inappropriate locations or cause clogging of valves, etc.

■の水処理装置では、強磁性体の微粒子は容易に吸着で
きるが、常磁性の微粒子は強い磁場が必要で装置が大形
化し、コストがかかる。
In the water treatment equipment (2), ferromagnetic particles can be easily adsorbed, but paramagnetic particles require a strong magnetic field, which increases the size and cost of the equipment.

さらに、上記した従来の水処理装置は、それぞれ固有の
課題のみならず、磁気処理流路又は磁気分離流路のいず
れかのみを具備するものであるため、磁性微粒子を充分
に除去することができず、完全な赤水対策を図ることが
できなかった。
Furthermore, the above-mentioned conventional water treatment devices not only have their own problems, but also because they are equipped with only either a magnetic treatment channel or a magnetic separation channel, they cannot sufficiently remove magnetic particles. Therefore, it was not possible to take complete countermeasures against red water.

本発明は、同一水処理装置で磁気処理の効果及び磁気分
離の効果を重畳させ、かつそれぞれの個々の装置として
の問題点を解消し、赤水対策を効果的に達成でき、かつ
、小型、低コストの水処理装置を提供することを目的と
する。
The present invention combines the effects of magnetic treatment and magnetic separation in the same water treatment equipment, solves the problems of each individual equipment, effectively achieves red water countermeasures, and is small and low-cost. The purpose is to provide low cost water treatment equipment.

(ニ)課題を解決するための手段 本発明は、装置本体内に、永久磁石、電磁石、超電導磁
石等により発生形成された磁界内を処理水を導入して磁
気的処理を行う磁気処理流路と、永久磁石、電磁石、超
電導磁石等により発生形成された磁界内に処理水を導入
し、同処理水中に多数の強磁性細線または強磁性体小片
からなるフィルタエレメントを配置し、高勾配磁場によ
り処理水に浮遊している磁性微粒子を吸着除去させる磁
気分離流路とを一体的に設けたことを特徴とする水処理
装置に係るものである。
(d) Means for Solving the Problems The present invention provides a magnetic treatment flow path in which treated water is introduced into a magnetic field generated by a permanent magnet, an electromagnet, a superconducting magnet, etc., and subjected to magnetic treatment. Then, treated water is introduced into a magnetic field generated by a permanent magnet, electromagnet, superconducting magnet, etc., and a filter element made of a large number of ferromagnetic wires or small pieces of ferromagnetic material is placed in the treated water. The present invention relates to a water treatment apparatus characterized in that it is integrally provided with a magnetic separation channel that adsorbs and removes magnetic fine particles floating in treated water.

(ホ)作用及び効果 上記した構成により、本発明は、以下の効果を奏する。(e) Action and effect With the above configuration, the present invention has the following effects.

■同一の水処理装置内に磁気処理流路と磁気分離流路を
形成することができるので、水処理装置の構造をコンパ
クトに保持しながら、処理水の磁気処理と磁気分離を行
うことができ、強磁性微粒子のみならず、従来、分離除
去が困難であった常磁性微粒子も効果的に除去すること
ができる。
■Since a magnetic treatment channel and a magnetic separation channel can be formed in the same water treatment equipment, it is possible to perform magnetic treatment and magnetic separation of treated water while keeping the structure of the water treatment equipment compact. , it is possible to effectively remove not only ferromagnetic particles but also paramagnetic particles, which have conventionally been difficult to separate and remove.

■磁気処理流路の断面積と磁気分離流路の断面積を異な
らせている、即ち、磁気処理流路の断面積を磁気分離流
路の断面積より小さくしており、流路断面積が狭い磁気
処理流路において、流速を磁気処理を行うのに最も適し
た速度に設定することが可能となり、磁気処理の効果の
効率を顕著に向上させることが出来る。一方、流路断面
積が広い磁気分離流路においては、流速を磁気処理流路
よりもかなり低下させることが可能となり、磁気分離の
性能を顕著に向上させることが出来る。従って、上述し
た磁性微粒子の除去効果をさらに向上することができる
■The cross-sectional area of the magnetic processing channel is different from the cross-sectional area of the magnetic separation channel, that is, the cross-sectional area of the magnetic processing channel is smaller than the cross-sectional area of the magnetic separation channel, and the cross-sectional area of the channel is In a narrow magnetic processing channel, the flow rate can be set to the most suitable speed for performing magnetic processing, and the efficiency of the magnetic processing effect can be significantly improved. On the other hand, in a magnetic separation channel with a large channel cross-sectional area, it is possible to lower the flow velocity considerably compared to a magnetic processing channel, and the performance of magnetic separation can be significantly improved. Therefore, the effect of removing the magnetic fine particles described above can be further improved.

