JPH0226468B2 - - Google Patents
Info
- Publication number
- JPH0226468B2 JPH0226468B2 JP57224910A JP22491082A JPH0226468B2 JP H0226468 B2 JPH0226468 B2 JP H0226468B2 JP 57224910 A JP57224910 A JP 57224910A JP 22491082 A JP22491082 A JP 22491082A JP H0226468 B2 JPH0226468 B2 JP H0226468B2
- Authority
- JP
- Japan
- Prior art keywords
- inverter
- current
- frequency
- phase
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 12
- 239000003990 capacitor Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000010304 firing Methods 0.000 description 5
- 230000006698 induction Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/443—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
- H02M5/45—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
- H02M5/4505—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only having a rectifier with controlled elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/505—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/515—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Description
【発明の詳細な説明】
この発明は電流形インバータの運転方法、特に
インバータ停止後の再起動方法に関する。一般
に、このような再起動は迅速に行なわれることが
望ましい。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a current source inverter, and more particularly to a method of restarting an inverter after it is stopped. Generally, it is desirable that such a restart occur quickly.
第1図は一般的な電流形インバータの基本構成
を示す回路図である。同図において、1は順変換
部(整流器)、2は逆変換(インバータ)部、3
は直流リアクトル、4は誘導機の如き交流電動機
である。逆変換(インバータ)部2は6個の主サ
イリスタTU〜TZと6個のダイオードDU〜DZから
構成され、例えばサイリスタTU,TZ,TV,TX,
TW,TYの順に互いに60゜el(電気角)の位相差で
120゜elずつ導通する。なお、Cは転流コンデンサ
である。かかるインバータにおいては、その起動
以前に次の相へ電流を転流させるのに充分なエネ
ルギーを転流コンデンサに予め蓄えさせるため、
起動以前に転流コンデンサの初期充電が行なわれ
る。この際の転流コンデンサの充電極性は最初に
流すべき相によつて決定され、例えば第1図の
U、Y相(TU,TY)に流す場合には、同図の、
で示す極性となるように充電される。ところ
で、この転流コンデンサ充電時間は一般に数秒程
度必要であり、寸動運転の如くインバータ停止後
に急速再起動を必要とする運転の場合には、この
充電時間がむだ時間となり、運転特性上好ましく
ない。そのため、従来は次のような方法により対
処していた。 FIG. 1 is a circuit diagram showing the basic configuration of a general current source inverter. In the figure, 1 is a forward conversion section (rectifier), 2 is an inverse conversion (inverter) section, and 3 is a forward conversion section (rectifier).
is a DC reactor, and 4 is an AC motor such as an induction machine. The inverter section 2 is composed of six main thyristors T U to T Z and six diodes D U to D Z , such as thyristors T U , T Z , TV , T X ,
T W and T Y with a phase difference of 60°el (electrical angle) from each other.
Conducts in increments of 120°el. Note that C is a commutating capacitor. In such an inverter, in order to pre-store sufficient energy in the commutation capacitor to commutate current to the next phase before starting the inverter,
Initial charging of the commutating capacitor is performed before startup. The charging polarity of the commutating capacitor at this time is determined by the phase to which the current is to be applied first. For example, when the current is applied to the U and Y phases (T U , T Y ) shown in FIG.
The battery will be charged with the polarity shown. By the way, this commutation capacitor charging time generally requires about several seconds, and in the case of operation that requires a rapid restart after the inverter stops, such as jogging operation, this charging time becomes wasted time, which is unfavorable in terms of operating characteristics. . Conventionally, this problem has been dealt with using the following methods.
