JPH02265486A - Dna fragment, slightly acidic and slightly cryotolerant cellulose and production thereof - Google Patents

Dna fragment, slightly acidic and slightly cryotolerant cellulose and production thereof

Info

Publication number
JPH02265486A
JPH02265486A JP1086714A JP8671489A JPH02265486A JP H02265486 A JPH02265486 A JP H02265486A JP 1086714 A JP1086714 A JP 1086714A JP 8671489 A JP8671489 A JP 8671489A JP H02265486 A JPH02265486 A JP H02265486A
Authority
JP
Japan
Prior art keywords
cellulase
dna fragment
dna
slightly acidic
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1086714A
Other languages
Japanese (ja)
Other versions
JP2928265B2 (en
Inventor
Shoichi Shimizu
清水 祥一
Kunio Omiya
邦雄 大宮
Tsutomu Kajino
勉 梶野
Hiroyuki Deguchi
裕之 出口
Takuji Sasaki
佐々木 卓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1086714A priority Critical patent/JP2928265B2/en
Publication of JPH02265486A publication Critical patent/JPH02265486A/en
Application granted granted Critical
Publication of JP2928265B2 publication Critical patent/JP2928265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To easily obtain a large quantities of the subject substance by transforming a cell with a plasmid DNA containing a DNA fragment originated from a specific microorganism and culturing the obtained transformant in a medium. CONSTITUTION:Ruminococcus albus is cultured in a medium containing glucose, etc., and the obtained microbial cell is extracted to obtain a DNA fragment (A) having a base sequence of formula and coding a genetic information of a neutral cellulase. A part of the component A is mutated to obtain a mutated DNA fragment (B) effective in (a) coding a protein corresponding to the matured protein of said neutral cellulase provided that the 15 or 24 amino acids from the amino terminal are deleted, (b) coding a slightly acidic cryotolerant cellulase, etc. A microbial strain (FERM P-10624) transformed with a plasmid DNA containing the component B is cultured in a medium and the cultivation product is extracted and purified to obtain the objective slightly acidic and slightly cryotolerant cellulase having a molecular weight of 35,000+ or -5,000 dalton, exhibiting maximum activity at pH5-7 and 20-35 deg.C and keeping >=80% of the activity after keeping at 37 deg.C for 1hr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はDNA断片の変異による新規なりNA断片、微
酸性微低温性セルラーゼ及びその製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a novel NA fragment obtained by mutating a DNA fragment, a slightly acidic microtherogenic cellulase, and a method for producing the same.

詳しくは、本発明は農産物及び林産物資源であるセルロ
ースを有用物質に変換する絶対嫌気性ルーメン球菌ルミ
ノコッカス・アルプスの生産する中性(pH6,8)中
温性(37℃)セルラーゼのアミノ酸配列をコードして
いるDNA断片の一部を変異せしめたDNA断片及びこ
の断片を組み込んだプラスミドDNA、更には、このプ
ラスミドDNAを用いて作られた形質転換菌に関する。
Specifically, the present invention encodes the amino acid sequence of a neutral (pH 6, 8) mesophilic (37°C) cellulase produced by the obligate anaerobic rumenococcus Ruminococcus alpus that converts cellulose, which is an agricultural and forest product resource, into useful substances. The present invention relates to a DNA fragment obtained by mutating a part of a DNA fragment, a plasmid DNA incorporating this fragment, and a transformed bacterium produced using this plasmid DNA.

また、この形質転換菌によって生産されたセルラーゼと
その製造方法にも関する。
The present invention also relates to a cellulase produced by this transformed bacterium and a method for producing the same.

〔従来の技術〕[Conventional technology]

農産・林産資源で地球上に広範、多量に存在するセルロ
ースをセルラーゼによりグルコースにまで加水分解した
後、種々の微生物を使ってエネルギー資源、化学工業原
料、微生物蛋白質に転換する等のセルロースを有効利用
する研究が行われている。現在多くの微生物からセルラ
ーゼが検出され精製されているが、好気性菌や糸状菌が
ほとんどであり、嫌気性菌特にルーメン細菌より検出、
精製されたセルラーゼを改良して利用しようとする報告
はほとんどない。
Cellulose, which is an agricultural and forestry resource that exists widely and in large quantities on earth, is hydrolyzed to glucose by cellulase, and then various microorganisms are used to effectively utilize cellulose, such as converting it into energy resources, raw materials for chemical industry, and microbial protein. Research is being conducted to Currently, cellulase has been detected and purified from many microorganisms, but most of them are aerobic bacteria and filamentous bacteria, and cellulases have been detected from anaerobic bacteria, especially rumen bacteria.
There are few reports on the improvement and use of purified cellulases.

用台等は(特開昭62−208283号)ルミノコッカ
ス属に属するセルラーゼ生産菌のセルラーゼ生産に関与
する遺伝情報を担う染色体DNA断片を含有せしめてな
る組換えベクター及びこれにより形質転換されたエシェ
リヒア属に属するセルラーゼ生産菌に関して発明を完成
させている。用台等の発明による形質転換菌の酵素生産
の最適pHは6.8、また最適温度は35℃付近である
The preparations are (Japanese Patent Laid-open No. 62-208283) a recombinant vector containing a chromosomal DNA fragment carrying genetic information involved in cellulase production of a cellulase-producing bacterium belonging to the genus Ruminococcus, and Escherichia transformed with the recombinant vector. The invention has been completed regarding cellulase-producing bacteria belonging to the genus. The optimum pH for enzyme production by the transformed bacteria according to the invention of Yodai et al. is 6.8, and the optimum temperature is around 35°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来公知のルーメン細菌由来のセルラーゼは37〜40
℃1中性付近のpHに最適活性を持ち、植物細胞内にお
けるような環境条件すなわち微酸性微低温では実用活性
を発現できないものが多い(用台等特開昭62−208
283号)、そこで、より低い温度で、またより低いp
H域で高い活性を持つセルラーゼが求められてきた。さ
らに、嫌気性ルーメン細菌由来のセルラーゼによるセル
ロース利用技術を発展させるためには、セルラーゼの酵
素及び蛋白質の化学的性質を解明することが必要である
Conventionally known cellulase derived from rumen bacteria is 37-40
Many of them have optimal activity at pH around neutrality at ℃1, but cannot express practical activity under the environmental conditions such as those inside plant cells, that is, under slightly acidic and extremely low temperatures (Yota et al.
283), where lower temperatures and lower p
A cellulase with high activity in the H region has been sought. Furthermore, in order to develop cellulose utilization technology using cellulase derived from anaerobic rumen bacteria, it is necessary to elucidate the chemical properties of cellulase enzymes and proteins.