(へ)実施例 以下、添付図に示す実施例に基づいて、本発明に係る水
処理装置Aを具体的に説明する。
(F) Example Hereinafter, the water treatment apparatus A according to the present invention will be specifically explained based on the example shown in the attached drawings.

第1図に示したように、本実施例は、ビルBに水処理装
置Aを設置した例である。
As shown in FIG. 1, this embodiment is an example in which a water treatment device A is installed in a building B.

開開において、図示しない水道本管から分岐した第1給
水管11は、止水栓12.量水器13を通して受水クン
ク14に接続されている。
In opening and opening, the first water supply pipe 11 branched from the water main pipe (not shown) is connected to the stop valve 12. It is connected to a water receiving unit 14 through a water meter 13.

また、受水タンク14は、ポンプ15によって、第2給
水管16を介して本発明の要旨をなす水処理装置Aに接
続されている。
Further, the water receiving tank 14 is connected by a pump 15 and a second water supply pipe 16 to a water treatment device A, which constitutes the gist of the present invention.

さらに、高置タンク17は、第3給水管1Bによってビ
ルBの各階の使用個所に接続されている。
Further, the elevated tank 17 is connected to the usage locations on each floor of the building B by a third water supply pipe 1B.

また、第3給水管18にはポンプ20を取付けた第4給
水管19が接続されており、同第4給水管19の他端は
水処理装HAに接続されており、循環流路を形成してい
る。
Further, a fourth water supply pipe 19 to which a pump 20 is attached is connected to the third water supply pipe 18, and the other end of the fourth water supply pipe 19 is connected to the water treatment equipment HA, forming a circulation flow path. are doing.

そして、量水処理装置A内には、以下に説明するように
、永久磁石、電磁石、超電導磁石等により発生形成され
た磁界内を処理水を導入して磁気的処理を行う磁気処理
流路P1と、永久磁石、電磁石、超電導磁石等により発
生形成された磁界内に処理水を導入し、処理槽中に多数
の強磁性細線または強磁性体小片からなるフィルタエレ
メントを配置し、高勾配磁場により処理水に浮遊してい
る磁性微粒子を吸着除去させる磁気分離流路P2とが一
体的に設けられている。
In the water treatment apparatus A, as described below, there is a magnetic treatment channel P1 in which treated water is introduced into a magnetic field generated by a permanent magnet, an electromagnet, a superconducting magnet, etc., and subjected to magnetic treatment. Then, the treated water is introduced into a magnetic field generated by a permanent magnet, an electromagnet, a superconducting magnet, etc., and a filter element consisting of a large number of ferromagnetic wires or small pieces of ferromagnetic material is placed in the treatment tank. A magnetic separation channel P2 that adsorbs and removes magnetic fine particles floating in the treated water is integrally provided.

かかる構成によって、ビルB内の第3給水管18と第4
給水管19と高置タンク17との間で処理水を循環させ
ることによって、水道本管等の一次側懸濁磁性微粒子を
磁気分離流路P2による磁気分離効果で吸着除去すると
ともに、各給水管18.19の管壁に付着しているスケ
ールが磁気処理流路Plによる磁気処理効果によって剥
離されて発生する黒さび微粒子も循環させていることに
より、磁気分離流路P2による磁気分離効果で吸着除去
することができる。
With this configuration, the third water supply pipe 18 and the fourth
By circulating the treated water between the water supply pipe 19 and the elevated tank 17, suspended magnetic particles on the primary side of the water main etc. are adsorbed and removed by the magnetic separation effect of the magnetic separation channel P2, and each water supply pipe By circulating the black rust fine particles generated when the scale attached to the tube wall of 18.19 is peeled off by the magnetic treatment effect of the magnetic treatment channel P1, they are adsorbed by the magnetic separation effect of the magnetic separation channel P2. Can be removed.

以下、第2図〜第5図を参照して、水処理装置Aの構造
を説明する。
Hereinafter, the structure of the water treatment apparatus A will be explained with reference to FIGS. 2 to 5.