その第1は、所定の停止指令を与えて減速を開
始し、これが停止速度に達すると、まずインバー
タの予め定められた特定の相(ここではU、Y相
とする。)にパルスを与え、該設定のU、Y相に
電流が転流する時間(1ms程度)の経過後にイ
ンバータを停止させる方法である。こうすること
により、停止時には負荷電流によつて第1図の極
性の如く転流コンデンサが充電されるので、初期
充電を必要とせずに、急速再起動が可能となる。
また、停止位相が起動時または始動時の位相と一
致しているため、転流コンデンサの追加充電も速
やかに行なうことができる。このような方法は、
主に速度制限範囲が1:10程度の運転の場合には
有効である。例えば、停止速度が定格速度の5%
で、定格速度が50Hzであるとすると、停止速度時
の1サイクル周期は400ms(1/50×0.05)であり、
したがつて最大400msのむだ時間で運転指令に
追従することになる。しかし、速度制御範囲を
1:100程度にし、停止速度を例えば定格速度の
1/200にすると、このときの1サイクルの周期は
1/50×0.005=4sとなつてむだ時間が大幅に増加す
る。これは、特にベクトル制御方式の如く自制式
で、かつ零速度付近まで制御する場合には、停止
位相を検出するのに非常に長い時間を要すること
となり、したがつて前述の如き寸動運転の実現が
困難になるという欠点を有している。これに対し
て、停止速度に達したら任意の位相で停止し、再
起動は該停止した位相から電流を流し始める方法
がある。この方法では、インバータ停止後速やか
に再起動する場合は問題ないが、停止時間が長く
なると転流コンデンサが放電する可能性があり、
起動不能となるおそれがある。その対策として
は、転流コンデンサを追加充電すればよいが、停
止位相と追加充電する位相とが相違すると、転流
コンデンサを充電するのに起動時と同程度の時間
が必要となる。したがつて、この方法を採用する
ためには、停止後から再起動する迄の時間を監視
し、一定時間経過したときには初期充電を再度行
なうというような制約条件が多くなるという欠点
がある。 The first is to give a predetermined stop command to start deceleration, and when it reaches the stop speed, first give a pulse to a predetermined specific phase (here, U and Y phases) of the inverter, This is a method in which the inverter is stopped after a period of time (approximately 1 ms) for the current to commutate to the U and Y phases of the settings. By doing this, when the motor is stopped, the commutating capacitor is charged by the load current according to the polarity shown in FIG. 1, so that a rapid restart is possible without requiring initial charging.
Further, since the stop phase matches the phase at the time of start-up or start-up, additional charging of the commutating capacitor can be quickly performed. Such a method is
This is mainly effective when driving in a speed limit range of about 1:10. For example, the stopping speed is 5% of the rated speed.
If the rated speed is 50 Hz, one cycle period at the stop speed is 400 ms (1/50 x 0.05), so it follows the operation command with a maximum dead time of 400 ms. However, if the speed control range is set to about 1:100 and the stopping speed is set to, for example, 1/200 of the rated speed, the period of one cycle becomes 1/50 x 0.005 = 4 s, which significantly increases the dead time. . This is because it takes a very long time to detect the stop phase, especially when using a self-control system such as a vector control system and controlling to near zero speed. This has the disadvantage that it is difficult to implement. On the other hand, there is a method of stopping at an arbitrary phase when the stopping speed is reached, and restarting the current by starting to flow the current from the stopped phase. With this method, there is no problem if the inverter is restarted quickly after stopping, but if the inverter is stopped for a long time, the commutation capacitor may discharge.
There is a possibility that it will not be able to start. As a countermeasure, the commutating capacitor may be additionally charged, but if the stop phase and the additional charging phase are different, charging the commutating capacitor requires approximately the same amount of time as at startup. Therefore, in order to adopt this method, there are many constraints such as monitoring the time from stopping until restarting and performing initial charging again when a certain period of time has passed.
この発明はかかる点に鑑みてなされたもので、
その目的は、インバータ停止後の急速な再起動を
可能にする簡単かつ確実な運転制御方法を提供す
るにある。 This invention was made in view of these points,
The purpose is to provide a simple and reliable operation control method that enables rapid restart of the inverter after it is stopped.
上記の目的は、この発明によれば、インバータ
が所定の停止速度(周波数)に達したときは、電
流指令値をインバータが転流可能な値に制限する
一方、周波数指令に所定の設定値を加算すること
により予め定められた所定位相へ速やかに転流さ
れて電流をその位相に固定し、該電流により転流
コンデンサを充電した後にインバータを停止させ
ることにより達成される。 According to the present invention, when the inverter reaches a predetermined stopping speed (frequency), the current command value is limited to a value that allows the inverter to commutate, while the frequency command is set to a predetermined set value. This is achieved by quickly commutating the current to a predetermined phase by adding the current, fixing the current to that phase, and stopping the inverter after charging the commutating capacitor with the current.
