JPH02264792A - Oligonucleotide derivative and synthetic raw material thereof - Google Patents

Oligonucleotide derivative and synthetic raw material thereof

Info

Publication number
JPH02264792A
JPH02264792A JP8545689A JP8545689A JPH02264792A JP H02264792 A JPH02264792 A JP H02264792A JP 8545689 A JP8545689 A JP 8545689A JP 8545689 A JP8545689 A JP 8545689A JP H02264792 A JPH02264792 A JP H02264792A
Authority
JP
Japan
Prior art keywords
group
compound
formula
acid
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8545689A
Other languages
Japanese (ja)
Inventor
Eiko Otsuka
栄子 大塚
Hideo Inoue
英夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP8545689A priority Critical patent/JPH02264792A/en
Publication of JPH02264792A publication Critical patent/JPH02264792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

NEW MATERIAL:A compound expressed by formula I [R is H, acyl or (substituted) phosphoryl; T is thymin-1-yl; Y1 to Y3 are H, OH or lower alkyloxy, etc.; B is thymin-1-yl, adenin-9-yl or guanin-9-yl, etc.; n is 1-100]. USE:Carrier for isolating poly(A)<+>-mRNA. Useful for promotion of efficiency in isolation of poly(A)<+>-mRNA as forming stable hybrid with poly(A) part. PREPARATION:The aimed substance is synthesized from nucleotide derivative expressed by formula II (X is monomethoxytrityl or dimethoxytrityl, etc.; Y is H or o-chlorophenyl phosphoric acid, etc.) using, e.g. DNA automatic synthesizer. Besides, the compound expressed by formula II is new substance and obtained from, e.g. ribothymidine as starting raw material through compounds expressed by formula III and formula IV.

Description

【発明の詳細な説明】 LL上立且ユ±1 本発明は、有用な遺伝子のクローニングに際し、通常行
なわれているmRNAの分離操作を効率化することに用
いることができるヌクレオチドの誘導体、その合成原料
であるヌクレオチドオリゴマー及び更にその合成原料で
あるヌクレオチドに関する。これらの物質は、いずれも
、新規化合物である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to nucleotide derivatives that can be used to improve the efficiency of mRNA isolation operations that are commonly performed in the cloning of useful genes, and their synthesis. This invention relates to a nucleotide oligomer as a raw material and a nucleotide as a raw material for its synthesis. All of these substances are new compounds.

監迷Jとl五 有用遺伝子をりl」−ニングする際、−殻内にはその遺
伝子が発現している生物材料より全mRNAを分離し、
そのmRNAよりcDNAを合成し、クローニングした
侵、目的遺伝fをスクリーニングすることが行われてい
る。mRNAを分離する操作においては、mRNAがポ
リ(A>テール(poly(A)−mRNA)を有すル
コとを利用し、ポリ(A)に相補的なオリボアオキシチ
ミジル酸をセルロース等に固定化したいわゆるオリゴ(
dT)−セルロースカラムを使用して、ハイブリダイゼ
ーシジン効果を利用してポリ(A)を持たないRNA 
(poly(A> −RNA)との分離を行っている。
When rinsing five useful genes, all mRNA is isolated from the biological material in which the gene is expressed in the shell,
cDNA is synthesized from the mRNA, and the cloned gene is screened for the target gene f. In the operation to separate mRNA, mRNA uses poly(A> tail (poly(A)-mRNA)), and oligoboaoxythymidylic acid complementary to poly(A) is immobilized on cellulose etc. The so-called oligo (
dT)-cellulose column to utilize the hybridization cidin effect to obtain poly(A)-free RNA.
(Separation of poly(A>-RNA) is performed.

しかし、この操作におけるpoly(A) −mRNA
の単離収率が必ずしも充分でなく、クローニングの効率
を向上させる為にはポリ(A)部分と更に安定なハイブ
リッドを作るオリゴマーの発見が強く望まれでいた。
However, poly(A)-mRNA in this operation
The isolation yield is not necessarily sufficient, and in order to improve the efficiency of cloning, it has been strongly desired to discover an oligomer that forms a more stable hybrid with the poly(A) moiety.

発明が解決しようとする問 目的有用遺伝子をクローニングする上で、その効率に大
きくかかわるpoly(A)−mRNA単離操作におい
て、オリゴ(dT)−セルロースカラムに代り収率がよ
り向上できる技術、すなわちポリ(A)とより安定なハ
イブリッドを形成しうる性質を有する新規オリゴマーの
開発が¥1請されている。
Problem to be Solved by the Invention In the poly(A)-mRNA isolation operation, which greatly affects the efficiency of cloning a target useful gene, there is a technology that can replace the oligo(dT)-cellulose column and improve the yield. The development of a new oligomer that has the property of forming a more stable hybrid with poly(A) has been requested for 1 yen.

の   よび 本発明者は、上記問題を解決するため鋭意研究を重ねた
結果、デオキシリボヌクレオチドに比べ、オリゴ(2°
−0−メチルリボヌクレオチド)が相補鎖オリゴリボヌ
クレオチドとより安定なハイブリッドを形成することを
見い出し、ハイブリダイゼーションプローブとして有用
であることを報告した(H,Inoueら、Nucle
ic Ac1ds Ites、j5(15)6131頁
、 198/年)。更に、ハイブリッドの安定性におけ
るオリゴマーの構造上の寄与を詳細に検討した結果、2
°−0−メチルウリジル酸の代りに2゜−〇−メブ・ル
ー5−メチルウリジル酸をオリゴマーの構成ユニットに
用いることにより、相補鎖中のアデニル酸ユニットと強
固に結合しオリゴリボヌクレオチドとの熱的安定性が増
大することを見い出した。この知見に基づいて、デカリ
ボアデニル酸とその相補鎖であるデオキシリボチミジル
酸。
As a result of intensive research to solve the above problems, the present inventors have discovered that oligonucleotides (2°
-0-methylribonucleotide) was found to form more stable hybrids with complementary strand oligoribonucleotides, and reported that it is useful as a hybridization probe (H, Inoue et al., Nucle.
ic Ac1ds Ites, j5(15) p. 6131, 198/). Furthermore, as a result of a detailed study of the structural contribution of oligomers to hybrid stability, we found that 2
By using 2°-0-meb-5-methyluridylic acid as the constituent unit of the oligomer instead of °-0-methyluridylic acid, it is strongly bonded to the adenylate unit in the complementary strand, and the heat exchanger between the oligoribonucleotide and found that the stability was increased. Based on this finding, decariboadenylic acid and its complementary chain, deoxyribothymidylic acid.

2°−0−メチルウリジル酸及び2°−0−メチル−5
−メチルウリジル酸のそれぞれのデカマーを合成して熱
的安定性(Tm値)をそれぞれ測定したところ、デカ2
°−0−メチル−5−メヂルウリジル酸が著しくすぐれ
た性質を有することを見出し、本発明を完成するに至っ
た。
2°-0-methyluridylic acid and 2°-0-methyl-5
- When each decamer of methyluridylic acid was synthesized and the thermal stability (Tm value) was measured, it was found that deca 2
It was discovered that °-0-methyl-5-methyluridylic acid has extremely excellent properties, and the present invention was completed.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、次の一般式(I)で表されるオリゴヌクレオ
チド誘導体に関する。
The present invention relates to an oligonucleotide derivative represented by the following general formula (I).

式中、Rは、水素原子、0Mセルロース、ラテックス粒
子などのカルボニル残基等のアシル基、ホスホリル基、
又は置換基を有していてもよいホスホリル基例えばセル
ローズなどの水酸基を有する化合物とIF5酸とのエス
テル結合を有するホスホリル基を表し、■は、チミン−
1−イル基を表し、Yl、Y2及びY3は、相互に同一
であってもよく文具なっていてもよくて、水素原子、ヒ
ドロキシル基、メトキシ基、エトキシ基等の低級アルキ
ルオキシ基又は低級アルキルシリル基を表し、Bは、チ
ミン−1−イル基、アデニン−9−イル基。
In the formula, R is a hydrogen atom, an acyl group such as a carbonyl residue such as 0M cellulose or latex particles, a phosphoryl group,
or a phosphoryl group which may have a substituent, for example, a phosphoryl group having an ester bond between a compound having a hydroxyl group such as cellulose and IF5 acid, and ■ is thymine-
It represents a 1-yl group, and Yl, Y2 and Y3 may be the same as each other or may be stationery, and represent a hydrogen atom, a lower alkyloxy group such as a hydroxyl group, a methoxy group, an ethoxy group, or a lower alkyl group. It represents a silyl group, and B is a thymin-1-yl group or an adenine-9-yl group.