第2図及び第3図に示すように、30は軟鉄等を素材と
するリターンフレームであり、後述する永久磁石31.
32とともに、磁気回路を形成することができる。
As shown in FIGS. 2 and 3, 30 is a return frame made of soft iron or the like, and permanent magnets 31.
Together with 32, a magnetic circuit can be formed.

本実施例において、かかるリターンフレーム30は、上
下壁30a、30bと、左右側壁30c、 30dとか
ら構成されている。
In this embodiment, the return frame 30 is composed of upper and lower walls 30a, 30b, and left and right side walls 30c, 30d.

また、リターンフレーム30は、その上下壁30a。Further, the return frame 30 has upper and lower walls 30a.

30bの内面に、それぞれ、矩形板状の上下永久磁石3
1.32を取付けており、両永久磁石31.32間に磁
界発生部Mが配設されている。
Upper and lower permanent magnets 3 each having a rectangular plate shape are installed on the inner surface of 30b.
1.32 is attached, and a magnetic field generating section M is arranged between both permanent magnets 31.32.

かかる磁界発生部Mは、第4図、第5図に示すように、
それぞれ流体流入管33と流体流出管34とを具備する
長尺の矩形箱体からなる非磁性体セル35と、同非磁性
体セル3内に直列状態に形成した磁気処理槽36と磁気
分離槽37とから形成される。
As shown in FIGS. 4 and 5, this magnetic field generating section M is
A non-magnetic cell 35 consisting of a long rectangular box each having a fluid inflow pipe 33 and a fluid outflow pipe 34, and a magnetic treatment tank 36 and a magnetic separation tank formed in series within the non-magnetic cell 3. 37.

本発明は、実質的に、上記した処理槽36内に磁気処理
流路P、を設けるとともに、磁気分離槽37内に、上記
磁気処理流路P、と連通連結する磁気分離流路P2を設
けたことに特徴を有する。
The present invention essentially provides a magnetic processing channel P in the above-described processing tank 36, and also provides a magnetic separation channel P2 in communication with the magnetic processing channel P in the magnetic separation tank 37. It has particular characteristics.

なお、本実施例において、磁気分離槽37は、屈曲流路
を形成するため、複数の区画処理槽37a〜37eより
構成されている。
In this embodiment, the magnetic separation tank 37 is composed of a plurality of compartment treatment tanks 37a to 37e to form a curved flow path.

以下、第4図及び第5図を参照して、磁気処理槽36及
び磁気分離槽37の構造について詳細に説明する。
Hereinafter, the structures of the magnetic treatment tank 36 and the magnetic separation tank 37 will be described in detail with reference to FIGS. 4 and 5.

図示するように、長尺箱体形状を有する非磁性体セル3
5は、仕切・仮38,39,40.41.42によって
一つの磁気処理槽36と、磁気分離槽37を形成する五
つの区画処理槽37a〜37eに仕切られている。
As shown in the figure, a non-magnetic cell 3 having a long box shape
5 is partitioned into one magnetic processing tank 36 and five compartmented processing tanks 37a to 37e forming a magnetic separation tank 37 by partitions/temporary partitions 38, 39, 40, 41, and 42.

そして、上記磁気処理槽36は、その内部に磁気処理流
路PIを形成するとともに、その前面に流体流入口43
を設けており、一方、磁気分離槽37を形成する区画処
理槽37a〜37eは、それぞれ、その内部に磁気分離
流路P!を形成するとともに、その他端側に位置する区
画処理槽37eは、その前面に流体流出口44を設けて
いる。
The magnetic processing tank 36 has a magnetic processing channel PI formed therein, and a fluid inlet 43 on the front surface thereof.
On the other hand, each of the compartment treatment tanks 37a to 37e forming the magnetic separation tank 37 has a magnetic separation flow path P! The partitioned treatment tank 37e located at the other end side is provided with a fluid outlet 44 on its front surface.