本発明者等は、セルロース分解能が一般的に優れている
嫌気性菌に属するルミノコッカス・アルプスのセルラー
ゼ遺伝子をコードしているDNA断片の一部を変異せし
めることにより、微酸性及び微低温で実用活性を発現で
きるセルラーゼを作り出した0本発明によるセルラーゼ
は例えばその成熟蛋白質のアミン末端よりアミノ酸残基
の一部を欠失させている点で用台等による発明と明瞭に
区別される。本発明はこの新知見にもとづき完成したも
のである。
The present inventors mutated a part of the DNA fragment encoding the cellulase gene of Ruminococcus alpine, which belongs to an anaerobic bacterium that generally has excellent cellulose decomposition ability, and developed a cellulase gene that can be used in a slightly acidic and extremely low temperature environment. The cellulase according to the present invention, which produced a cellulase capable of expressing activity, is clearly distinguished from the invention by Yodai et al. in that, for example, some amino acid residues are deleted from the amine terminus of the mature protein. The present invention was completed based on this new knowledge.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は次の構成から成る。 The present invention consists of the following configuration.

1、ルミノコッカス・アルプス(Ruminococc
usalbus)のDNAより分離された中性セルラー
ゼの遺伝情報をコードするDNA断片の一部を変異せし
めたDNA断片。
1. Ruminococcus alps
This is a DNA fragment obtained by mutating a portion of the DNA fragment encoding the genetic information of neutral cellulase isolated from the DNA of A. usalbus.

2、中性セルラーゼの遺伝情報をコードするDNA断片
の一部を変異せしめたDNA断片が、該中性セルラーゼ
の成熟蛋白質のアミノ末端から一部のアミノ酸配列を欠
失させた蛋白質をコードするものである上記l記載のD
NA断片。
2. A DNA fragment obtained by mutating a portion of a DNA fragment encoding the genetic information of neutral cellulase, which encodes a protein in which a part of the amino acid sequence is deleted from the amino terminus of the mature protein of neutral cellulase. D as described in l above, which is
NA fragment.

3、中性セルラーゼの成熟蛋白質のアミノ末端から15
あるいは24個のアミノ酸を欠失させた蛋白質をコード
するものである上記2記載のDNA断片。
3. 15 from the amino terminus of the mature protein of neutral cellulase
Alternatively, the DNA fragment described in 2 above, which encodes a protein with 24 amino acids deleted.

4、中性セルラーゼのアミノ酸配列をコードするDNA
断片の一部を変異せしめたDNA断片が、該中性セルラ
ーゼの成熟蛋白質のカルボキシル末端から一部のアミノ
酸配列を欠失させた蛋白質をコートするものである上記
1記載のDNA断片。
4. DNA encoding the amino acid sequence of neutral cellulase
2. The DNA fragment according to 1 above, wherein the partially mutated DNA fragment coats a protein in which a part of the amino acid sequence is deleted from the carboxyl terminus of the mature protein of the neutral cellulase.

5、微酸性低温性セルラーゼをコードするものである上
記1記載のDNA断片。
5. The DNA fragment described in 1 above, which encodes a slightly acidic low temperature cellulase.

6、上記1〜5記載のDNA断片を含むプラスミドDN
A。
6. Plasmid DNA containing the DNA fragment described in 1 to 5 above
A.

7、上記6記載のプラスミドDNAにより形質転換され
た形質転換体。
7. A transformant transformed with the plasmid DNA described in 6 above.

8、ルミノコッカス・アルプス(Rusinococc
usalbus)のDNAより分離された中性セルラー
ゼのアミノ酸配列をコードするDNA断片の一部を変異
せしめたDNA断片を翻訳して得られた蛋白質。
8. Rusinococcus alps
This protein is obtained by translating a partially mutated DNA fragment that encodes the amino acid sequence of neutral cellulase isolated from the DNA of A. usalbus.

9、pH5〜7.20〜35℃で最大活性を示す微酸性
微低温性セルラーゼ。
9. A slightly acidic microcold cellulase that exhibits maximum activity at pH 5-7.20-35°C.

10、 5O5−ポリアクリルアミドゲル電気泳動で測
定したとき約35,000±5.000ダルトンの分子
量を持ち、pH5〜7.20〜35℃で最大活性を示し
、37℃で1時間保持したとき80%以上の残存活性を
有することを特徴とする微酸性微低温性セルラーゼ。
10. It has a molecular weight of approximately 35,000 ± 5.000 Daltons as determined by 5O5-polyacrylamide gel electrophoresis, exhibits maximum activity at pH 5-7, 20-35°C, and 80 % or more of residual activity.

11、上記7記載の形質転換体を培養し得られた培養物
から微酸性低温性セルラーゼを採取することを特徴とす
る微酸性微低温性セルラーゼの製造方法。
11. A method for producing a slightly acidic low-temperature cellulase, which comprises culturing the transformant described in 7 above and collecting the slightly acidic low-temperature cellulase from the resulting culture.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明による微酸性微低温性セルラーゼは中温、中性p
Hで好気的条件において大腸菌(FERN P−106
24)で製造されるため、経済的制約を受けることが少
ない。本発明者は、酵素蛋白のアミノ酸配列の一部を、
例えばアミノ末端あるいはカルボキシル末端から欠失さ
せた新規な微酸性微低温性セルラーゼのアミノ酸配列を
コードしているDNA断片を取得することに成功した。
The slightly acidic micropsychrophilic cellulase according to the present invention is mesophilic, neutral p.
Escherichia coli (FERN P-106) in aerobic conditions at
24), there are few economic constraints. The present inventor has determined that part of the amino acid sequence of the enzyme protein is
For example, we succeeded in obtaining a DNA fragment that encodes the amino acid sequence of a novel slightly acidic microthermic cellulase deleted from the amino or carboxyl terminus.

その結果、例えばランナウェイプラスミドのようなハイ
コピープラスミドに組み込むことにより、工業的大量生
産を行うこともできるようになった。本発明で使用する
ルミノコッカス・アルプスは、ルミノコッカス属に属す
る絶対嫌気性細菌であって、 最適増殖温度   37℃ 増殖可能温度   25〜50”C 最適増殖pH6,8 増殖可能pH5〜8 ダラム染色    ダラム陽性 グアニン+シトシン含量42.6〜45.8%である。
As a result, it has become possible to carry out industrial mass production by incorporating it into a high copy plasmid such as a runaway plasmid. Ruminococcus alps used in the present invention is an obligate anaerobic bacterium belonging to the genus Ruminococcus, and has an optimal growth temperature of 37°C, a growth temperature of 25 to 50"C, an optimal growth pH of 6.8, a growth potential of 5 to 8, Durham staining, and Durham staining. Positive guanine + cytosine content is 42.6-45.8%.

セルラーゼのアミノ酸配列をコードしているDNAの抽
出に用いる培地は特に限定されない。ルミノコッカス・
アルプスが生育できる培地なら何でも使用できる0例え
ば炭素源としてグルコース(7)代すにセロビオース、
ボールミルセルロース、ホティアオイや稲ワラなどを含
む培地を用いることもできる。不溶性物質を含まないと
いう点でグルコースを用いると後の操作が容易である。
The medium used for extracting DNA encoding the amino acid sequence of cellulase is not particularly limited. Ruminococcus・
Any medium that can grow Alps can be used.For example, glucose (7) can be used as a carbon source, and cellobiose can be used instead.
A medium containing ball milled cellulose, water hyacinth, rice straw, etc. can also be used. Use of glucose facilitates subsequent operations in that it does not contain insoluble substances.