つまり、インバータ停止指令が入り、停止速度
以下になつた場合に、停止位相(特定位相)を速
やかに検出できないのは、その時点のインバータ
周波数が非常に低くて、停止位相に到達する迄に
時間が掛かるためであり、これが上述のむだ時間
ということになる。このむだ時間を減少させるに
は、インバータ周波数を一時的に増加させれば良
い、というのがこの発明の基本的な考え方であ
る。このようにすることにより、インバータは速
やかに次の相へと転流が進むため、停止までのむ
だ時間を増大させることなく所定位相に到達させ
ることができるとともに、この位相に固定した状
態でインバータを停止させることができる。しか
し、電流値が大きい状態で周波数を増加させる
と、電動機に瞬間的にトルクが生じ、機械系に不
必要な衝撃を与えることがある。したがつて、周
波数を増加させるときには、不必要なトルクが生
じないように電流指令値を減少させることが必要
である。一方、転流コンデンサに蓄積されるエネ
ルギーはこの電流指令値に依存するので、転流エ
ネルギーを確保しうる値に設定されることは勿論
である。以上がこの発明の概要である。 In other words, when an inverter stop command is issued and the speed drops below the stop speed, the reason why the stop phase (specific phase) cannot be detected immediately is because the inverter frequency at that point is very low, and it takes time to reach the stop phase. This is because it takes time, and this is the dead time mentioned above. The basic idea of this invention is that in order to reduce this dead time, it is sufficient to temporarily increase the inverter frequency. By doing this, the inverter quickly commutates to the next phase, so it is possible to reach a predetermined phase without increasing the dead time until it stops, and the inverter is fixed at this phase. can be stopped. However, when the frequency is increased while the current value is large, torque is instantaneously generated in the motor, which may give an unnecessary shock to the mechanical system. Therefore, when increasing the frequency, it is necessary to decrease the current command value so that unnecessary torque is not generated. On the other hand, since the energy stored in the commutating capacitor depends on this current command value, it is of course set to a value that can ensure the commutating energy. The above is an overview of the invention.
以下、この発明の実施例を図面を参照して説明
する。 Embodiments of the present invention will be described below with reference to the drawings.
第2図はこの発明の実施例を示す構成図、第3
図はその動作を説明するための各部波形図であ
る。第2図において、5は関数発生器、6は電圧
調節器(AVR)、7は電流調節器(ACR)、8は
点弧角調整器、9は電圧/周波数(V/F)変換
器、10はパルス分配器、11は電流検出器
(CT)、12は電圧検出器(PT)、13はシーケ
ンス回路、P1〜P3は加算点、S1〜S3はスイツチ、
SE1,SE2は設定器で、1〜4は第1図と同様で
ある。なお、符号1〜12に示される部分は既に
公知であり、したがつて、一点鎖線で囲まれた部
分がこの発明により付加された部分である。 Fig. 2 is a configuration diagram showing an embodiment of this invention;
The figure is a waveform diagram of each part for explaining the operation. In FIG. 2, 5 is a function generator, 6 is a voltage regulator (AVR), 7 is a current regulator (ACR), 8 is a firing angle regulator, 9 is a voltage/frequency (V/F) converter, 10 is a pulse distributor, 11 is a current detector (CT), 12 is a voltage detector (PT), 13 is a sequence circuit, P 1 to P 3 are addition points, S 1 to S 3 are switches,
SE 1 and SE 2 are setting devices, and 1 to 4 are the same as in FIG. It should be noted that the parts indicated by reference numerals 1 to 12 are already known, and therefore, the parts surrounded by the one-dot chain line are the parts added according to the present invention.
ここで、公知の部分について簡単に説明する。 Here, the known parts will be briefly explained.
電圧信号として与えられる周波数指令信号f*
は、V/F変換器9において周波数信号に変換さ
れるので、パルス分配器10は該周波数信号にも
とづき逆変換部2の主サイリスタのそれぞれの点
弧タイミングを決めることにより、出力周波数の
制御を行なう。一方、関数発生器5は周波数指令
電圧f*からV/F一定制御を行なうための所定の
演算を行ない、その結果を電圧調節器6の電圧指
令値として出力するので、該電圧調節器6は電圧
検出器12からの検出値が上記指令値と一致する
ように調節演算する。その演算出力は、さらに電
流調節器7に対する電流指令値i*として与えられ
るので、該電流調節器7は電流検出器11を介し
て与えられる電流検出値が指令値i*と一致するよ
うに調節演算し、その出力を点弧角調整器8に与
える。点弧角調整器8は、該電流調節出力から整
流器1の点弧タイミングを決めてその制御を行な
うことにより、出力電圧が制御される。 Frequency command signal f * given as a voltage signal
is converted into a frequency signal in the V/F converter 9, so the pulse distributor 10 controls the output frequency by determining the firing timing of each of the main thyristors of the inverse converter 2 based on the frequency signal. Let's do it. On the other hand, the function generator 5 performs a predetermined calculation for performing constant V/F control from the frequency command voltage f * , and outputs the result as a voltage command value for the voltage regulator 6. Adjustment calculations are performed so that the detected value from the voltage detector 12 matches the command value. The calculated output is further given as a current command value i * to the current regulator 7, so the current regulator 7 adjusts the current detected value given via the current detector 11 so that it matches the command value i * . The output is given to the firing angle adjuster 8. The firing angle regulator 8 determines and controls the firing timing of the rectifier 1 from the current adjustment output, thereby controlling the output voltage.