グアニン−9−イル基、シトシン−9−イル基。Guanine-9-yl group, cytosine-9-yl group.

ウシシル−1−イル基又はヒボキサンチン−9−イル基
を表し、nは1〜100の整数を表すが、実用的には平
均鎖長がn−10〜40のものを用いることができる。
It represents a bocyl-1-yl group or a hyboxanthine-9-yl group, and n represents an integer of 1 to 100, but those having an average chain length of n-10 to 40 can be used practically.

因みに、一般式CI)の誘導体において、Rが上記のよ
うなアシル基(これは担体と称されることもある)又は
置換U<これも担体と称されることがある)を有するホ
スホリル基であるものは、mRNAの分離操作に直接使
用される化合物であり、Rが水素原子又は置換基を有し
ないホスホリル基である化合物(オリゴヌクレオチド)
は、前者の化合物の合成原料となりうるばかりでなく、
前者の化合物をどのような方法で合成したにしろ、11
者の化合物は前者の化合物の構成部分としてその中心的
機能を果たすのである。
Incidentally, in the derivative of the general formula CI), R is an acyl group as described above (which may also be referred to as a carrier) or a phosphoryl group having a substituted U<which may also be referred to as a carrier). Some are compounds that are directly used for mRNA separation operations, and are compounds in which R is a hydrogen atom or a phosphoryl group without a substituent (oligonucleotide).
not only can be used as a raw material for the synthesis of the former compound, but also
No matter how the former compound was synthesized, 11
The former compound fulfills its central function as a constituent part of the former compound.

本発明は、又、次の一般式(I)で表されるヌクレオチ
ド誘導体にも関する。
The present invention also relates to a nucleotide derivative represented by the following general formula (I).

式中、Xは、モノメトキシトリプル基、ジメトキシトリ
チル基又は例えば0−クロルフェニル基等の置換基を有
していでもよいホスホリル基を表し、Yは、水素原子、
0−クロルフェニル燐酸、−1〕(OCI−13)  
 −N−<CF+   (CH3)  2  )  2
  。
In the formula, X represents a monomethoxytriple group, a dimethoxytrityl group, or a phosphoryl group which may have a substituent such as an 0-chlorophenyl group, and Y represents a hydrogen atom,
0-Chlorphenyl phosphoric acid, -1] (OCI-13)
-N-<CF+ (CH3) 2) 2
.

−P (OC82CI−12ON)−N−(CH(CH
3)2 ’)2 又Gt−GO−(CH,)。
-P (OC82CI-12ON) -N-(CH(CH
3)2')2 Also Gt-GO-(CH,).

C0NH−(CH2’)、−(CPGII体)(コこに
、m及びnは、それぞれ、1〜1oの整数である)を表
わす、ただし、Xが置換基を有していてもよいホスホリ
ル基のときは、Yは水素原子である。一般式(I[)の
化合物は、一般式(1)の化合物の合成原料として使用
することができる。
C0NH-(CH2'), -(CPGII form) (here, m and n are each an integer of 1 to 1o), provided that X is a phosphoryl group which may have a substituent When , Y is a hydrogen atom. The compound of general formula (I[) can be used as a raw material for the synthesis of the compound of general formula (1).

次に、これらの化合物の合成法の例を説明する。Next, examples of methods for synthesizing these compounds will be explained.

本発明のオリゴ(2°−O−メチル−5−メチルウリジ
ル酸)部分を一合成する為には、先ずその構成ヌクレオ
シドである2°−0−メチル−5−メヂルウリジン(化
合物3)を後述する様に合成し(第1図)、次に常法に
より(例えば、H,Yoshikawa et al、
、 Tetrahedron 1ett、、 5065
(1967))、5’位水酸基に直接リンL2基を導入
し2゛−〇−メチルー 5−・メチル−5゛−ウリジル
酸を得、それをジシク「」ヘキシルカルボジイミド(D
CC)等の縮合剤を用いて重合する方法を採用すること
ができる。または、化合物3を後述する様に3°−フォ
スホロアミデート誘導体(化合物5)とし、公知の方法
に従い(S、5hibaraha et al、、 H
ucleicAcids Rcs、、 15(11)、
 4403 (1987))、DNA自動合成りi(ア
プライドバイオシステム社製、モデル38OA )を用
いて容易に合成することができる。
In order to synthesize the oligo(2°-O-methyl-5-methyluridylic acid) moiety of the present invention, first, its constituent nucleoside, 2°-0-methyl-5-methyluridine (compound 3), is synthesized as described below. (Fig. 1), and then by a conventional method (for example, H. Yoshikawa et al.
, Tetrahedron 1ett,, 5065
(1967)), phosphorus L2 group was introduced directly into the 5'-position hydroxyl group to obtain 2'-0-methyl-5-methyl-5'-uridylic acid, which was then converted into di-hexylcarbodiimide (D
A method of polymerization using a condensing agent such as CC) can be adopted. Alternatively, Compound 3 is converted into a 3°-phosphoramidate derivative (Compound 5) as described below, and prepared according to a known method (S, 5hibaraha et al,, H
ucleic acids Rcs,, 15(11),
4403 (1987)) and can be easily synthesized using DNA Automation Synthesis i (Model 38OA, manufactured by Applied Biosystems).

一方、オリゴ(2°−0−メチル−5−メチルウリジル
酸)誘導体を製造する為には、先に述べた2°−〇−メ
チルー5−メチルー5°−ウリジル酸のDCCによる重
合反応において、公知の方法(P、 T、 Gi Ih
am、 JAC5,88,4982(1964))に従
い、セルロース等を同時に反応させ、セルロース誘導体
等とすることが簡便である。また一方、先に述べた自動
合成機により合成した5°末端水Rj4を有するオリゴ
(2°−0−メチル−5−メチルウリジル酸)の5′末
端水wi基に燐wIWを導入した後に、同様にセルロー
ス等と反応させることもできる。
On the other hand, in order to produce oligo(2°-0-methyl-5-methyluridylic acid) derivatives, the above-mentioned DCC polymerization reaction of 2°-〇-methyl-5-methyl-5°-uridylic acid is carried out using the known method. method (P, T, Gi Ih
Am, JAC5, 88, 4982 (1964)), it is convenient to react cellulose and the like at the same time to obtain a cellulose derivative and the like. On the other hand, after introducing phosphorus wIW into the 5' terminal water wi group of oligo (2°-0-methyl-5-methyluridylic acid) having a 5° terminal water Rj4 synthesized by the automatic synthesizer described above, It is also possible to react with cellulose etc.

また一方、5゛末端水Milkを有したオリゴ(2゛−
〇−メチルー5−メチルウリジル酸)とCM−セルロー
スまたはラテックス粒子等とを縮合剤(DCC等)を用
いて結合させ、セルロースあるいはラテックス誘導体(
に、にuribayashi et al、。
On the other hand, the oligo with 5゛ terminal water Milk (2゛-
〇-Methyl-5-methyluridylic acid) and CM-cellulose or latex particles, etc. are bonded using a condensing agent (DCC, etc.) to form a cellulose or latex derivative (
In, Niuribayashi et al.

NuCleiCAc1ds 5VllpO3iul 5
eries、に19.61(1988)参照)等とする
ことも可能である。
NuCleiCAc1ds 5VllpO3iul 5
19.61 (1988)).