組み換え体プラスミド構築と調製に際し、DNAの切断
法は特に限定されない。ホモジナイザーなどで物理的に
切断してもよい。しかし、あとでベクターに連結するた
めには、同一の制限酵素を用いるのが好ましい。アルカ
リホスファターゼ処理すると効率をあげることができる
。リゲーション反応は、通常12℃〜16°c120〜
50分で完了する。
When constructing and preparing a recombinant plasmid, the DNA cutting method is not particularly limited. It may be physically cut using a homogenizer or the like. However, it is preferred to use the same restriction enzymes for later ligation into the vector. Efficiency can be increased by treatment with alkaline phosphatase. The ligation reaction is usually carried out at 12°C to 16°C.
Complete in 50 minutes.

コンピテントセルは大腸菌に限定されず、枯草菌、酵母
、植物細胞等が使用できる。コンピテントセルの調製法
は、塩化カルシウム処理する。さらに、プロトプラスト
化法やDNA)ランスフェクシ晋ン(遺伝子導入)法な
ど従来知られている如何なる方法でも可能である。
Competent cells are not limited to E. coli, but Bacillus subtilis, yeast, plant cells, etc. can be used. The method for preparing competent cells involves calcium chloride treatment. Furthermore, any conventionally known methods such as protoplastization and DNA transfection (gene introduction) methods can be used.

セルラーゼを生産する組換菌の検出方法は特に限定され
ない。例えば−膜力ルボキシメチルセルロース(以下、
CMCと記す)重層−コンゴーレッド法と呼ばれる方法
を用いることができる。培養時間は10〜14時間が好
ましく、CMC重層後の保持時間も2時間に限定されな
い。染色時間も5〜数10分間でよい。
The method for detecting recombinant bacteria that produces cellulase is not particularly limited. For example - membrane force ruboxymethylcellulose (hereinafter referred to as
A method called the multilayer Congo red method (denoted as CMC) can be used. The culture time is preferably 10 to 14 hours, and the holding time after CMC overlay is not limited to 2 hours. The staining time may also be 5 to several tens of minutes.

プラスミドpURA I−diその他の欠失変異DNA
断片のクローニングに用いるプラスミドベクターも特に
限定されない。挿入サイトもセルラーゼの活性が発現で
きるようなサイトであればどのサイトでもよい。
Plasmid pURA I-di and other deletion mutant DNAs
The plasmid vector used for cloning the fragment is also not particularly limited. The insertion site may be any site that can express cellulase activity.

pURA I−diを用いた新規な微酸性微低温セルラ
ーゼの製造において、培地の組成は特に限定されず、コ
ンピテントセルがptlRA I−dlを保持して生育
できる培地であればいかなる培地でも使用できる。培地
のpHは6〜7が好ましいがpH5,5〜8.0でも1
/3の量の酵素を生産できる。培養時間は10〜14時
間が好ましいが増殖速度により適宜変化する。
In the production of a novel slightly acidic microcold cellulase using pURA I-di, the composition of the medium is not particularly limited, and any medium can be used as long as competent cells can retain and grow ptlRA I-dl. . The pH of the medium is preferably 6 to 7, but even pH 5.5 to 8.0 is 1.
/3 amount of enzyme can be produced. The culture time is preferably 10 to 14 hours, but may vary depending on the growth rate.

精製法は特に限定されず、従来公知の方法を組合せて行
うことができる。例えば、オスモチインクショック、イ
オン交換クロマトグラフィーなどの方法の組合せによっ
て精製できる。
The purification method is not particularly limited, and can be performed by combining conventionally known methods. For example, it can be purified by a combination of methods such as osmoti ink shock and ion exchange chromatography.

本発明で得られる新規の微酸性微低温性セルラーゼの理
化学的性質は次のとおりである。
The physicochemical properties of the novel slightly acidic micropsychrogenic cellulase obtained by the present invention are as follows.

1、作用: CMC等のセルロースを分解し粘度低下を
きたす、これと同時に還元糖も少量であるが有意な量を
生成する。
1. Action: Decomposes cellulose such as CMC, resulting in a decrease in viscosity.At the same time, a small but significant amount of reducing sugar is also produced.

2、基質特異性: CMC等のセルロースに対し特異的
に作用する。
2. Substrate specificity: Acts specifically on cellulose such as CMC.

3、至適pH:pH5,5〜6.0付近でCMCに対す
る作用が至適である。
3. Optimum pH: The effect on CMC is optimal around pH 5.5 to 6.0.

4、安定pH範囲:37℃で10分間処理した場合、p
H5〜7においてCHC分解活性は80%以上の残存活
性を示す。
4. Stable pH range: When treated at 37°C for 10 minutes, p
CHC decomposition activity shows residual activity of 80% or more in H5-7.

5、至適温度:pH6,8においてCMCを基質とした
場合、20〜30″C付近である。
5. Optimum temperature: around 20-30''C when CMC is used as a substrate at pH 6.8.

6、熱安定性: pH6,8において40℃11時間処
理した場合、CMCに対し80%以上の残存活性を示す
6. Thermal stability: When treated at 40° C. for 11 hours at pH 6.8, it shows residual activity of 80% or more against CMC.

7、分子量:SDS−ポリアクリルアミドゲル電気泳動
で測定したとき、35.000±5.000ダルトンの
分子量を有する。
7. Molecular weight: It has a molecular weight of 35.000±5.000 daltons when measured by SDS-polyacrylamide gel electrophoresis.

〔発明の効果〕〔Effect of the invention〕

本発明で得られる短縮化セルラーゼは簡便で大量に製造
できるうえに短縮化していないセルラーゼに比べ低いp
Hおよび低い温度で最適活性が発現できるように構築さ
れているうえ、セルロース合成反応も司る。従ってこの
発明は、セルロースを分解利用する工業や林木育種など
のセルロース合成を目的とする産業分野に広く利用でき
、それによってもたらされる経済効果は極めて大きい。
The truncated cellulase obtained by the present invention is simple and can be produced in large quantities, and has a lower p value than non-truncated cellulase.
It is constructed so that optimal activity can be expressed at high temperatures and low temperatures, and it also controls cellulose synthesis reactions. Therefore, the present invention can be widely used in industries that decompose and utilize cellulose and industries that aim to synthesize cellulose, such as forest tree breeding, and the economic effects brought about by it are extremely large.

以下実施例により、本発明をさらに具体的に説明する。The present invention will be explained in more detail below with reference to Examples.