このように制御されるインバータにおいて停止
指令が与えられると、シーケンス回路13は、イ
ンバータの周波数指令値f*を低下させ、該指令値
f*が所定値以下に下がつたことを検出して、第3
図イに示される停止速度信号を“ロー”レベルに
する。これと同時に、第3図ロ,ハに示される周
波数補設定信号、電流指令信号をともに“ロー”
レベルにしてスイツチS1,S2をオンにする。スイ
ツチS1,S2がオンになると、設定器SE1からの周
波数補設定信号V1が加算点P3に与えられるので、
これが周波数指令値f*と加算されて周波数が高め
られる一方、電圧調節器6に設定器SE2からの信
号V2を与えてその出力、すなわち電流指令値i*
を制限する。その後、逆変換部の主サイリスタに
は、第3図ト〜オの如きパルスが次々と与えられ
る。なお、第3図ト,チ,リ,ヌ,ルおよびオは
それぞれU、V、W、X、YおよびZ相に与えら
れるゲートパルスである(“ハイ”レベルで信号
有りとする。)。そして、予め定めらた特定の相
(U、Y)に同時にパルスが与えられると、第3
図ヘの如きU、Y同期信号が“ハイ”レベルにな
る。これと同時に、同図ニの周波数指令信号が
“ハイ”レベルとなり、これによつてスイツチS3
がオフになるため、周波数指令もオフとなつてイ
ンバータが次の相へ転流しないように固定され
る。こうして、逆変換部のU、Y相にゲートパル
スが与えられ、U、Y相に電流が完全に転流する
時間tを確保した後に、第3図ホの如くインバー
タ停止信号が出力され、インバータを停止させ
る。こゝで、転流コンデンサに最終的に蓄積され
るエネルギーは、上述の如く設定値V2の値(電
流指令制限値)に依存するので、この値を適宜に
選ぶことにより必要なエネルギーを確保すること
ができる。また、インバータの停止時間が長くな
ると、転流コンデンサの放電によつて転流エネル
ギーが減少する可能性があるが、この発明によれ
ば停止位相と起動位相とが一致しているため、最
小の追加充電を行なうことにより容易に転流エネ
ルギーの補給が可能となり、したがつて、停止後
の任意の時間後に再起動が可能となる。なお、第
3図の如き制御を行なうためのシーケンス回路
は、従来公知のデイジタル回路により適宜に構成
することができる。 When a stop command is given to the inverter controlled in this way, the sequence circuit 13 lowers the frequency command value f * of the inverter, and
It is detected that f * has fallen below a predetermined value, and the third
Set the stop speed signal shown in Figure A to “low” level. At the same time, both the frequency supplementary setting signal and the current command signal shown in Figure 3 (b) and (c) are set to "low".
level and turn on switches S 1 and S 2 . When the switches S 1 and S 2 are turned on, the complementary frequency setting signal V 1 from the setter SE 1 is given to the summing point P 3 .