化合物3の製造は、リボチミジンを出発原料として例え
ば先ず化合物1を得た後合成できる(第1図及び実施例
1〜3参照)。因みに、化合物1の合成は、リボチミジ
ンの3’、5’水酸基を公知の方法(tl、Inouc
 et al、、Nuclcic AcidsSymp
osiun 5eries、  N(116,165(
1985)、獣■。
Compound 3 can be synthesized using ribothymidine as a starting material, for example, after first obtaining compound 1 (see FIG. 1 and Examples 1 to 3). Incidentally, compound 1 was synthesized by converting the 3' and 5' hydroxyl groups of ribothymidine to known methods (tl, Inouc).
et al., Nuclic Acids Symp.
osiun 5eries, N(116,165(
1985), Beast ■.

Harkiewicz、J、Chem、Ite、;(S
) 24−25  (1979))に準じて、テトライ
ソプロピルジシロキサン−1,3−ジイル基で保護した
後、公知の方法(H,rnouc etal、の前出の
電文(1987) )に準じて、適当な溶媒中トリエチ
ルアミンの存在下塩化ベンゾイルで処理することにより
3N位を選択的に保護することにより得ることができる
Harkiewicz, J., Chem.
) 24-25 (1979)), and then protected with a tetraisopropyldisiloxane-1,3-diyl group according to a known method (H, Rnouc et al., supra, Telegram (1987)). It can be obtained by selectively protecting the 3N position by treatment with benzoyl chloride in the presence of triethylamine in a suitable solvent.

また、2°−〇−メチルー5−メチルウリジンー3°−
フォスフォロアミダイト誘導体(化合物5)及び2°−
〇−メヂルー 5−メチルウリジン−3゛−CPG誘導
体(化合物6)の製造は、公知の方法(S、5hiba
hara et at、の前出の電文、L、J、HcB
rid13 et at、、 Tetrahedron
 Iett、、24,245(1983)参照)に従い
合成できる(第2図並びに実施例4及び5参照)。また
、ここで合成したフォスフォロアミダイト誘導体(化合
物5)の他に、亜g4r11の保護基としてシアノエチ
ル基を有する化合物も、同様の方法(S、5hibah
ara et at、の前出の電文、N、D、5hin
ha et al、、Nucleic Ac1ds R
QS、、  12゜4539(1984)6照)に従い
合成することができる。
Also, 2°-〇-methyl-5-methyluridine-3°-
Phosphoramidite derivative (compound 5) and 2°-
〇-Mediru 5-methyluridine-3゛-CPG derivative (compound 6) can be produced by a known method (S, 5hiba
Hara et at, above mentioned telegram, L.J.HcB
rid13 et at,, Tetrahedron
Iett, 24, 245 (1983)) (see Figure 2 and Examples 4 and 5). In addition to the phosphoramidite derivative (compound 5) synthesized here, a compound having a cyanoethyl group as a protecting group for subg4r11 was also synthesized using the same method (S, 5hibah
ara et at, the aforementioned telegram, N, D, 5hin
ha et al, Nucleic Ac1ds R
QS, 12°4539 (1984) 6).

本発明に関して肝要な点は、従来より一般に使用されて
いるオリゴ(dT)−セル[]−スのオリゴ(dT)に
比べて、オリゴ(2°−〇−メチルー5−メチルウリジ
ルM)−がオリゴリボアデニル酸(オリゴ(rA))と
著しく安定なハイブリッドを形成する性質を有すること
を発見したことにある。
The important point regarding the present invention is that oligo(2°-〇-methyl-5-methyluridyl M)- is an oligo(2°-〇-methyl-5-methyluridyl The present invention is based on the discovery that it has the property of forming an extremely stable hybrid with riboadenylic acid (oligo(rA)).

以下、この点について詳述する。すなわち、それらのハ
イブリッドの熱的安定性(Tm値)を実際に測定する為
に、デカリボアデニル酸を公知の方法(p、に1erz
ek et al、、Biochemistry、 2
5.7840(198B)参照)に従い合成しく実施例
6)、またデカ(2°−0−メチル−5−メチルウリジ
ル酸)は、実施例4及び5により製還した化合物5及び
6を用いてDNA自動合成機により常法通り(S、5h
ibahara et al、の前出の電文参照)合成
した(実施例7)、一方、比較実験用のオリゴマーであ
るデカデオキチミジル酸は常法により市販試薬を用いて
、デカ(2°−0−メチルウリジル酸)は公知の方法(
S、5hibahara et al、の前出の電文参
照)に従い、それぞれ、DNA自動合成機を用いて合成
した。
This point will be explained in detail below. That is, in order to actually measure the thermal stability (Tm value) of those hybrids, decariboadenyl acid was purified by a known method (p,
Ek et al., Biochemistry, 2
5.7840 (198B)) and deca(2°-0-methyl-5-methyluridylic acid) was synthesized according to Example 6) using compounds 5 and 6 prepared according to Examples 4 and 5. Using an automatic synthesizer as usual (S, 5h
ibahara et al., supra)) was synthesized (Example 7). On the other hand, the oligomer for comparative experiments, decadeochitimidylic acid, was synthesized by deca(2°-0-methyluridyl) using commercially available reagents in a conventional manner. acid) by a known method (
Each of these DNAs was synthesized using an automatic DNA synthesizer according to the above-mentioned telegram of Hibahara et al.

それぞれのオリゴヌクレオチドは常法により定ゴした後
に、熱的安定性測定用試料とした。それぞれのハイブリ
ッドのTm値の測定は常法に従い、ベックマンDU−8
B型分光光度計を用いて測定した(第3図及び実施例8
参照)。この結果、それぞれのハイブリッドのTm値は
、18.9℃、 21.0”C,31,1℃となり、デ
カ(2°−0−メチフレー5−メチルウリジル酸)とデ
カリボアデニル酸とのハイブリッドが他のハイブリッド
と比べて、Tm値が約10℃も高く、著しく安定である
ことを発見した。
After fixing each oligonucleotide by a conventional method, it was used as a sample for thermal stability measurement. The Tm value of each hybrid was measured using a Beckman DU-8 according to a conventional method.
Measured using a B-type spectrophotometer (Figure 3 and Example 8)
reference). As a result, the Tm values of each hybrid were 18.9°C, 21.0"C, and 31.1°C, and the hybrid of deca(2°-0-methifle-5-methyluridylic acid) and decariboadenyl acid It was discovered that the Tm value was about 10°C higher than that of other hybrids, and it was extremely stable.

以上のことより、オリゴ(2°−0−メチル−5−メチ
ルウリジル酸)は、そのセルロース結合体として、現在
市販されているオリゴ((fT)−セルロースに代わる
新規poly(A) −mRNA単離用担体として使用
できることが充分期待される。
From the above, oligo(2°-0-methyl-5-methyluridylic acid), as its cellulose conjugate, is a novel poly(A)-mRNA isolation alternative to the currently commercially available oligo((fT)-cellulose. It is fully expected that it can be used as a carrier for various purposes.

以下、実施例により本発明を具体例的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

1塵旦 以下、実施例により本発明を更に説明する。1 dustman The present invention will be further explained below with reference to Examples.

実施例1 (N3−Benzoyl−5−sethyl−3’ 、
  5’ −0−(tQtraisol)rot)yl
−disilOXane −1,3−dll/I)ur
idine(化合物1)の合成) 5−14ethyl−1,3−O−(tetraisO
I)I’0DVldiSi 1OXane−1,3−d
iyl) uridine(IG、67 g 、33.
3mmol)を塩化メチレン250dに溶解し、トリエ
チルアミン(6,3d、 45.2ma+of)を加え
、水冷撹拌ド、塩化ベンゾイル(4,4d、 37.9
n+mol)を滴下した。室温で一晩世拌1ノ、原料の
消失を確認後、0.01 NHCl、水、NaHCO3
水溶液、水の順で反応溶液を洗浄した。有tIII@N
a SO4で乾燥後、溶媒を減圧トで留去し、残漬をシ
リカゲルクロマトグラフィー(C−200、4009、
CHCl3>で精製し、化合物1を泡状物質として13
.699(67、9%)得た。
Example 1 (N3-Benzoyl-5-sethyl-3',
5' -0-(tQtraisol)rot)yl
-disilOXane -1,3-dll/I)ur
Synthesis of idine (compound 1)) 5-14ethyl-1,3-O-(tetraisO
I) I'0DVldiSi 1OXane-1,3-d
iyl) uridine (IG, 67 g, 33.
3 mmol) was dissolved in 250 d of methylene chloride, triethylamine (6,3 d, 45.2 ma+of) was added, and benzoyl chloride (4,4 d, 37.9
n+mol) was added dropwise. After stirring at room temperature overnight and confirming the disappearance of the raw materials, add 0.01 NHCl, water, NaHCO3
The reaction solution was washed with an aqueous solution and then with water. tIII@N
a After drying with SO4, the solvent was distilled off under reduced pressure, and the residue was subjected to silica gel chromatography (C-200, 4009,
Compound 1 was purified as a foam with 13
.. 699 (67, 9%) was obtained.