さらに、第4図に示すように、仕切板38.39,40
゜41.42のうち、仕切板38,40.42は前端を
非磁性体セル35の前面に連結するとともにその後端と
非磁性体セル35の下面との間に連絡流路45.46.
47を形成している。一方、仕切板39.41は後端を
非磁性体セル35の上面に連結するとともにその上端と
非磁性体セル35の下面との間に連絡流路48.49を
形成している。
Furthermore, as shown in FIG. 4, partition plates 38, 39, 40
41.42, the partition plates 38, 40.42 have front ends connected to the front surface of the non-magnetic cell 35, and communication channels 45.46.42 between the rear end and the lower surface of the non-magnetic cell 35.
47 is formed. On the other hand, the rear end of the partition plate 39.41 is connected to the upper surface of the non-magnetic cell 35, and a communication channel 48.49 is formed between the upper end and the lower surface of the non-magnetic cell 35.

かかる構成によって、磁気処理槽36と、磁気分離槽3
7を形成する全区画処理槽37a〜37eは、連絡通路
45.48.46,49.47を介して直列的にかつ屈
曲しながら連通されることになり、磁気発生部M内に屈
曲処理流路を形成することができる。
With this configuration, the magnetic treatment tank 36 and the magnetic separation tank 3
The all-compartment treatment tanks 37a to 37e forming part 7 are connected in series and in a bent manner via communication passages 45, 48, 46, 49.47, so that a bent treatment flow is created in the magnetic generation part M. can form a path.

また、第5図から明らかなように、磁気処理流路P1は
、上下方向の間隔を薄くして、その断面積を、磁気分離
槽37を形成する各区画処理槽37a37aの磁気分離
流路P8の断面積より小さくしていかかる構成によって
、磁気処理流路P+は、磁気処理の高効率を確保するの
に必要な流速(例えば、0.8 m/5ec)を得るこ
とができる。
Moreover, as is clear from FIG. 5, the magnetic processing channel P1 has a thin vertical interval, and its cross-sectional area is reduced to the magnetic separation channel P8 of each compartment processing tank 37a37a forming the magnetic separation tank 37. With such a configuration in which the cross-sectional area is smaller than that of , the magnetic processing channel P+ can obtain a flow velocity (for example, 0.8 m/5ec) necessary to ensure high efficiency of magnetic processing.

次に、各区画処理槽37a、37b、37c、37d、
37eの内部構成について説明する。
Next, each compartment treatment tank 37a, 37b, 37c, 37d,
The internal configuration of 37e will be explained.

第4図及び第5図に示すように、フィルタエレメントと
して作用する多数の強磁性細線50が、各区画処理槽3
7a、37b、37c、37d、37eの内で処理流体
の流れの方向と平行に配設されている。
As shown in FIGS. 4 and 5, a large number of ferromagnetic thin wires 50 acting as filter elements
7a, 37b, 37c, 37d, and 37e, they are arranged parallel to the flow direction of the processing fluid.

そして、これらの強磁性細線50は、等間隔を隔てて、
密で、しかも相互に平行に並設されている。
These ferromagnetic thin wires 50 are spaced at equal intervals,
They are densely arranged and parallel to each other.

さらに、各区画処理槽−37a、37b、37c、37
d、37e内に形成した磁気分離流路P2は、その断面
積を磁気処理流路P、の断面積より大きくしているので
、処理水の流速を低下することができる。
Furthermore, each compartment treatment tank-37a, 37b, 37c, 37
Since the magnetic separation flow path P2 formed in the magnetic separation flow path P2 formed in the magnetic separation flow path P2 and the magnetic separation flow path P2 has a cross-sectional area larger than that of the magnetic treatment flow path P, the flow rate of the treated water can be reduced.

かかる構成によって、各区画処理槽37a〜37e内に
高勾配磁界を形成することができるとともに処理水を低
速度で通過させることができ、非常に小さい微粒子を吸
着除去することができる。
With this configuration, a high gradient magnetic field can be formed in each of the compartment treatment tanks 37a to 37e, and the treated water can be passed through at a low speed, so that very small particles can be adsorbed and removed.

次に上記構成を有する水処理装置tAによる処理水の処
理方法について説明する。
Next, a method for treating treated water using the water treatment apparatus tA having the above configuration will be explained.

処理水は、まず、流体流入口43を通して磁気処理流路
P1内に流入し、その後、屈曲処理流路を形成する複数
の磁気分離流路P2内を通過し、最後に、流体流出口4
4より所望の個所へ送給されることになる。
The treated water first flows into the magnetic treatment channel P1 through the fluid inlet 43, then passes through the plurality of magnetic separation channels P2 forming a bent treatment channel, and finally flows through the fluid outlet 4.
4 to the desired location.