This is added to the frequency command value f * to increase the frequency, while the signal V 2 from the setting device SE 2 is given to the voltage regulator 6 to output its output, that is, the current command value i *
limit. Thereafter, the main thyristor of the inverse conversion section is successively given pulses as shown in FIG. Note that G, C, R, N, L, and O in FIG. 3 are gate pulses applied to the U, V, W, X, Y, and Z phases, respectively (signals are present at "high" level). Then, when pulses are simultaneously given to predetermined specific phases (U, Y), the third
The U and Y synchronization signals as shown in the figure become "high" level. At the same time, the frequency command signal 2 in the same figure goes to "high" level, which causes switch S 3
is turned off, the frequency command is also turned off and the inverter is fixed so that it does not commutate to the next phase. In this way, gate pulses are applied to the U and Y phases of the inverse converter, and after securing the time t for the current to completely commutate to the U and Y phases, an inverter stop signal is output as shown in Figure 3 E, and the inverter to stop. The energy finally stored in the commutation capacitor depends on the value of the set value V 2 (current command limit value) as mentioned above, so the necessary energy can be secured by selecting this value appropriately. can do. Furthermore, when the inverter stops for a long time, commutation energy may decrease due to discharge of the commutation capacitor, but according to this invention, the stop phase and start phase coincide, so the minimum By performing additional charging, it becomes possible to easily replenish the commutation energy, and therefore, it becomes possible to restart the motor after an arbitrary period of time after it has been stopped. Incidentally, the sequence circuit for performing the control as shown in FIG. 3 can be appropriately constructed using a conventionally known digital circuit.
以上のように、この発明によれば、停止速度以
下になると速やかに予め定められた所定のインバ
ータ位相へと転流して該位相でゲートパルスを固
定し、再起動に必要な転流エネルギーを確保した
後にインバータを停止させることができるので、
インバータ停止後は転流コンデンサを再充電する
ことなく、寸動運転等の高速な再起動が可能にな
る利点が得られる。また、停止位相と起動位相と
を一致させるようにしているため、転流コンデン
サの追加充電を最小時間で容易に行なうことがで
きるものである。 As described above, according to the present invention, when the speed drops below the stop speed, the current is immediately commutated to a predetermined inverter phase, the gate pulse is fixed at that phase, and the commutation energy necessary for restarting is secured. The inverter can be stopped after
After the inverter is stopped, there is an advantage that a high-speed restart such as inching operation is possible without recharging the commutation capacitor. Further, since the stop phase and the start phase are made to coincide with each other, the commutating capacitor can be additionally charged easily in a minimum amount of time.
なお、上記は主として電圧制御方式による他制
運転する場合について説明したが、この発明はベ
クトル制御による自制運転を行なう場合にも適用
することができる。また、変換装置としては電流
形インバータのように、自己転流方式のインバー
タを使用することができる。 Although the above explanation has mainly been given to the case where the controlled operation is performed using the voltage control method, the present invention can also be applied to the case where the self-controlled operation is performed using the vector control method. Furthermore, as the converter, a self-commuting type inverter such as a current source inverter can be used.
第1図は一般的な電流形インバータ主回路を示
す構成図、第2図はこの発明の実施例を示す構成
図、第3図は第2図の動作を説明するための各部
波形図である。
符号説明、1……順変換部(整流器)、2……
逆変換(インバータ)部、3……直流リアクト
ル、4……交流電動機(誘導機)、5……関数発
生器、6……電圧調節器、7……電流調節器、8
……点弧角調整器、9……電圧/周波数(V/
F)変換器、10……パルス分配器、11……電
流検出器、12……電圧検出器、13……シーケ
ンス回路、P1〜P3……加算点、S1〜S3……スイ
ツチ、SE1,SE2……設定器。
Fig. 1 is a block diagram showing a general current source inverter main circuit, Fig. 2 is a block diagram showing an embodiment of the present invention, and Fig. 3 is a waveform diagram of each part to explain the operation of Fig. 2. . Symbol explanation, 1... Forward conversion unit (rectifier), 2...
Inverse conversion (inverter) section, 3... DC reactor, 4... AC motor (induction machine), 5... Function generator, 6... Voltage regulator, 7... Current regulator, 8
...Ignition angle adjuster, 9...Voltage/frequency (V/
F) Converter, 10...Pulse distributor, 11...Current detector, 12...Voltage detector, 13...Sequence circuit, P1 to P3 ...Summing point, S1 to S3 ...Switch , SE 1 , SE 2 ... Setting device.