IJV (MeOH) :λwax 256rv、λs
in 225ne。
IJV (MeOH): λwax 256rv, λs
in 225ne.

1H−川(coct3>δE)l)lニア、99−7.
29(1,6H,blZOVI QrOIjl)、 C
6−H)。
1H-kawa(coct3>δE)l)lnia, 99-7.
29 (1,6H, blZOVI QrOIjl), C
6-H).

5.76(d、 IH,J−111Z。5.76 (d, IH, J-111Z.

C1°−H)、 1.97(d、311.J=1.2H
2゜C5−CH3)。
C1°-H), 1.97(d, 311.J=1.2H
2°C5-CH3).

1.12−1.06 (m、28H,TIPDS  a
roup)。
1.12-1.06 (m, 28H, TIPDS a
roup).

実施例2 (N3−Benzoyl−5−nethyl−2’−0
−methyl−3’5’ −0−(tetraiso
propyldisiloxane−1,3−diyl
)uridine (化合物2)の合成〉実施例1で得
た化合物1 (13,697,22,6mmo l )
をベンゼン80mに溶解し、酸化銀(14,7g、63
.3uo l )を加え、5OniCatOrに約10
分かけた。ヨウ化メチル(65,Od、1045mmo
l )を加え、45℃で3日間撹拌した1反応混合物を
P退し、溶媒を減圧下留去後、CHC13=H20’t
’分液し、有amをNa2SO4で乾燥後、シリカゲル
カラムクロマトグラフィー(C−200,300g、C
HCl3)で精製し、化合物2を泡状物質として6.7
59(48,2%)得た。さらに、分離できなかったフ
ラクションを染め、シリカゲル力ラムク口マトグラフィ
ー(C−200,2G03、ヘキサン:酢酸エチル−4
:1)でf6賀し、泡状物質(化合物2)を3.96 
!? (28,4%)得た。
Example 2 (N3-Benzoyl-5-nethyl-2'-0
-methyl-3'5' -0-(tetraiso
propyldisiloxane-1,3-diyl
) uridine (Compound 2) synthesis> Compound 1 obtained in Example 1 (13,697,22,6 mmol)
was dissolved in 80ml of benzene, and silver oxide (14.7g, 63ml) was dissolved in 80ml of benzene.
.. 3 uo l) and add about 10
It took a while. Methyl iodide (65,Od, 1045mmo
1) was added and stirred at 45°C for 3 days. The reaction mixture was evaporated, and the solvent was distilled off under reduced pressure. CHC13=H20't
' Separate the liquid, dry am with Na2SO4, and then perform silica gel column chromatography (C-200, 300g, C
HCl3) to give compound 2 as a foam at 6.7
59 (48,2%) was obtained. Furthermore, the fractions that could not be separated were dyed and silica gel chromatography (C-200, 2G03, hexane:ethyl acetate-4) was performed.
:1) to f6 and foamy substance (compound 2) to 3.96
! ? (28.4%) was obtained.

UV(HeOH): λmax 252tv、λwin
 225nt実施例3 (5−Nethyl−2’−0−sethylurid
ine(化合物3)の合成) 化合物2 (6,99rJ、 11.3mmol)をジ
オキサン100d ニ溶解し、cNH40H(12,2
mlり e加え、空温で5時間撹拌した。原料の消失を
確認し、反応溶液を濃縮し、CHCl3−820で分液
した。
UV (HeOH): λmax 252tv, λwin
225 nt Example 3 (5-Nethyl-2'-0-sethylurid
Synthesis of ine (compound 3)) Compound 2 (6,99rJ, 11.3mmol) was dissolved in 100d of dioxane, and cNH40H (12,2
ml of the mixture was added, and the mixture was stirred at air temperature for 5 hours. After confirming the disappearance of the raw materials, the reaction solution was concentrated and separated with CHCl3-820.

有機層を、水、NaHCO3水溶液、水の順に洗浄した
後、Na  SO4で乾燥し、溶媒を減圧下留去後、ヘ
キナンから結晶し、5.469 (93,9%)の結晶
性化合物を得た。
The organic layer was washed with water, an aqueous NaHCO3 solution, and water in this order, then dried with NaSO4, and after distilling off the solvent under reduced pressure, it was crystallized from hequinane to obtain a crystalline compound of 5.469 (93.9%). Ta.

m、p、:116.5〜118.0℃ mass m/e: 471 (14+−1sopro
pylラジカル)元素分析:  C23++4282 
07 S12としての、計算値: C,53,70;H
,8,17;N、5.4b実験値: C,54,53,
H,8,13;N、5.68この化合物(4,00す、
7.811101)をテトラヒドロ7ラン50−1に溶
解し、T 0trabutVIalllOniulfl
uoride(3,2m、  3.1w5ol)加え、
空温で4.5時間撹拌した。ピリジン:水: M e 
01−I J3:1:1(v/V)の溶液を100m!
入れて反応溶液を希釈し、これにOowcx 50  
(ピリジニウム型)を30ae加え、中和した。樹脂を
濾過後、反応溶液を濃縮し、CHCl3−1−120で
分液した。水層を濃縮乾固した後、エタノールから結晶
化を行い、化合物3を1.859 (87,2%)を得
た。
m, p,: 116.5-118.0°C mass m/e: 471 (14+-1sopro
pyl radical) elemental analysis: C23++4282
Calculated value as 07 S12: C, 53, 70; H
, 8, 17; N, 5.4b Experimental value: C, 54, 53,
H, 8,13; N, 5.68 This compound (4,00 S,
7.811101) in Tetrahydro7ran 50-1 and
Add uoride (3.2m, 3.1w5ol),
The mixture was stirred at air temperature for 4.5 hours. Pyridine: Water: Me
01-I J3: 1:1 (v/V) solution for 100ml!
dilute the reaction solution by adding Oowcx 50
(pyridinium type) was added to neutralize the mixture. After filtering the resin, the reaction solution was concentrated and separated with CHCl3-1-120. After concentrating the aqueous layer to dryness, it was crystallized from ethanol to obtain 1.859 (87.2%) of Compound 3.

UV (He’ll ) : λwax 266nm、
λsin 233nm。
UV (He'll): λwax 266nm,
λsin 233nm.

1、p、     :197.O〜198.0  ℃m
ass  m/e:   2γ2(14”  )元素分
析”  C11’16 ’2 0Gとしての、計算値:
 C,48,53;H,5,88;H,10,29実験
値: C,48,36;H,5,96;N、10.37
’II−NHR(DH3O−d6)δpp17.78(
d、111.J−1,2Hz、CB  −H)。
1, p. :197. O~198.0℃m
ass m/e: 2γ2 (14") elemental analysis"C11'16'2 Calculated value as 0G:
C, 48,53; H, 5,88; H, 10,29 Experimental value: C, 48,36; H, 5,96; N, 10.37
'II-NHR(DH3O-d6)δpp17.78(
d, 111. J-1,2Hz, CB-H).

5、86(d、 111. J−5,4Hz、 CI’
−It)。
5,86(d, 111. J-5,4Hz, CI'
-It).

3.33 (s、311.02’−CH3)。3.33 (s, 311.02'-CH3).

1.78(S、3N、C5−CH3)。1.78 (S, 3N, C5-CH3).