〔実施例〕〔Example〕

(1)セルラーゼの検定 本実施例におけるセルラーゼの酵素活性はCMCを基質
としたとき、粘度低下による活性を測定することにより
行った。
(1) Cellulase assay The enzymatic activity of cellulase in this example was determined by measuring the activity due to viscosity reduction when CMC was used as a substrate.

即ち、1.0%CMC(第一工業製薬社製)溶液5−と
酵素溶液1jltを混合しコーンプレート型回転粘度計
(東京計器社製E型粘度計)中にて37℃で5分間保持
したときの粘度をvIとする。なお、ブランクは酵素溶
液1dの代わりに水1dを用いたときの粘度V、を用い
る。
That is, 1.0% CMC (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) solution 5 - and enzyme solution 1 jlt were mixed and held at 37°C for 5 minutes in a cone-plate rotational viscometer (E-type viscometer manufactured by Tokyo Keiki Co., Ltd.). The viscosity at that time is vI. Note that the blank uses the viscosity V when 1 d of water is used instead of 1 d of the enzyme solution.

1単位−(1/V、−1/νs) Xl15生成還元糖
の定量にはソモギーネルソン法を用いた。
1 unit - (1/V, -1/vs) The Somogyi-Nelson method was used to quantify the reducing sugar produced by Xl15.

(2)セルラーゼの遺伝情報をコードしているDNAの
調製 ルミノコツカス・アルプス(Ruminococcus
 albusATCC27210)よりDNAを調製す
る際には、主炭素源としてグルコースを用いる下に示し
た公知の嫌気性合成培地を用いた。
(2) Preparation of DNA encoding the genetic information of cellulase
When preparing DNA from S. albus ATCC 27210), a known anaerobic synthetic medium shown below using glucose as the main carbon source was used.

嫌気性合成培地の組成 分           1100a!中7.5 ml 7.5 d O,311d O,1adt O,Ig 1.0g 0.5g 1.0I11 成 ミネラルI ミネラル■ FA 0.1χレサズリン溶液 酵母エキス グルコース Na、CO3 2,5χシステイン溶液 ミネラル■の組成 成 JPO4 H,0 分 500戚中 3.0g 97  d ミネラル■の組成 成   分 HzPOn NaC1 (NHJzSO4 MgSO,・7H20 NaC1g H,0 VFAの組成 成  分 酢酸 プロピオン酸 n−酪 酸 1so−酪 酸 n−バレリン酸 1so−バレリン酸 0L−2−メチル酪酸 500mf中 3.0g 6.0g 6.0g 0.6g 0.6g 483.8  d 31d中 17d! d adl d d d IIi 上記培地組成のうち、NazcOsとシスティン溶液を
除く全成分を添加した後、pHを7.0に調整して、N
a1CO,とシスティン溶液とを添加した。そして、C
Otガスを30分間通気した後、110℃で10分間オ
ートクレーブして用いた。
Composition of anaerobic synthetic medium 1100a! Medium 7.5 ml 7.5 d O, 311 d O, 1 adt O, Ig 1.0 g 0.5 g 1.0 I11 Adult mineral I Mineral ■ FA 0.1 χ Resazurin solution Yeast extract glucose Na, CO3 2.5 χ Cysteine solution Mineral ■ Composition of JPO4 H, 0 min 500 3.0 g 97 d Mineral Acid n-valeric acid 1so-valeric acid 0L-2-methylbutyric acid 3.0 g in 500 mf 6.0 g 6.0 g 0.6 g 0.6 g 483.8 d 17 d in 31 d! d adl d d d IIi Of the above medium composition After adding all the components except NazcOs and cysteine solution, the pH was adjusted to 7.0 and N
a1CO, and cysteine solution were added. And C
After passing Ot gas through it for 30 minutes, it was autoclaved at 110° C. for 10 minutes and used.

得られた菌体を5aline−EDTA (0,5M 
NaC1,0,1MEDTA、  p H8,0)で洗
浄後、0.5 dの5aline−EDTAに懸濁し、
1■のりゾチームを加え攪拌後、37℃で10分間静置
した。その後、10jdのトリス−5OS緩衝液(0,
1M NaC1,pH9,0)を加えて60℃で5分間
保持し溶菌させた。これにトリス−5OS−フェノール
(再蒸留フェノールをトリス−5os −81衝液で飽
和させたもの)を10゜5I11加え、0℃で20分間
静置したのち1.500Xgで10分間遠心分離したの
ち溶菌液を得た。この溶菌液に21mの冷エタノールを
加えたのち糸状DNAを滅菌したガラス棒で巻き取り滅
菌水に溶かした。このDNA500μg/dに対し、1
00℃で15分間熱しデオキシリボヌクレアーゼ(DN
ase)を失活させたりボヌクレアーゼ(RNase)
 Aを最終濃度50ug/dとなるよう加え、37℃で
30分間保持し、共存するRNAを分解した。
The obtained bacterial cells were treated with 5aline-EDTA (0.5M
After washing with NaCl (1,0,1 MEDTA, pH 8,0), suspended in 5aline-EDTA for 0.5 d,
After adding 1 part of Norizozyme and stirring, the mixture was allowed to stand at 37°C for 10 minutes. Then add 10jd of Tris-5OS buffer (0,
1M NaCl, pH 9,0) was added and kept at 60°C for 5 minutes to lyse the bacteria. To this, 10°5I11 of Tris-5OS-phenol (redistilled phenol saturated with Tris-5os-81 buffer) was added, allowed to stand at 0°C for 20 minutes, centrifuged at 1.500×g for 10 minutes, and then lysed. I got the liquid. After adding 21 m of cold ethanol to this lysate, the filamentous DNA was wound up with a sterilized glass rod and dissolved in sterilized water. For 500 μg/d of this DNA, 1
Heat at 00°C for 15 minutes to remove deoxyribonuclease (DN).
to inactivate bonuclease (RNase) or bonuclease (RNase).
A was added to a final concentration of 50 ug/d, and the mixture was kept at 37°C for 30 minutes to degrade coexisting RNA.

リボヌクレアーAの反応を止めるためトリス−5O5−
フェノール処理したのち、沈澱を真空乾燥後、適当量の
滅菌水に溶かし純粋なりNAを得る。
Tris-5O5- to stop the ribonuclea A reaction
After the phenol treatment, the precipitate is vacuum dried and then dissolved in an appropriate amount of sterilized water to obtain pure NA.

第1図にこのDNAの塩基配列を示す。Figure 1 shows the base sequence of this DNA.

図中、−35と−IOの下線部分はRNAポリメラーゼ
の結合部位と認識部位とをそれぞれ表わし、SDはリボ
ゾーム結合部位を、↓は転写開始部位を、ムはシグナル
配列の開裂部位を、水平方向の→←は回文配列をそれぞ
れ表わす、また停止コドンは3つのアステリックを用い
て示しである。
In the figure, the underlined parts of -35 and -IO represent the RNA polymerase binding site and recognition site, respectively, SD is the ribosome binding site, ↓ is the transcription initiation site, and Mu is the signal sequence cleavage site, horizontally The →← represents a palindromic sequence, respectively, and the stop codon is indicated using three asterisks.