このように、本実施例では、同一の水処理装置A内に磁
気処理流路P、と磁気分離流路P2を形成することがで
きるので、水処理装?!Aの構造をコンパクトに保持し
ながら、処理水の磁気処理と磁気分離処理を行うことが
でき、強磁性微粒子のみならず、従来、分離除去が困難
であった常磁性微粒子も効果的に除去することができる
In this way, in this embodiment, since the magnetic treatment channel P and the magnetic separation channel P2 can be formed in the same water treatment device A, the water treatment device ! While maintaining the compact structure of A, it is possible to perform magnetic treatment and magnetic separation of treated water, effectively removing not only ferromagnetic particles but also paramagnetic particles, which were previously difficult to separate and remove. be able to.

さらに、本実施例では、磁気処理流路P、の断面積と磁
気分離流路P、の断面積を異ならせている、即ち、磁気
処理流路P、の断面積を磁気分離流路P2の断面積より
小さくしている。
Furthermore, in this example, the cross-sectional area of the magnetic processing channel P is made different from the cross-sectional area of the magnetic separation channel P, that is, the cross-sectional area of the magnetic processing channel P is different from that of the magnetic separation channel P2. It is smaller than the cross-sectional area.

従って、流路断面積が狭い磁気処理流路p、において、
流速を磁気処理を行うのに最も適した速度(例えば0.
8 m/sec以上)に設定することが可能となり、磁
気処理の効果の効率を顕著に向上させることが出来る さらに、流路断面積が広い磁気処理流路P2においては
、流速を磁気処理流路P1よりもかなり低下させること
が可能となり、磁気分離の性能を顕著に向上させること
が出来る。
Therefore, in the magnetic processing channel p having a narrow channel cross-sectional area,
The flow rate is set to the most suitable speed for performing magnetic processing (for example, 0.
8 m/sec or more), which significantly improves the efficiency of the magnetic treatment effect.Furthermore, in the magnetic treatment channel P2, which has a large flow channel cross-sectional area, the flow velocity can be set to It is possible to significantly lower P1, and the performance of magnetic separation can be significantly improved.

従って、上述した強磁性微粒子及び常磁性微粒子の除去
効果をさらに向上することができる。
Therefore, the effect of removing the ferromagnetic particles and paramagnetic particles described above can be further improved.

なお、上記した実施例において、磁場を形成するに際し
ては永久磁石31.32を用いたが、これに限定される
ものではなく、電磁石、超電導磁石等により磁場を形成
することもできる。
In the embodiments described above, permanent magnets 31 and 32 were used to form the magnetic field, but the present invention is not limited to this, and the magnetic field can also be formed using an electromagnet, a superconducting magnet, or the like.

また、強磁性細線50は、腐食等を考慮して、強磁性の
ステンレス線を用いるのが好ましいが、何らステンレス
線に限定されるものではなく、強磁性を有するものであ
れば、他の素材からなる線を用いることもできる。
In addition, the ferromagnetic thin wire 50 is preferably made of ferromagnetic stainless steel wire in consideration of corrosion, but is not limited to stainless steel wire at all, and may be made of other materials as long as it has ferromagnetism. It is also possible to use a line consisting of

さらに、強磁性細線50は、網目状或いは簾状に織り込
まれてたもの、グラスウール状に形成したもの、強磁性
体の薄板をエツチングまたは打ち抜き等により細線部分
が残るように加工したもの、又は、非磁性体薄板に強磁
性体をプリント加工したものとするこ之もできる。
Further, the ferromagnetic thin wires 50 may be woven into a mesh or blind shape, formed into glass wool, processed by etching or punching a thin ferromagnetic plate so that thin wire portions remain, or It is also possible to print a ferromagnetic material onto a non-magnetic thin plate.

また、第1表に磁気分離流路ptに用いられる強磁性細
線50の好ましい特性及び流路空間占積率を示す。
Further, Table 1 shows the preferable characteristics and channel space factor of the ferromagnetic thin wire 50 used in the magnetic separation channel pt.