因みに、化合物3は、・尿から単離されたとの報告があ
るが(C,A、 、 Vol、1G1,68654a(
1984)、尿からの単離では単離できる量に自ら制限
があり、上記の実施例1〜3によって製造するのが極め
て有利である。
Incidentally, there is a report that Compound 3 was isolated from urine (C, A, Vol, 1G1, 68654a (
(1984), isolation from urine has its own limitations on the amount that can be isolated, and it is extremely advantageous to produce according to Examples 1 to 3 above.

実施例4 (メトキシ−5′−ジメトキシトリチル−2′−〇−メ
チルー5−メチルーウリジン−310−(N、N−ジイ
ソプロピルアミノ)フォスフイン(化合物5)の合成) 化合物3 (0,544tJ、  2.0mmolピリ
ジン共沸後、5−のピリジンに溶解しジメトキシトリチ
ルク1]ライド(0,829,2,4mmo l )加
え、空温で4時間撹拌した。原料の消失を確認し、メタ
ノール1111を加え、反応を停止させた。溶媒を減圧
];留去し、CHC13−H,20で分液し、有t1層
をNa  SO4乾燥俊、シリカゲルカラムクロマトク
ラ)イー (C−200、407、〜4%MeOH/C
HCl3)で精製した後、n・−ヘキサンから粉末化し
、化合物4を0.92g(80%)得た。
Example 4 (Synthesis of methoxy-5'-dimethoxytrityl-2'-〇-methyl-5-methyl-uridine-310-(N,N-diisopropylamino)phosphine (compound 5)) Compound 3 (0,544 tJ, 2.0 mmol After pyridine azeotropy, dimethoxytritylchloride (0,829,2,4 mmol) dissolved in 5-pyridine was added and stirred at air temperature for 4 hours. After confirming the disappearance of the raw material, methanol 1111 was added. The reaction was stopped. The solvent was removed under reduced pressure]; the layers were separated with CHC13-H, 20, and the t1 layer was purified with NaSO4, silica gel column chromatography (C-200, 407, ~4%). MeOH/C
After purification with HCl3) and powdering from n-hexane, 0.92 g (80%) of compound 4 was obtained.

この化合物4 (2811910,49霞■01)をピ
リジン共S侵、蒸留メチレンクロライドに溶解し、ジイ
ソプロピルエチルアミン(0,35ad!、2.0mm
ol)を加えた。密栓した侵、雰囲気をアルゴン置換し
、そこへchloro−N 、 N −diisopr
opylaiinoiethoxyphosphine
 (0,12ad、0.61101)を約1分かけて滴
下した。室温で約60分放置し、原料の消失を確認し、
(シリカゲルTLC法:移FIJ Fn、酢酸エチル、
原料R(Wi O,43、II!i部R,値0.7)、
酢酸エチル約15mを加え、反応溶液を希釈した。
This compound 4 (2811910, 49 Kasumi ■ 01) was dissolved in distilled methylene chloride with pyridine and diisopropylethylamine (0.35ad!, 2.0mm).
ol) was added. The atmosphere was replaced with argon, and then chloro-N, N-diisopr was added.
opylaiinoiethoxyphosphine
(0.12ad, 0.61101) was added dropwise over about 1 minute. Leave it at room temperature for about 60 minutes and check that the raw materials have disappeared.
(Silica gel TLC method: FIJ Fn, ethyl acetate,
Raw material R (Wi O, 43, II!i part R, value 0.7),
Approximately 15 mL of ethyl acetate was added to dilute the reaction solution.

飽和NaHCO3水溶液、飽和食塩水ぐ洗浄した後、無
水硫酸ナトリウムで乾燥後、濃縮し、残渣を得た。更に
、シリカゲルカラムクロマトグラフィー(C−300,
2,5g、酢酸エチル)でm製し、泡状物質として化合
物5を0.349 (94%)を得た。
After washing with a saturated aqueous NaHCO3 solution and saturated brine, the mixture was dried over anhydrous sodium sulfate and concentrated to obtain a residue. Furthermore, silica gel column chromatography (C-300,
2.5 g of ethyl acetate) to give 0.349 (94%) of compound 5 as a foam.

実施例5 (ヌクレオシド樹脂の合成) 化合物4 (0,179,3,01101)をピリジン
共沸した侵、塩化メチレン3mに溶解し、無水コハク酸
(47,8■、4.5uol)とジメチルアミノピリジ
ン(55,5q、  0.46imoりを加え、変温で
2時間撹拌した。TLCで原料の消失を確認した後、反
応液を0.5M  KHPO4水で洗浄した。溶媒を減
圧上留去し、残渣をシリカゲルカラムクロマトグラフィ
ー(C−300、109)で精製し、ノルマルへ4−サ
ンで粉末化し、0.18 g (0,17m1ol、8
8.9%)の3’ −(2’−0−Hethl/+−5
’ −0−dimcthoxytrityl −5−1
cthyluridinyl) −monosucct
nateを得た。
Example 5 (Synthesis of nucleoside resin) Compound 4 (0,179,3,01101) was azeotroped with pyridine, dissolved in 3 m of methylene chloride, and mixed with succinic anhydride (47.8 μl, 4.5 uol) and dimethylamino Pyridine (55.5q, 0.46imo) was added and stirred at a variable temperature for 2 hours. After confirming the disappearance of the raw materials by TLC, the reaction solution was washed with 0.5M KHPO4 water. The solvent was distilled off under reduced pressure. , the residue was purified by silica gel column chromatography (C-300, 109), powdered with normal 4-san, 0.18 g (0.17 mol, 8
8.9%) of 3'-(2'-0-Hethl/+-5
'-0-dimctoxytrityl-5-1
cthyluridinyl) -monosucct
I got nate.

全量をDMF3aeに溶解し、ペンタクロロフェノール
(87,111I!F、約1.2当量)、ジシクロへキ
シルカルボジイミド(66,0■、約1.2当量)を加
え、室温で一晩撹拌した。TLCで原料の消失を確認し
、生じた沈澱をP別した後、溶媒を減圧ド留去した。さ
らに、残渣にベンゼンを加え、析出した不溶物をP別し
、P液を濃縮した後、n−ヘキサンから粉末化し、pe
ntach+oropheny+ −3’(2’  −
0−methyl−5’  −0−dimethoxy
trityl= 5−18thyILIridiny1
)−3uCCinateを得た。収gL0.23 g、
0.249mg+o I、収率92.3%。
The entire amount was dissolved in DMF3ae, pentachlorophenol (87,111I!F, about 1.2 equivalents) and dicyclohexylcarbodiimide (66,0μ, about 1.2 equivalents) were added, and the mixture was stirred at room temperature overnight. After confirming the disappearance of the raw materials by TLC and separating the resulting precipitate with P, the solvent was distilled off under reduced pressure. Furthermore, benzene was added to the residue, the precipitated insoluble matter was separated from P, the P solution was concentrated, and then powdered from n-hexane.
ntach+oropheny+ -3'(2'-
0-methyl-5'-0-dimethoxy
trityl=5-18thyILIridiny1
)-3uCCinate was obtained. Yield gL0.23 g,
0.249 mg+o I, yield 92.3%.

コノ化合物(75,3I!rg、82μmol)をCP
G樹脂(100μ1iol  NH2/g、0.24I
J)のトリエチルアミン(15J11)−DMF (3
m)の懸濁液中へ加え、室温で一晩振とうした。反応液
を一過し、樹脂をDMF、ピリジン、塩化メチレンで順
次洗浄した後、減圧乾燥した。
Cono compound (75,3I!rg, 82 μmol) in CP
G resin (100μ1iol NH2/g, 0.24I
J) triethylamine (15J11)-DMF (3
m) and shaken overnight at room temperature. The reaction solution was passed through, and the resin was washed successively with DMF, pyridine, and methylene chloride, and then dried under reduced pressure.

常法により定量し、ローディング量1μm01/29.
4■であることを確認した。
It was determined by a conventional method, and the loading amount was 1 μm01/29.
It was confirmed that it was 4■.