(3)組み換えプラスミドの調製 上記(2)で得られたDNAを旧ndl[[で37℃、
1時間完全分解を行った。DNAの)fin dI[[
完全分解物は0.8%アガロースゲル電気泳動にて泳動
後4〜10kbpの断片を切出し、透析チューブ内にて
溶出後フェノール処理、エタノール沈澱を行った。
(3) Preparation of recombinant plasmid The DNA obtained in (2) above was incubated at 37°C with old ndl [[
Complete decomposition was carried out for 1 hour. DNA) fin dI[[
The complete decomposition product was subjected to 0.8% agarose gel electrophoresis, and a 4 to 10 kbp fragment was cut out, eluted in a dialysis tube, and then treated with phenol and precipitated with ethanol.

別にプラスミドpBI1322も旧ndulで完全分解
を行った。これをアルカリフォスファターゼで処理した
のち、同様にフェノール処理、エーテル処理、エタノー
ル沈澱を行った。リゲーションはT41Jガーゼを用い
16℃の温度で1時間行った。リゲーションが完全に行
われたことはアガロースゲル電気泳動によって確認した
。目的のセルラーゼをコードしているDNA断片をもつ
プラスミドpURA Iよりその断片を切出し、pUc
19に組み込みpURA Iを構築し、コピー数を格段
に高めた。
Separately, plasmid pBI1322 was also completely digested with old ndul. After treating this with alkaline phosphatase, phenol treatment, ether treatment, and ethanol precipitation were performed in the same manner. Ligation was performed using T41J gauze at a temperature of 16° C. for 1 hour. Complete ligation was confirmed by agarose gel electrophoresis. Excise the DNA fragment encoding the desired cellulase from plasmid pURA I and use it as pUc.
19, pURA I was constructed and the copy number was significantly increased.

(4)欠失変異DNA遺伝子の調製 アミノ末端を欠失したセルラーゼの遺伝情報をもつDN
A断片を構築するためにデイレ−シラン法を用いた。す
なわち、pURA Iを制限酵素Acclで完全分解し
たセルラーゼ遺伝子を含む1.8kbpの断片を調製し
た。これにSIヌクレアーゼ処理し、末端を平滑化し、
puc 119のSea lサイトに再クローニングし
た。これをKpn Iと旧ncll!で切断しセルラー
ゼ遺伝子を含む1.6kbp断片を調製した。これをP
vu Uで部分分解し、puc 119の5vaa l
サイトにリゲーションした。形質転換してできたコロニ
ーのうち活性を有するものは423b、のPvu ll
−1656bpの旧ncIIの1.2kdp断片がフレ
ームの合った形でlacプロモーターにつながったもの
であった。これをp[IRA−Pνとする。
(4) Preparation of deletion mutant DNA gene DNA with genetic information of cellulase with amino terminus deleted
The Deyley-silane method was used to construct the A fragment. That is, a 1.8 kbp fragment containing the cellulase gene was prepared by completely digesting pURA I with the restriction enzyme Accl. This was treated with SI nuclease to make the ends blunt,
It was recloned into the Sea I site of puc 119. This is Kpn I and old ncll! A 1.6 kbp fragment containing the cellulase gene was prepared. P this
Partially disassembled with vu U, 5vaa l of puc 119
Religated to the site. Among the colonies formed by transformation, those with activity are Pvu ll of 423b.
A -1656 bp old ncII 1.2 kdp fragment was linked in frame to the lac promoter. Let this be p[IRA-Pv.

セルラーゼのアミノ末端を削除するために、pURA−
Pνを、挿入断片中に制限酵素サイトのないマルチクロ
ーニングサイト中のsph IとSal lで切断し、
プロモーター側に3′突出末端(Sρhlサイト)、構
造遺伝子側に5′突出末端(Sal Iサイト)が形成
される。この5′突出末端をエキソヌクレアーゼ■で分
解したのち、mung bean nucleaseで
一本鎖部分を削除し、クレノー酵素で末端を完全に平滑
にした後、T4リガーゼによりリゲーションし、これを
用いて大腸菌JM 103を形質転換した。
To delete the amino terminus of the cellulase, pURA-
Pν is cut with sph I and Sal I in the multi-cloning site where there is no restriction enzyme site in the insert fragment,
A 3' overhanging end (Sρhl site) is formed on the promoter side, and a 5' overhanging end (Sal I site) is formed on the structural gene side. After decomposing this 5' protruding end with exonuclease ②, the single-stranded part was deleted with mung bean nuclease, the end was made completely blunt with Klenow enzyme, and then ligated with T4 ligase. JM 103 was transformed.

なお、形質転換の前に5alIを作用し、短縮化未反応
の環状プラスミドを切断することにより形質転換効率を
上げた。その結果、CMC分解活性を有するもの約10
0株を得、そのうち5株が短縮化されたDNA断片をも
っていた。DNAシークエンスの結果、DNA断片のデ
イレ−ジョンの程度により、アミン末端より15〜60
アミノ酸を欠失しているセルラーゼの遺伝情報をもつD
NA断片が読み枠の合致した状態でlacのプロモータ
ーに連結していた。またカルボキシル末端よりアミノ酸
を欠失したセルラーゼをコードするDNA断片を調製す
るためには両端にストップコドンをもつΩフラグメント
をBan Hlサイト及びEcoRIサイトに挿入した
DNA断片を構築し、カルボキシル末端より4〜75ア
ミノ酸を欠失したセルラーゼを調製した。デイレ−ジョ
ンの程度に制限はない。
In addition, before transformation, the transformation efficiency was increased by acting with 5alI to cut the shortened and unreacted circular plasmid. As a result, approximately 10
0 strains were obtained, and 5 of them had shortened DNA fragments. As a result of DNA sequencing, depending on the degree of delay in the DNA fragment, the length of the DNA fragment is 15 to 60 minutes from the amine end.
D with genetic information for cellulase lacking amino acids
The NA fragment was linked to the lac promoter with matching reading frames. In addition, in order to prepare a DNA fragment encoding cellulase with an amino acid deleted from the carboxyl terminus, a DNA fragment was constructed in which an Ω fragment with stop codons at both ends was inserted into the Ban Hl site and the EcoRI site, and 4 to 4 to A cellulase with a deletion of 75 amino acids was prepared. There is no limit to the degree of delay.