Claims (1)
インバータの出力電圧を周波数指令電圧と一致さ
せるべく調節演算する電圧調節器と該電圧調節出
力を電流指令値として該インバータの出力電流を
調節する電流調節器とを有し該調節出力にもとづ
いて前記順変換器の位相制御を行なう順変換器制
御手段と、前記周波数指令にもとづき逆変換器の
周波数制御を行なう逆変換器制御手段と、前記電
流指令値を所定の設定値に制限する電流制限手段
と、前記周波数指令値に所定の設定値を加算して
周波数補正信号を出力する加算手段とを備え、イ
ンバータが所定の停止速度以下になつたときは、
前記周波数補正信号により予め定められた所定の
位相への転流を速めた後、所定位相に達したとき
は周波数補正信号の前記逆変換器への供給を停止
し、前記電流制限手段にて再起動に必要な転流エ
ネルギーを確保した後インバータを停止させるこ
とにより、該停止後におけるインバータの急速な
再起動を図ることを特徴とする電流形インバータ
の運転制御方法。1. A voltage regulator that adjusts and calculates the output voltage of a current source inverter that supplies power to a load so as to match the frequency command voltage; and a voltage regulator that adjusts the output current of the inverter using the voltage adjustment output as a current command value. a forward converter control means having a current regulator and controlling the phase of the forward converter based on the adjustment output; an inverse converter control means controlling the frequency of the inverse converter based on the frequency command; A current limiting means for limiting a current command value to a predetermined set value, and an adding means for adding a predetermined set value to the frequency command value and outputting a frequency correction signal, and the inverter becomes lower than a predetermined stopping speed. When
After accelerating the commutation to a predetermined phase using the frequency correction signal, when the predetermined phase is reached, the supply of the frequency correction signal to the inverter is stopped, and the current limiting means restarts the commutation. A method for controlling the operation of a current source inverter, characterized in that the inverter is stopped after securing the commutation energy necessary for starting, thereby rapidly restarting the inverter after the stop.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57224910A JPS59117471A (en) | 1982-12-23 | 1982-12-23 | Operation control system for current type inverter |
DE19833346012 DE3346012A1 (en) | 1982-12-23 | 1983-12-20 | Method and device for stopping a DC intermediate-circuit converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57224910A JPS59117471A (en) | 1982-12-23 | 1982-12-23 | Operation control system for current type inverter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59117471A JPS59117471A (en) | 1984-07-06 |
JPH0226468B2 true JPH0226468B2 (en) | 1990-06-11 |
Family
ID=16821067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57224910A Granted JPS59117471A (en) | 1982-12-23 | 1982-12-23 | Operation control system for current type inverter |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS59117471A (en) |
DE (1) | DE3346012A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2516196B2 (en) * | 1985-06-05 | 1996-07-10 | 株式会社日立製作所 | Driving method of current source inverter device |
AT390157B (en) * | 1988-02-23 | 1990-03-26 | Elin Union Ag | Circuit arrangement for forming trigger pulses for a six- pulse three-phase bridge |
DE102008013431A1 (en) | 2008-03-10 | 2009-05-07 | Siemens Aktiengesellschaft | Machine safety-oriented stopping procedure, involves releasing turn-off impulse in case of endangerment to persons, and stopping machine within maximum deceleration time during operation of machine |
-
1982
- 1982-12-23 JP JP57224910A patent/JPS59117471A/en active Granted
-
1983
- 1983-12-20 DE DE19833346012 patent/DE3346012A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
JPS59117471A (en) | 1984-07-06 |
DE3346012A1 (en) | 1984-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3963930A (en) | System for controlling operation of the rotating anode of an x-ray tube | |
JPH0226468B2 (en) | ||
JPH06189572A (en) | Starting device for induction motor | |
JPH044836B2 (en) | ||
JP2578200B2 (en) | Voltage control device of power generator | |
CN112292811A (en) | Thyristor starter | |
JPS6227034Y2 (en) | ||
SU708484A1 (en) | Method of starting frequency converter | |
JPH1042590A (en) | Voltage-type inverter | |
JPS5914392A (en) | Control system for inverter | |
SU391692A1 (en) | UNIVERSAL | |
JPS6162388A (en) | Controlling method of synchronous motor | |
JPS63198592A (en) | Control of commutatorless motor | |
JPS6074986A (en) | Controlling method of voltage type inverter device | |
JPS5928141B2 (en) | DC large current generator | |
RU2513035C1 (en) | Method for control of asynchronous motor | |
JPH0324158B2 (en) | ||
JPH0471392A (en) | Inverter and its restarting method | |
JPS61280775A (en) | Current type inverter device | |
JPS6216100A (en) | Brushless exciter for synchronous generator | |
JPH0586152B2 (en) | ||
JP2002136167A (en) | Scherbius system speed controller of wound-rotor induction motor | |
JPS58151882A (en) | Drive system for flywheel device directly coupled with generator | |
JPH08251923A (en) | Multiplex converter and starting method therefor | |
JPS5953793B2 (en) | AC motor speed control device |