第1表 しかし、強磁性細線50は、何ら強磁性体のステンレス
線等の線状体に限定されるものではなく、例えば、フィ
ラメント状、帯状、或いは、強磁性体小片を用いること
もできる。
Table 1 However, the ferromagnetic thin wire 50 is not limited to a linear body such as a ferromagnetic stainless steel wire; for example, a filament shape, a band shape, or a small piece of ferromagnetic material can also be used.

更に、磁気分離流路P2の各処理装置37a、37b。Furthermore, each processing device 37a, 37b of the magnetic separation channel P2.

37c 37d、37eの強磁性細線の空間占積率を同
−又は変化させてもよい0例えば、37a、37b、3
7c、37d。
37c 37d, 37e The space factor of the ferromagnetic thin wires may be the same or different 0 For example, 37a, 37b, 3
7c, 37d.

37eの順に空間占積率を大きくして、37aで粒径の
大きいものを、37eで粒径の小さい磁性微粒子を捕獲
するようにしても良い、又、各処理槽37a。
The space occupancy factor may be increased in the order of 37e, so that 37a captures particles with a large particle size, and 37e captures magnetic fine particles with a small particle size.Also, each treatment tank 37a.

37b、37c、37d、37eの流路断面積は同一ま
たは変化させても良い0例えば、37a、37b、37
c、37d、37eの順に断面積を大きくして37aで
粒径の大きいものを、37eで粒径の小さい磁性微粒子
を捕獲する。
The flow path cross-sectional areas of 37b, 37c, 37d, and 37e may be the same or may be changed. For example, 37a, 37b, 37
The cross-sectional area is increased in the order of c, 37d, and 37e, and 37a captures particles with a large particle size, and 37e captures magnetic fine particles with a small particle size.

また、第6図に、上記した水処理装置Aの好ましい寸法
関係の1例を示す。
Further, FIG. 6 shows an example of a preferable dimensional relationship of the water treatment apparatus A described above.

即ち、第6図において、リターンフレーム30は、高さ
a ””1201111.幅b −300mm、奥行き
C=20011I11厚みd−20−一としている。ま
た、永久磁石31.32(材質Nd−Fe−B系 残留
磁束密度Br=12,000(G)保磁力Hc=11.
000(Oe)エネルギー積(B ・H)wax−35
(MGOe) )は、磁気処理流路P1と磁気分離流路
P2の幅をそれぞれe =2011!l、 f =20
011111とし、かつ、磁気処理流路P1と磁気分離
流路P2の間隙をそれぞれg =10 mm、 h −
30+uiとしている。
That is, in FIG. 6, the return frame 30 has a height a""1201111. Width b-300mm, depth C=20011I11, thickness d-20-1. In addition, permanent magnet 31.32 (material Nd-Fe-B system, residual magnetic flux density Br = 12,000 (G), coercive force Hc = 11.
000 (Oe) Energy product (B ・H) wax-35
(MGOe) ) is the width of the magnetic processing channel P1 and the magnetic separation channel P2, respectively, e = 2011! l, f = 20
011111, and the gap between the magnetic processing channel P1 and the magnetic separation channel P2 is g = 10 mm, h −
It is set to 30+ui.

又、磁気処理流路P1と磁気分離流路P2の間隙にはそ
れぞれ磁界強度8,500(G) 、5.500(G)
が形成される。
In addition, the magnetic field strength in the gap between the magnetic processing channel P1 and the magnetic separation channel P2 is 8,500 (G) and 5.500 (G), respectively.
is formed.

そして、上記した寸法の磁界発生部M及び強磁性細線5
0を具備する水処理装置Aを実際にビルに設置し、水質
(総鉄濃度)と、ビル給水管におけるスケール詰まり率
の変化を実験したので、その結果を第2表に示す。
Then, the magnetic field generating part M and the ferromagnetic thin wire 5 having the above-mentioned dimensions are provided.
Water treatment equipment A equipped with 0 was actually installed in a building and experiments were conducted to examine changes in water quality (total iron concentration) and scale clogging rate in building water supply pipes.The results are shown in Table 2.

第゛2表 第2表からも明らかなように、本発明に係る水処理装置
Aを設置することによって、総鉄濃度とビル給水管スケ
ール詰り率がいずれも著しく低減しており、強磁性微粒
子のみならず、従来、分離除去が困難であった常磁性微
粒子も効果的に除去することができることを示している
As is clear from Table 2, by installing the water treatment device A according to the present invention, both the total iron concentration and the scale clogging rate of building water pipes were significantly reduced, and the ferromagnetic fine particles In addition, it has been shown that paramagnetic fine particles, which have conventionally been difficult to separate and remove, can also be effectively removed.