0.1Mジメチルアミノピリジン/ピリジン4.5−と
無水酢酸0.5mを加えて10分!ffi振とうした。
Add 0.1M dimethylaminopyridine/pyridine 4.5- and 0.5m acetic anhydride for 10 minutes! ffi shaken.

反応液を濾過し、樹脂をピリジン、塩化メチレンで順次
洗浄した後減圧下乾燥し、化合物6を得た。
The reaction solution was filtered, and the resin was washed successively with pyridine and methylene chloride, and then dried under reduced pressure to obtain Compound 6.

実施例6 (デカリボアデニル酸(γA  10wer)の合成)
公知方法(E 、 Ohtsuka et al、。
Example 6 (Synthesis of decariboadenylic acid (γA 10wer))
A known method (E, Ohtsuka et al.

Tetrahedron、 40.47(1984)参
照)に従い合成したN6−ペンゾイルー5′−〇−ジメ
トキシトリチルー2’−0−テトラヒドロピラニルアデ
ノシンを公知方法(L 、 J 、 M c B ri
de ctal、。
Tetrahedron, 40.47 (1984)) N6-penzoyl-5'-〇-dimethoxytrityl-2'-0-tetrahydropyranyl adenosine was synthesized according to a known method (L, J, McBri
dectal.

Tetrahedron  Letters、 24.
245(1983)参照)従い3’ −0−(N、N−
ジイソプロピルアミノ)−メトキシホスホアミダイト誘
導体に導いた。
Tetrahedron Letters, 24.
245 (1983)) Therefore, 3' -0-(N, N-
diisopropylamino)-methoxyphosphoramidite derivatives.

即ち、N6−ペンゾイルー5′−〇−ジメトキシトリチ
ルー 2’−0−テトラヒドロピラニルアデノシン(5
76,3q、  766.5μmol)をピリジン共沸
により無水にした後、ジクロルメタン1ai!に溶解し
た。この溶液に窒素ガス気流「fジイソプロピルエチル
アミン(0,49rd>を加えた後、水冷下クロロ・−
メトキシ−N、N−ジイソプロピルアミノホスフィン(
0,17d)を徐々に加えた。1時間放置後、薄層りO
マドグラフィーにより原料の消失を確認した後、酢酸エ
チル10dを加え希釈した。この希釈液を飽和炭酸水素
ナトリウム水溶液、次いで飽和食塩水で洗浄し、酢酸エ
チル層を減圧下濃縮乾固した。得られた残渣を酢酸エチ
ルに溶解し、10gのシリカゲル(C−300)を充填
したカラムクロマトグラフィー(移動相:酢酸エチル)
により精製した。溶出されたNG−ペンゾイルー5′−
〇−ジメトキシトリエチルー2′−〇−テトラヒドロピ
ラニルアデノシン−3’−0−(N。
That is, N6-penzoyl-5'-〇-dimethoxytrityl-2'-0-tetrahydropyranyladenosine (5
76.3q, 766.5 μmol) was made anhydrous by pyridine azeotrope, and then dichloromethane 1ai! dissolved in. After adding a nitrogen gas stream of diisopropylethylamine (0.49rd) to this solution, chloro-
Methoxy-N,N-diisopropylaminophosphine (
0.17d) was added gradually. After leaving for 1 hour, a thin layer O
After confirming the disappearance of the raw materials by mudgraphy, 10 d of ethyl acetate was added to dilute the solution. This diluted solution was washed with a saturated aqueous sodium hydrogen carbonate solution and then with saturated brine, and the ethyl acetate layer was concentrated to dryness under reduced pressure. The obtained residue was dissolved in ethyl acetate and subjected to column chromatography packed with 10 g of silica gel (C-300) (mobile phase: ethyl acetate).
It was purified by Eluted NG-penzoyl-5'-
〇-dimethoxytriethyl-2'-〇-tetrahydropyranyladenosine-3'-0-(N.

N−ジイソプロピルアミノ)メトキシホスホアミダイト
(化合物7)の純粋画分を集め濃縮乾固し、0.67 
g(733,9μmol )の化合物7を95.7%の
収率で得た。
The pure fractions of N-diisopropylamino)methoxyphosphoramidite (compound 7) were collected and concentrated to dryness, giving a concentration of 0.67
g (733.9 μmol) of compound 7 was obtained in a yield of 95.7%.

次に、NG−ベンゾイル−2′−〇−テトラヒドロピラ
ニルアデノシン(1μ101)を結合した固相担体(R
、K 1erzek etal、、 B iochem
istry。
Next, a solid phase support (R
, K. 1erzek etal, , Biochem
istry.

25、7840〜7846 (1986)を出発原料に
用い、20μmol / 140IIiの濃度になるよ
うに溶解した化合物7のアセトニトリル溶液とともにD
NA自動合成m<7プライドバイオシステムズ社製、モ
デル380A >にて鎖長延長反応を行なった。各縮合
サイクルに先立つ脱ジメトキシトリチル化反応は、1%
ジクL1ル酸/メチレンクロライド溶液を用いた。反応
後の固相担体より切り出された部分的に保1m3を有す
るデカアデニル酸のアンモニア水溶液は、60℃で5時
間加温した。次いで、この溶液を濃縮し、逆相シリカゲ
ル(Prel) F’AK−500/C−18、ウォー
タース社製)を詰めたカラムク0マドグラフイーを行な
うことにより精製した。
25, 7840-7846 (1986) as a starting material, and D together with an acetonitrile solution of compound 7 dissolved to a concentration of 20 μmol/140IIi.
The chain elongation reaction was performed using an automatic NA synthesis m<7 model 380A manufactured by Pride Biosystems. The dedimethoxytritylation reaction prior to each condensation cycle was carried out at 1%
A dichloric acid/methylene chloride solution was used. The ammonia aqueous solution of decaadenylic acid, which was cut out from the solid support after the reaction and had a partial retention capacity of 1 m3, was heated at 60° C. for 5 hours. This solution was then concentrated and purified by column chromatography packed with reverse phase silica gel (Prel F'AK-500/C-18, manufactured by Waters).

即ち、移動相として5%から35%のアセトニトリルの
直線濃度勾配をかけた501M t’リエチルアミンー
炭酸緩衝液(1)H7,5、以ドTEABと略す。)を
用いて溶出し、5′末端にジメトキシトリチル基及び2
′位水w1基にテトラヒドロピラニル基を有するデカア
デニル酸の純粋画分を集め、濃縮乾固した0次に、この
、残渣を0.01 Nの塩酸水溶液10dに溶かしてp
i−12,0に調整し、室温に24時間放置した。反応
液は希釈したアンモニア水で中和後、酢酸エチルにて洗
浄したのち濃縮し、セファデックスG−25を詰めたゲ
ルー過カラムクロマトグラフィー(移動相:  0.I
M  TEAB)を行なうことにより脱塩した。
That is, 501M t'-ethylamine-carbonate buffer (1) H7,5 was applied with a linear concentration gradient of 5% to 35% acetonitrile as a mobile phase, hereinafter abbreviated as TEAB. ), and dimethoxytrityl group and 2
A pure fraction of decaadenylic acid having a tetrahydropyranyl group at the water w1 group at the ' position was collected and concentrated to dryness. Next, this residue was dissolved in 10 d of a 0.01 N aqueous hydrochloric acid solution and
It was adjusted to i-12.0 and left at room temperature for 24 hours. The reaction solution was neutralized with diluted aqueous ammonia, washed with ethyl acetate, concentrated, and subjected to gel column chromatography packed with Sephadex G-25 (mobile phase: 0.I
Desalting was performed by performing MTEAB).

完全に脱保護されたデカアデニル酸は、最後に逆相シリ
カゲル(YMCPack ODS、C−18(山村科学
社製))を用いた高速液体クロマトグラフィーにより精
製し、6.5700ユニツト、約50nIO+のデカア
デニル酸を5%の通算収率で単離した。
The completely deprotected decaadenylic acid was finally purified by high performance liquid chromatography using reverse phase silica gel (YMCPack ODS, C-18 (manufactured by Yamamura Kagaku)) to obtain 6.5700 units of decaadenylic acid, approximately 50 nIO+. was isolated with an overall yield of 5%.