第2図に、各種短縮化されたセルラーゼの構造及びその
酵素活性を示す。図中、CMCIはシグナル配例を含む
短縮化されていないセルラーゼを表わし、CMCI−N
+16、C?ICI−N+25、CMCI−N+60は
セJレラーゼの成熟蛋白のN末端より、それぞれ15.
24.59個のアミノ酸を欠失した短縮化セルラーゼを
表わす、また、CMCI−C+05、CMCI−C+7
6はセルラーゼのC末端よりそれぞれ4.75個のアミ
ノ酸を欠失した短縮化セルラーゼを表わす。
FIG. 2 shows the structures of various truncated cellulases and their enzymatic activities. In the figure, CMCI represents the untruncated cellulase containing the signal sequence; CMCI-N
+16, C? ICI-N+25 and CMCI-N+60 are each 15.
CMCI-C+05, CMCI-C+7, representing a truncated cellulase with 24.59 amino acids deleted.
6 represents a truncated cellulase in which 4.75 amino acids were each deleted from the C-terminus of the cellulase.

(5)コンピテントセルの調製と形質転換コンピテント
セルとして用いた大腸菌HB 101株はLB(Lur
ia−Bertani)培地、pH7,5で一晩培養し
た。これよりldをとり新たな100−のLB培地に植
菌した。培養液の濁度がOD&6g+=0.4になった
ところで集菌し、カルシウム処理を行った。組み換えプ
ラスミドlO■をコンピテントセルに加え、氷水中で3
0分間保持した。その後42℃で1分間保持し、さらに
氷水中で2分間保持した。これにLB培地IIIIlを
加え37℃で1時間振盪培養した。
(5) Preparation and transformation of competent cells The Escherichia coli HB 101 strain used as competent cells was LB (Lur
ia-Bertani) medium, pH 7.5, overnight. From this, ld was taken and inoculated into a new 100-LB medium. When the turbidity of the culture solution reached OD&6g+=0.4, the bacteria were collected and treated with calcium. Add the recombinant plasmid lO■ to competent cells and incubate in ice water for 3
It was held for 0 minutes. Thereafter, the temperature was maintained at 42° C. for 1 minute, and the mixture was further maintained in ice water for 2 minutes. LB medium III was added to this and cultured with shaking at 37°C for 1 hour.

(6)セルラーゼを生産する組み換え菌の検出方法(4
)で調製した形質転換株を選択圧として、100μg7
xdlのアンピシリンを含むLB寒天培地にまいて37
℃で12時間培養した。この寒天培地に1%CMCを含
む1%寒天を重層し、37℃で2時間保持した。
(6) Method for detecting recombinant bacteria that produce cellulase (4)
), 100 μg7 of the transformed strain prepared in
Spread on LB agar medium containing xdl of ampicillin.37
The cells were cultured at ℃ for 12 hours. This agar medium was overlaid with 1% agar containing 1% CMC and maintained at 37°C for 2 hours.

この寒天培地を1%コンゴーレッドで5分間染色後IM
NaC1で洗浄し、この時ハローを形成する菌を選択し
た。その結果約100個のハローを形成する組み換え菌
を得た。この組み換え菌には、アミノ末端のアミノ酸1
5個を欠失したセルラーゼ(CMCI−N+16)を生
成する遺伝情報が組み込まれているDNA断片を含むプ
ラスミドを持っていた。このプラスミドをpURA I
 −di と名付けた。
After staining this agar medium with 1% Congo red for 5 minutes, IM
After washing with NaCl, bacteria forming a halo were selected. As a result, recombinant bacteria forming about 100 halos were obtained. This recombinant bacterium contains the amino terminal amino acid 1
The patient had a plasmid containing a DNA fragment containing genetic information to produce a cellulase with five deletions (CMCI-N+16). This plasmid was transformed into pURA I
-di.

(7) pURA I−dlを用いる新規なセルラーゼ
の製造方法 プラスミドpURA I−diを用い大腸菌JM 10
3を形質転換した。この形質転換菌は工業技術院微生物
工業技術研究所にB、coli (JM 103/pU
RA 1−1) (Ff!RM P−10624)とし
て寄託している。この形質転換菌(FERM P−10
624)を下記の培地でpHスタット法によりpH6,
5に制御して培養した。
(7) Novel cellulase production method using pURA I-dl Escherichia coli JM 10 using plasmid pURA I-di
3 was transformed. This transformed bacterium was sent to the Institute of Microbial Technology, Agency of Industrial Science and Technology as B. coli (JM 103/pU).
RA 1-1) (Ff!RM P-10624). This transformed bacterium (FERM P-10
624) in the following medium to pH 6,
5 and cultured.

セルラーゼ生産用培地 バクトドリプトン 酵母エキス 0g 5g 製造は1.51の培地を用い、21!の発酵槽で37℃
、通気量1 vv+++(Volume of air
 per volume ofa+ediuo+ pe
r s+1nute)、攪拌速度750rp+aの条件
下で7時間行った。培養液を冷却遠心機で10.000
X g 。
Cellulase production medium Bactodrypton yeast extract 0g 5g Production uses a 1.51 medium, 21! 37℃ in a fermenter
, Volume of air 1 vv+++ (Volume of air
per volume ofa+ediuo+pe
The stirring was carried out for 7 hours under the conditions of rs+1nute) and stirring speed of 750rpm+a. 10,000 centrifuge the culture solution in a refrigerated centrifuge.
Xg.

10分間遠心分離後、得られた菌体を浸透圧ショク法で
酵素を抽出し粗酵素液とした。この時得られたセルラー
ゼの収量は110単位であった。
After centrifugation for 10 minutes, the enzyme was extracted from the obtained bacterial cells using an osmotic pressure extraction method to obtain a crude enzyme solution. The yield of cellulase obtained at this time was 110 units.

(8)組み換え菌の生産する新規なセルラーゼの精製の
方法 (7)で得られたセルラーゼを次の方法で精製した。
(8) Method for purifying novel cellulase produced by recombinant bacteria The cellulase obtained in (7) was purified by the following method.

浸透圧ショック法で抽出した粗酵素液をファルマシア社
製のFPLCを用いDEAE−Bio Gel A (
バイオランド社製)の陰イオン交換クロマトグラフィー
を行った。 10mMリン酸ナトリウム緩衝液pH6,
8で塩化ナトリウムの濃度勾配をかけ溶出した。セルラ
ーゼ活性を有する両分を集め分子量1.000ダルトン
カツトのYM2膜を取り付けた濃縮器(アミコン社製)
を用いて約1〜2dになるまで濃縮した。
The crude enzyme solution extracted by the osmotic shock method was treated with DEAE-Bio Gel A (
Anion exchange chromatography (manufactured by Bioland) was performed. 10mM sodium phosphate buffer pH 6,
8, a concentration gradient of sodium chloride was applied for elution. A concentrator equipped with a YM2 membrane with a molecular weight of 1.000 daltons (manufactured by Amicon) that collects both components with cellulase activity.
It was concentrated to about 1-2 d.