なお、上記実施例において、磁気発生部Mは、最初に磁
気処理流路P1を配設し、その後に磁気分離流路P2を
配設したが、本発明は、最初に磁気分離流路P2を配設
し、その後に、磁気処理流路p、を配設した構成も包含
するものである。
In the above embodiment, the magnetic generation section M first provided the magnetic processing channel P1 and then provided the magnetic separation channel P2, but in the present invention, the magnetic separation channel P2 was first provided. This also includes a configuration in which a magnetic processing channel p is provided after that.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る水処理装置をビルに設置した場合
の設置状態説明図、第2図は水処理装置の全体構造を示
す斜視図、第3図は水処理装置の概念的断面側面図、第
4図は同断面平面図、第5図は第4図1−1線による断
面図、第6図は磁場発生部の寸法関係説明図である。 図中、 A二水処理装置    PI:磁気処理流路P□:磁気
分離流路   30: リターンフレーム31:永久磁
石     32:永久磁石50:強磁性細線
Fig. 1 is an explanatory diagram of the installation state when the water treatment device according to the present invention is installed in a building, Fig. 2 is a perspective view showing the overall structure of the water treatment device, and Fig. 3 is a conceptual cross-sectional side view of the water treatment device. 4 is a sectional plan view of the same, FIG. 5 is a sectional view taken along the line 1-1 in FIG. 4, and FIG. 6 is an explanatory diagram of the dimensional relationship of the magnetic field generating section. In the figure, A2 water treatment device PI: Magnetic treatment channel P□: Magnetic separation channel 30: Return frame 31: Permanent magnet 32: Permanent magnet 50: Ferromagnetic thin wire

Claims (1)

【特許請求の範囲】 1、装置本体内に、永久磁石、電磁石、超電導磁石等に
より発生形成された磁界内を処理水を導入して磁気的処
理を行う磁気処理流路(P_1)と、永久磁石、電磁石
、超電導磁石等により発生形成された磁界内に処理水を
導入し、同処理水中に多数の強磁性細線または強磁性体
小片からなるフィルタエレメントを配置し、高勾配磁場
により処理水に浮遊している磁性微粒子を吸着除去させ
る磁気分離流路(P_2)とを一体的に設けたことを特
徴とする水処理装置。 2、磁気処理流路(P_1)と磁気分離流路(P_2)
と流路断面形状又は流路断面積を相互に異ならせ、両流
路における処理水の流速に差異を設けたことを特徴とす
る請求項1記載の水処理装置。 3、装置本体内に、永久磁石、電導石、超電導磁石等に
よって、磁界の強度が異なる磁界発生部を少なくとも2
個所以上設け、各個所にそれぞれ磁気処理流路(P_1
)と磁気分離流路(P_2)とを形成したことを特徴と
する請求項1記載の水処理装置。 4、各磁界発生部はそれぞれ間隔を開けて対面させた一
対の異極の磁石から形成し、各磁界発生部の磁石間の間
隙をそれぞれ異ならせたことを特徴とする請求項1記載
の水処理装置。 5、磁気分離流路(P_2)に設けたフィルタエレメン
トを構成する強磁性細線は、網目状或いは簾状に織り込
まれていることを特徴とする請求項1記載の水処理装置
。 6、磁気分離流路(P_2)に設けたフィルタエレメン
トを構成する強磁性細線は、グラスウール状に形成され
ていることを特徴とする請求項1記載の水処理装置。 7、磁気分離流路(P_2)に設けたフィルタエレメン
トを構成する強磁性細線は、強磁性体の薄板をエッチン
グまたは打ち抜き等により細線部分が残るように加工し
たもの、又は、非磁性体薄板に強磁性体をプリント加工
したものからなることを特徴とする請求項1記載の水処
理装置。
[Claims] 1. A magnetic treatment channel (P_1) in which treated water is introduced into a magnetic field generated by a permanent magnet, an electromagnet, a superconducting magnet, etc. and subjected to magnetic treatment in the device main body; Treated water is introduced into a magnetic field generated by a magnet, electromagnet, superconducting magnet, etc., and a filter element made of a large number of ferromagnetic thin wires or small ferromagnetic pieces is placed in the treated water, and a high gradient magnetic field is applied to the treated water. A water treatment device characterized by being integrally provided with a magnetic separation channel (P_2) that adsorbs and removes floating magnetic particles. 2. Magnetic processing channel (P_1) and magnetic separation channel (P_2)
2. The water treatment apparatus according to claim 1, wherein the cross-sectional shape or the cross-sectional area of the flow passages are made different from each other, and the flow rate of the treated water in both flow passages is different. 3.In the main body of the device, there are at least two magnetic field generating sections with different magnetic field strengths, such as permanent magnets, conductive stones, superconducting magnets, etc.
At least one magnetic processing channel (P_1) is provided at each location.
) and a magnetic separation channel (P_2). 4. The magnetic field generator according to claim 1, wherein each magnetic field generating section is formed from a pair of magnets of different polarities facing each other with an interval, and the gaps between the magnets of each magnetic field generating section are made different. Processing equipment. 5. The water treatment device according to claim 1, wherein the ferromagnetic thin wires constituting the filter element provided in the magnetic separation flow path (P_2) are woven into a mesh or screen shape. 6. The water treatment device according to claim 1, wherein the ferromagnetic thin wire constituting the filter element provided in the magnetic separation channel (P_2) is formed in the shape of glass wool. 7. The ferromagnetic thin wires constituting the filter element provided in the magnetic separation channel (P_2) are made of a thin ferromagnetic plate processed by etching or punching so that the thin wire portion remains, or a thin non-magnetic plate. The water treatment device according to claim 1, characterized in that it is made of a printed ferromagnetic material.
JP8537689A 1989-04-03 1989-04-03 Water treatment apparatus Pending JPH02265689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8537689A JPH02265689A (en) 1989-04-03 1989-04-03 Water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8537689A JPH02265689A (en) 1989-04-03 1989-04-03 Water treatment apparatus