得られたデカアデニル酸は、陰イオン交換カラム(DE
AE−28W)を用いた高速液体クロマトグラフィーで
分析を行い、はぼ単一なピークを与えることを確認した
The obtained decaadenylic acid was subjected to an anion exchange column (DE
Analysis was performed by high performance liquid chromatography using AE-28W), and it was confirmed that a nearly single peak was obtained.

実施例7 (デカ(2’−0−メチル−5−メチルウリジル酸)す
なわちm5[Jm 10mar (D合成>実施例5で
得た2’−0−メチル−5−メヂルウリジン(1μ5o
l)を結合した固相担体を出発原料にして、実施例4・
で得た化合物5のアセトニトリル溶液(20μmof/
140 l11)を用いて、常法に従い実施例6と同様
に(この場合は説ジメチルトリチル化は、3%トリクロ
ル酢酸ジクロメタン溶液を用いた)鎖長延長反応を行っ
た。反応後の固相担体より切り出された5′末端にジメ
トキシトリチル基を有するデカ(2’−0−メチル−5
−メチルウリジル酸)を実施例6と同様に逆相シリカゲ
ルカラムを用いて分mm製した。
Example 7 (Deca(2'-0-methyl-5-methyluridylic acid) i.e. m5[Jm 10mar (Synthesis D>2'-0-methyl-5-methyluridine obtained in Example 5 (1 μ5o
Using the solid phase support bound with l) as a starting material, Example 4.
An acetonitrile solution (20 μmof/
140 l11), chain elongation reaction was carried out in the same manner as in Example 6 according to a conventional method (in this case, dimethyl tritylation was carried out using a 3% trichloroacetic acid dichloromethane solution). Deca(2'-0-methyl-5
-Methyl uridylic acid) was prepared in the same manner as in Example 6 using a reversed phase silica gel column.

次に、この一部をとり溶媒を減圧留去した後、80%酢
酸水溶液1dを加え、室温で10分間放直置た6反応液
を減圧留去した後、更に水と減圧共沸することにより酢
酸を除去した。残渣を水に溶解し酢酸エチルで洗浄侵減
圧留去し、実施例6で用いた逆相シリカゲルによる高速
液体クロマトグラフィーによりIIIJL/、7.28
00ユニツトのデカ(2’−0−メチル−5−メチルウ
リジル酸)を得た。
Next, a portion of this was taken, the solvent was distilled off under reduced pressure, 1 d of 80% acetic acid aqueous solution was added, and the reaction solution was allowed to stand for 10 minutes at room temperature. After the reaction solution was distilled off under reduced pressure, it was further azeotroped with water under reduced pressure. Acetic acid was removed by The residue was dissolved in water, washed with ethyl acetate, evaporated under reduced pressure, and subjected to high performance liquid chromatography using the same reversed-phase silica gel used in Example 6 to give IIIJL/7.28.
00 units of deca(2'-0-methyl-5-methyluridylic acid) were obtained.

得られたオリゴマーは陰イオン交換カラム(DEAE−
28W)を用いた高速液体クロマトグラフィーで分析を
行い単一なピークを与え、純粋であることを確認した。
The obtained oligomer was subjected to an anion exchange column (DEAE-
Analysis by high performance liquid chromatography using 28W) gave a single peak, confirming its purity.

また、同様の方法により、デカデオキシチミジル1l(
dT 10mer)ヲ20.8400−Lニット、7 
カ(2’−〇−メチルウリジル酸)  (Us 10m
ar )を15.4700ユニツト得た。
In addition, 1 liter of decadeoxythymidyl (
dT 10mer) wo20.8400-L knit, 7
Ka(2'-〇-methyluridylic acid) (Us 10m
ar) obtained 15.4700 units.

実施例8 (Ti測定実験) 実施例6及び7により得たそれぞれのデカオリゴヌクレ
オチド量は、次のε値(計算値)により定値した。
Example 8 (Ti measurement experiment) The amount of each decaoligonucleotide obtained in Examples 6 and 7 was determined by the following ε value (calculated value).

m−」ニー順− γA 10111Or   (相補鎖) :  123
400d丁10mer   (対 照) :  816
00m  Un 10mer  (本発明) :   
96800UmlOmer   (対 照”) :  
968007A 10a+er(0,20TOD、 1
.6nmol)とdTlomer、15U11101m
+3r 、LJI 1011er (7)ソれぞれ1.
6tvol相当幻をエッペンドルフヂュープにとり、減
圧乾固した。それぞれバッファー(0,01Mカコジル
酸ナトリウム塩、0.IM  NaC1゜11M  E
DTA、  E)H7,0)  300p1に溶解し、
ベックマン社IJDLI−88分光光度計を用いて、温
度上昇速度を2℃/winとし、吸光度変化を3回測定
し、それらの平均値を求め、これら3種のハイブリッド
それぞれのT+e値とした。
m-” knee order-γA 10111Or (complementary strand): 123
400d 10mer (control): 816
00m Un 10mer (present invention):
96800UmlOmer (control):
968007A 10a+er(0,20TOD, 1
.. 6nmol) and dTlomer, 15U11101m
+3r, LJI 1011er (7) each 1.
A volume equivalent to 6 tvol was taken in an Eppendorf dupe and dried under reduced pressure. Each buffer (0.01M cacodylate sodium salt, 0.IM NaCl, 11M E
DTA, E)H7,0) dissolved in 300p1,
Using a Beckman IJDLI-88 spectrophotometer, the change in absorbance was measured three times at a temperature increase rate of 2° C./win, and the average value thereof was determined to be the T+e value for each of these three hybrids.

結果は次の第1表の通りであった(第3図)。The results are shown in Table 1 below (Figure 3).

第1表 化合物5の合成の概要を図示したものである。第3図は
、3種のハイブリッドの温度変化に対する吸光度変化を
示す(実施例8)。
Table 1 shows an overview of the synthesis of Compound 5. FIG. 3 shows absorbance changes with respect to temperature changes for three types of hybrids (Example 8).

因みに、各ハイブリッドの構造式は次の通りである。Incidentally, the structural formula of each hybrid is as follows.

式中、Nは5− M etMIuracilを意味する
In the formula, N means 5-MetMIuracil.

へイア1ノッ1:(1) :  5’ r (AAAA
AAAAAA)、  3’3’  (TTTTTTTT
TT)d 5’ハイブリッド■、  5’ r(AAA
AAAAAAA)  3’3’  (UtlUUUUU
ULtU)i 5’ハイフリット■:5’  r(AA
AAAAAAAA)  3’3’  (NHNNNHN
NNN)m 5’
Heia 1 no 1: (1): 5' r (AAAA
AAAAAA), 3'3' (TTTTTTTT
TT) d 5' hybrid ■, 5' r (AAA
AAAAAAAAA) 3'3' (UtlUUUUU
ULtU) i 5' high frit ■: 5' r (AA
AAAAAAAAA) 3'3' (NHNNNHN
NNN)m 5'

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ、実施例1〜31(埋入
弁理士 霜 越 正 夫
Figures 1 and 2 show Examples 1 to 31 (embedded patent attorney Masao Shimokoshi), respectively.

Claims (1)

【特許請求の範囲】[Claims] (1)下記一般式( I )で表されるオリゴヌクレオチ
ド誘導体。 ▲数式、化学式、表等があります▼( I ) 式中、Rは、水素原子、アシル基、又は置換基を有して
いてもよいホスホリル基を表し、Tは、チミン・1−イ
ル基を表し、Y_1、Y_2及びY_3は、相互に同一
であってもよく又異なつていてもよくて、水素原子、ヒ
ドロキシル基、低級アルキルオキシ基又は低級アルキル
シリル基を表し、Bは、チミン−1−イル基、アデニン
−9−イル基、グアニン−9−イル基、シトシン−9−
イル基、ウラシル−1−イル基又はヒボキサンチン−9
−イル基を表し、nは1〜100の整数を表す。 の下記一般式(II)で表されるヌクレオチド誘導体。 ▲数式、化学式、表等があります▼(II) 式中、Xは、モノメトキシトリチル基、ジメトキシトリ
チル基又は置換基を有していてもよいホスホリル基を表
し、Yは、水素原子、o−クロルフエニル燐酸、−P(
OCH_3)−N−(CH(CH_3)_2)_2、−
P(OCH_2CH_2CN)−N−(CH(CH_3
)_2)_2又は−CO−(CH_2)_m−CONH
−(CH_2)_n−(CPG誘導体)(ここに、m及
びnは、それぞれ、1〜10の整数である)を表わす。 ただし、Xが置換基を有していてもよいホスホリル基の
ときは、Yは水素原子である。
(1) An oligonucleotide derivative represented by the following general formula (I). ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (I) In the formula, R represents a hydrogen atom, an acyl group, or a phosphoryl group that may have a substituent, and T represents a thymine 1-yl group. Y_1, Y_2 and Y_3 may be the same or different and represent a hydrogen atom, a hydroxyl group, a lower alkyloxy group or a lower alkylsilyl group, and B is thymine-1 -yl group, adenine-9-yl group, guanine-9-yl group, cytosine-9-yl group
yl group, uracil-1-yl group or hypoxanthine-9
-yl group, and n represents an integer of 1 to 100. A nucleotide derivative represented by the following general formula (II). ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (II) In the formula, X represents a monomethoxytrityl group, a dimethoxytrityl group, or a phosphoryl group that may have a substituent, and Y represents a hydrogen atom, an o- Chlorphenyl phosphate, -P(
OCH_3)-N-(CH(CH_3)_2)_2,-
P(OCH_2CH_2CN)-N-(CH(CH_3
)_2)_2 or -CO-(CH_2)_m-CONH
-(CH_2)_n- (CPG derivative) (where m and n are each an integer of 1 to 10). However, when X is a phosphoryl group which may have a substituent, Y is a hydrogen atom.
JP8545689A 1989-04-04 1989-04-04 Oligonucleotide derivative and synthetic raw material thereof Pending JPH02264792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8545689A JPH02264792A (en) 1989-04-04 1989-04-04 Oligonucleotide derivative and synthetic raw material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8545689A JPH02264792A (en) 1989-04-04 1989-04-04 Oligonucleotide derivative and synthetic raw material thereof

Publications (1)

Publication Number Publication Date
JPH02264792A true JPH02264792A (en) 1990-10-29

Family

ID=13859386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8545689A Pending JPH02264792A (en) 1989-04-04 1989-04-04 Oligonucleotide derivative and synthetic raw material thereof

Country Status (1)

Country Link
JP (1) JPH02264792A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525719A (en) * 1991-08-30 1996-06-11 Chemgenes Corporation N-protected-2'-O-methyl-and N-protected-3'-O-methyl-ribonucleosides and their phosphoramidite derivatives
US5760202A (en) * 1995-03-06 1998-06-02 Isis Pharmaceuticals, Inc. Process for the synthesis of 2'-O-substituted pyrimidines
US5861493A (en) * 1995-03-06 1999-01-19 Isis Pharmaceuticals, Inc. Process for the synthesis of 2'-O-substituted pyrimidines
US6015886A (en) * 1993-05-24 2000-01-18 Chemgenes Corporation Oligonucleotide phosphate esters
US6107094A (en) * 1996-06-06 2000-08-22 Isis Pharmaceuticals, Inc. Oligoribonucleotides and ribonucleases for cleaving RNA
US7820810B2 (en) 2007-03-19 2010-10-26 Isis Pharmaceuticals, Inc. Process for the synthesis of 2′-O-substituted purine nulceosides

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525719A (en) * 1991-08-30 1996-06-11 Chemgenes Corporation N-protected-2'-O-methyl-and N-protected-3'-O-methyl-ribonucleosides and their phosphoramidite derivatives
US6015886A (en) * 1993-05-24 2000-01-18 Chemgenes Corporation Oligonucleotide phosphate esters
US6222025B1 (en) 1995-03-06 2001-04-24 Isis Pharmaceuticals, Inc. Process for the synthesis of 2′-O-substituted pyrimidines and oligomeric compounds therefrom
US5861493A (en) * 1995-03-06 1999-01-19 Isis Pharmaceuticals, Inc. Process for the synthesis of 2'-O-substituted pyrimidines
US6166197A (en) * 1995-03-06 2000-12-26 Isis Pharmaceuticals, Inc. Oligomeric compounds having pyrimidine nucleotide (S) with 2'and 5 substitutions
US5760202A (en) * 1995-03-06 1998-06-02 Isis Pharmaceuticals, Inc. Process for the synthesis of 2'-O-substituted pyrimidines
EP0813539A4 (en) * 1995-03-06 2002-01-23 Isis Pharmaceuticals Inc Improved process for the synthesis of 2'-o-substituted pyrimidines and oligomeric compounds therefrom
US6642367B2 (en) 1995-03-06 2003-11-04 Isis Pharmaceuticals, Inc. Process for the synthesis of 2′-O-substituted pyrimidines and oligomeric compounds therefrom
US6107094A (en) * 1996-06-06 2000-08-22 Isis Pharmaceuticals, Inc. Oligoribonucleotides and ribonucleases for cleaving RNA
US7432249B2 (en) 1996-06-06 2008-10-07 Isis Pharmaceuticals, Inc. Oligoribonucleotides and ribonucleases for cleaving RNA
US7432250B2 (en) 1996-06-06 2008-10-07 Isis Pharmaceuticals, Inc. Oligoribonucleotides and ribonucleases for cleaving RNA
US7629321B2 (en) 1996-06-06 2009-12-08 Isis Pharmaceuticals, Inc. Oligoribonucleotides and ribonucleases for cleaving RNA
US7820810B2 (en) 2007-03-19 2010-10-26 Isis Pharmaceuticals, Inc. Process for the synthesis of 2′-O-substituted purine nulceosides

Similar Documents

Publication Publication Date Title
US6028182A (en) Methylphosphonic acid esters, processes for their preparation, and their use
US5512668A (en) Solid phase oligonucleotide synthesis using phospholane intermediates
US5883237A (en) Oligonucleotides having Rp and Sp linkages at predetermined locations
US6031086A (en) Antisense oligonucleitide containing compositions and method of forming duplexes
US7084125B2 (en) Xylo-LNA analogues
JPH0694475B2 (en) Nucleoside derivative
US5789562A (en) Nucleotide monomers containing 8-azapurin bases or a derivative thereof, their preparation and their use in making modified olignonucleotides
US5646267A (en) Method of making oligonucleotides and oligonucleotide analogs using phospholanes and enantiomerically resolved phospholane analogues
Thrane et al. Novel linear and branched oligodeoxynucleotide analogues containing 4′-C-(hydroxymethyl) thymidine
EP0090789A1 (en) Chemical DNA synthesis
US4950745A (en) Process for synthesis of oligonucleotides and compound for forming polymeric protecting group
US5623068A (en) Synthesis of DNA using substituted phenylacetyl-protected nucleotides
US5936077A (en) Solid phase synthesis of oligonucleotides
EP0595839A4 (en)
US5859233A (en) Synthons for synthesis of oligonucleotide N3-P5 phosphoramidates
JPH08208687A (en) Glyceryl oligonucleotide
JPH0787982A (en) Modified oligodeoxyribonucleotide
US5807837A (en) Composition and method for the treatment or prophylaxis of viral infections using modified oligodeoxyribonucleotides
JPH02264792A (en) Oligonucleotide derivative and synthetic raw material thereof
Sheppard et al. Preparation of 2'-O-(. beta.-Cyanoethyl phosphoramidites) of 3'-Deoxycytidine and 3'-Deoxyguanosine and Their Use for Solid-Phase Synthesis of Oligodeoxynucleotides Containing 2', 5'-Phosphodiester Linkages
JPS59502025A (en) Method for producing oligonucleoside phosphonates
JPS59501910A (en) Oligonucleotide manufacturing method
CN114014902B (en) Dimeric nucleotide and synthesis method thereof
JPS61291595A (en) Production of 2&#39;-0-methylated rna
JP2003292499A (en) Process for chemical synthesis of oligonucleotide