これを5ephacryl S−200HR(ファルマ
シアファインケミカルズ社製)を用いて、ゲル濾過クロ
マトグラフィーを行い、0.5M塩化ナトリウムを含む
10mMリン酸ナトリウム緩衝液pH6,8で溶出した
。セルラーゼ活性を有する百分を集め10−Mリン酸ナ
トリウム緩衝液pH6,8で10倍以上に希釈したのち
、Mono Qカラム(ファルマシア社製)を用いて陰
イオン交換クロマトグラフィーを行った。 10mMリ
ン酸ナトリウム緩衝液pH6,8で塩化ナトリウムの濃
度勾配をかけ溶出した。回収されたセルラーゼは5OS
−ポリアクリルアミドゲル電気泳動で単一蛋白にまで精
製されていた。
This was subjected to gel filtration chromatography using 5ephacryl S-200HR (manufactured by Pharmacia Fine Chemicals) and eluted with 10 mM sodium phosphate buffer containing 0.5 M sodium chloride, pH 6.8. The fraction having cellulase activity was collected and diluted 10 times or more with 10-M sodium phosphate buffer pH 6.8, and then subjected to anion exchange chromatography using a Mono Q column (manufactured by Pharmacia). Elution was performed using a 10 mM sodium phosphate buffer pH 6.8 using a sodium chloride concentration gradient. The recovered cellulase is 5OS
- It was purified to a single protein by polyacrylamide gel electrophoresis.

第1表に形質転換菌E、coli(JM 103/pU
RA I −di)の生成した短縮化セルラーゼ(CM
CI −N + 25)の各精製過程における精製度お
よび収率を示す。
Table 1 shows transformed bacteria E, coli (JM 103/pU
Shortened cellulase (CM
The degree of purification and yield in each purification process of CI-N + 25) are shown.

(本頁以下余白) (9)精製セルラーゼによるセロオリゴマーの分解精製
セルラーゼを使用してリン酸ナトリウム緩衝液中pH6
でセロオリゴマーを加水分解し、該分解物を高速液体ク
ロマトグラフィー(カラム:UltronNHx 、溶
媒系: CH3CN/H,0=55/45 、圧カニ4
0kg/d、流速: 0.7 d/a+in)にかけて
分析した。
(Margins below this page) (9) Decomposition of cellulose oligomer by purified cellulase Using purified cellulase, pH 6 in sodium phosphate buffer
The cellooligomer was hydrolyzed with
0 kg/d, flow rate: 0.7 d/a+in).

この分析パターンを第5図に示す0図中(A)は20分
加水分解した場合の、(B)は1夜加水分解した場合の
分析パターンである。
This analysis pattern is shown in FIG. 5, in which (A) is the analysis pattern when hydrolysis was carried out for 20 minutes, and (B) is the analysis pattern when hydrolysis was carried out overnight.

これによると、本酵素はセロビオース(Gりをほとんど
分解しないが、セロトリオース(G3)、セロテトラオ
ース(G4)、セロペンタオース(G、)およびセロヘ
キサオース(G6)を良く分解し、生成物としてグルコ
ース(Gt) 、G、およびG3が1対2対0.5モル
の割合で生成する。G4の分解の過程でG、が生成され
ることが明らかとなったので本精製セルラーゼには、G
、とG4を基質としてG、を形成する合成反応が認めら
れた。
According to this, this enzyme hardly decomposes cellobiose (G), but well decomposes cellotriose (G3), cellotetraose (G4), cellopentaose (G), and cellohexaose (G6), and produces products. Glucose (Gt), G, and G3 are produced in a ratio of 1:2:0.5 mole.Since it has become clear that G is produced during the decomposition process of G4, this purified cellulase contains G
, and a synthetic reaction to form G using G4 as a substrate was observed.

Oo)精製セルラーゼのpH及び温度特性(pH特性) 第3図は、本発明における形質転換菌JM 103/p
URA I−di由来の短縮化セルラーゼ及び形質転換
菌JM 103/pURA I由来のセルラーゼの酵素
活性に対するpHの影響を示すものである。
Oo) pH and temperature characteristics of purified cellulase (pH characteristics) Figure 3 shows the transformed bacteria JM 103/p in the present invention.
Figure 2 shows the influence of pH on the enzymatic activities of the truncated cellulase derived from URA I-di and the cellulase derived from the transformed strain JM 103/pURA I.

本発明の短縮化セルラーゼは形質転換菌JM 103/
pURA I由来のセルラーゼに比較し、明らかに低い
pH値で最大活性を有する。
The shortened cellulase of the present invention is derived from transformed bacteria JM 103/
Compared to the cellulase from pURA I, it has maximum activity at significantly lower pH values.

(温度特性) 第4図は、本発明における上記JM 103/pURA
 1由来の短縮化セルラーゼと上記JM 103/ p
URA I由来のセルラーゼの温度に対する酵素活性と
安定性の関係を示すものである。
(Temperature characteristics) Figure 4 shows the above JM 103/pURA in the present invention.
1-derived truncated cellulase and the above JM 103/p
This figure shows the relationship between enzyme activity and stability of URA I-derived cellulase with respect to temperature.

本発明の短縮化セルラーゼは、上記JM 103/pU
RAI由来のセルラーゼに比較し、高い温度での安定性
は低いが酵素活性の至適温度は低(、かつその範囲も広
いという性質を有している。
The shortened cellulase of the present invention is the above JM 103/pU
Compared to RAI-derived cellulase, it has lower stability at high temperatures, but the optimum temperature for enzyme activity is lower (and has a wider range).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、セルラーゼの遺伝情報をコードするDNA断
片の構造を示す。第2図はアミノ末端あるいはカルボキ
シル末端を欠失した各種短縮化セルラーゼを示す。第3
図は精製されたアミノ末端を15個欠失した短縮化セル
ラーゼにおける、酵素活性についてのpH特性を表わす
グラフを示す。 第4図はこの精製セルラーゼにおける酵素活性等につい
ての温度特性を表わすグラフを示す。第5図は精製セル
ラーゼによる基質セロオリゴマーの分解特性を示す高速
液体クロマトグラフィーの分析パターンを示す。
FIG. 1 shows the structure of a DNA fragment encoding the genetic information of cellulase. FIG. 2 shows various truncated cellulases lacking the amino or carboxyl terminus. Third
The figure shows a graph representing the pH characteristics of the enzyme activity of a purified truncated cellulase with 15 amino-terminal deletions. FIG. 4 shows a graph showing the temperature characteristics of the enzyme activity, etc. of this purified cellulase. FIG. 5 shows a high performance liquid chromatography analysis pattern showing the decomposition characteristics of the substrate cello-oligomer by purified cellulase.