Publications (1)

Publication Number Publication Date
JPH02265689A true JPH02265689A (en) 1990-10-30

Family

ID=13857006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8537689A Pending JPH02265689A (en) 1989-04-03 1989-04-03 Water treatment apparatus

Country Status (1)

Country Link
JP (1) JPH02265689A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011352A (en) * 2012-11-29 2013-04-03 大连凯泓科技有限公司 Iron-compound treatment device
CN110514056A (en) * 2019-09-19 2019-11-29 三门踱哒环保设备有限公司 A kind of scaling prevention device on condenser water inlet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011352A (en) * 2012-11-29 2013-04-03 大连凯泓科技有限公司 Iron-compound treatment device
CN110514056A (en) * 2019-09-19 2019-11-29 三门踱哒环保设备有限公司 A kind of scaling prevention device on condenser water inlet
CN110514056B (en) * 2019-09-19 2020-10-02 三门踱哒环保设备有限公司 Anti-scaling device for water inlet of condenser

Similar Documents

Publication Publication Date Title
EP0089200B1 (en) A high-gradient magnetic separator
JP3223450B2 (en) Ultra high magnetic fluid processing equipment
GB1578396A (en) Magnetic separator
US4209394A (en) Magnetic separator having a multilayer matrix, method and apparatus
US4544482A (en) Apparatus for extracting magnetizable particles from a fluid medium
US3850811A (en) Magnetic filter
JPH02265689A (en) Water treatment apparatus
JPS621425A (en) Filtering and desalting apparatus
WO2002020125A1 (en) Magnetic filter device
JPH0361482B2 (en)
JPS607769Y2 (en) Magnetizable particle separator
GB2228431A (en) Electromagnetic filter with a high field gradient
CA1158567A (en) Removable coil electromagnetic filter
KR100697502B1 (en) Magnetic filter device
JPH02303595A (en) Feed water cleaning device
JPH02265690A (en) Water treatment apparatus
JPS58143814A (en) Magnetic separation apparatus
JPH02265691A (en) Water treatment apparatus
JPH04300608A (en) Circulating purification system for bathtub water
JP4206691B2 (en) Purification device using magnetic material
GB2163676A (en) Magnetic filter
JPH02265613A (en) High gradient magnetic separator
JP3580117B2 (en) Magnetic separation device
JPH02303594A (en) Feed water cleaning device
EP1127622A2 (en) Low intensity magnetic separator