Claims (1)

【特許請求の範囲】 1、ルミノコッカス・アルブス(Ruminococc
usalbus)のDNAより分離された中性セルラー
ゼの遺伝情報をコードする第1図のDNA断片の一部を
変異せしめたPNA断片。 2、中性セルラーゼの遺伝情報をコードするDNA断片
の一部を変異せしめたDNA断片が、該中性セルラーゼ
の成熟蛋白質のアミノ末端から一部のアミノ酸配列を欠
失させた蛋白質をコードするものである請求項1記載の
DNA断片。 3、中性セルラーゼの成熟蛋白質のアミノ末端から15
あるいは24個のアミノ酸を欠失させた蛋白質をコード
するものである請求項2記載のDNA断片。 4、中性セルラーゼのアミノ酸配列をコードするDNA
断片の一部を変異せしめたDNA断片が、該中性セルラ
ーゼの成熟蛋白質のカルボキシル末端から一部のアミノ
酸配列を欠失させた蛋白質をコードするものである請求
項1記載のDNA断片。 5、微酸性低温性セルラーゼをコードするものである請
求項1記載のDNA断片。 6、請求項1記載のDNA断片を含むプラスミドDNA
。 7、請求項2記載のプラスミドDNAにより形質転換さ
れた形質転換体。 8、ルミノコッカス・アルブス(Ruminococc
usalbus)のDNAより分離された中性セルラー
ゼのアミノ酸配列をコードするDNA断片の一部を変異
せしめたDNA断片を翻訳して得られた蛋白質。 9、pH5〜7、20〜35℃で最大活性を示す微酸性
微低温性セルラーゼ。 10、SDS−ポリアクリルアミドゲル電気泳動で測定
したとき約35,000±5,000ダルトンの分子量
を持ち、pH5〜7、20〜35℃で最大活性を示し、
37℃で1時間保持したとき80%以上の残存活性を有
することを特徴とする微酸性微低温性セルラーゼ。 11、請求項7記載の形質転換体を培養し得られた培養
物から微酸性低温性セルラーゼを採取することを特徴と
する微酸性微低温性セルラーゼの製造方法。
[Claims] 1. Ruminococcus albus
This is a PNA fragment obtained by mutating a portion of the DNA fragment shown in FIG. 1, which encodes the genetic information of neutral cellulase isolated from the DNA of A. usalbus. 2. A DNA fragment obtained by mutating a portion of a DNA fragment encoding the genetic information of neutral cellulase, which encodes a protein in which a part of the amino acid sequence is deleted from the amino terminus of the mature protein of neutral cellulase. The DNA fragment according to claim 1. 3. 15 from the amino terminus of the mature protein of neutral cellulase
Alternatively, the DNA fragment according to claim 2, which encodes a protein in which 24 amino acids have been deleted. 4. DNA encoding the amino acid sequence of neutral cellulase
2. The DNA fragment according to claim 1, wherein the partially mutated DNA fragment encodes a protein in which a part of the amino acid sequence is deleted from the carboxyl terminus of the mature protein of the neutral cellulase. 5. The DNA fragment according to claim 1, which encodes a slightly acidic low-temperature cellulase. 6. Plasmid DNA containing the DNA fragment according to claim 1
. 7. A transformant transformed with the plasmid DNA according to claim 2. 8. Ruminococcus albus
A protein obtained by translating a partially mutated DNA fragment that encodes the amino acid sequence of neutral cellulase isolated from the DNA of A. usalbus. 9. A slightly acidic microcold cellulase that exhibits maximum activity at pH 5-7 and 20-35°C. 10. It has a molecular weight of about 35,000 ± 5,000 daltons as measured by SDS-polyacrylamide gel electrophoresis, and exhibits maximum activity at pH 5-7 and 20-35°C,
A slightly acidic microcold cellulase characterized by having a residual activity of 80% or more when kept at 37°C for 1 hour. 11. A method for producing a slightly acidic cryogenic cellulase, which comprises culturing the transformant according to claim 7 and collecting the slightly acidic cryogenic cellulase from the resulting culture.
JP1086714A 1989-04-07 1989-04-07 DNA fragment, slightly acidic slightly cryogenic cellulase and method for producing the same Expired - Fee Related JP2928265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086714A JP2928265B2 (en) 1989-04-07 1989-04-07 DNA fragment, slightly acidic slightly cryogenic cellulase and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086714A JP2928265B2 (en) 1989-04-07 1989-04-07 DNA fragment, slightly acidic slightly cryogenic cellulase and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02265486A true JPH02265486A (en) 1990-10-30
JP2928265B2 JP2928265B2 (en) 1999-08-03

Family

ID=13894566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086714A Expired - Fee Related JP2928265B2 (en) 1989-04-07 1989-04-07 DNA fragment, slightly acidic slightly cryogenic cellulase and method for producing the same

Country Status (1)

Country Link
JP (1) JP2928265B2 (en)

Also Published As

Publication number Publication date
JP2928265B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
EP0034470A2 (en) Genetically engineered microorganisms for massive production of amylolytic enzymes and process for preparing same
JPH07508169A (en) D-N-carbamoyl-amino acid amide hydrolase and hydantoinase
US5418156A (en) Agarase enzyme system from alteromonas strain 2-40
US4612287A (en) Plasmids containing a gene coding for a thermostable pullulanase and pullulanase-producing strains of Escherichia coli and Bacillus subtilis containing the plasmids
EP0938584B1 (en) Method of preparing (s) - or (r) -3,3,3-trifluoro-2-hydroxy-2- methylpropionic acid
JP2657383B2 (en) Novel hydrolase and its production method
EP0402092A2 (en) Alpha-amylase-pullulanase enzyme
JPH02265486A (en) Dna fragment, slightly acidic and slightly cryotolerant cellulose and production thereof
CN113736762A (en) alpha-L-rhamnosidase mutant and application thereof in preparation of praonine
EP0524604B1 (en) Process for the preparations of S-(+)-2,2-dimethyl-cyclopropane carboxamid by genetically engineered microorganismes
DK157036B (en) ENDO-DEOXYRIBONUCLEASE AND PROCEDURES FOR THE PREPARATION OF THE SAME
JP4021123B2 (en) New production method of raffinose
AU644101B2 (en) Polygalacturonase gene from erwinia carotovora and its molecular cloning
CN113957071B (en) Combined DNA fragment with double promoter and double secretion signal functions and application thereof
JPH0223872A (en) Recombinant plasmid, bacillus subtilis transformed with said plasmid and production of heat-resistant pullulanase using same
JPH02261384A (en) Dna fragment, heat-resistant endo-type cellulase and its production
JP3580926B2 (en) Novel gene and transformed cell carrying the gene
EP0576899B1 (en) A gene coding a protein having a lipase activity and a process for producing the same
JPH0353883A (en) Heat-resistant beta-1,3-glucanase gene dna, recombinant plasmid and transformant containing the dna, heat-resistant beta-1,3-glucanase and production thereof
JPH10327873A (en) Plasmid, its preparation, microorganism containing the same plasmid, production of endosialidase using the same microorganism and production of sialic acid trimer using the same endosialidase
JP2788070B2 (en) 2-haloacid dehalogenase producing gene
JP3803832B2 (en) Gene encoding creatine amidinohydrolase
JP2001275685A (en) alpha-AGARASE AND METHOD FOR PRODUCING THE SAME
JP2627755B2 (en) Production of acylneulaminate cytidyltransferase
JP2001252088A (en) Gene encoding creatine amidinohydrase

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees