JPH02264415A - Solid electrolytic capacitor - Google Patents
Solid electrolytic capacitorInfo
- Publication number
- JPH02264415A JPH02264415A JP1086240A JP8624089A JPH02264415A JP H02264415 A JPH02264415 A JP H02264415A JP 1086240 A JP1086240 A JP 1086240A JP 8624089 A JP8624089 A JP 8624089A JP H02264415 A JPH02264415 A JP H02264415A
- Authority
- JP
- Japan
- Prior art keywords
- palladium
- cathode
- powder
- cathode layer
- weight ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 30
- 239000007787 solid Substances 0.000 title claims abstract description 20
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 91
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 36
- 239000000843 powder Substances 0.000 claims abstract description 18
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000004593 Epoxy Substances 0.000 claims abstract description 6
- -1 polyethylene Polymers 0.000 claims abstract description 5
- 239000004698 Polyethylene Substances 0.000 claims abstract description 4
- 229920000573 polyethylene Polymers 0.000 claims abstract description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 4
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 4
- 239000000853 adhesive Substances 0.000 claims description 27
- 230000001070 adhesive effect Effects 0.000 claims description 27
- 239000011347 resin Substances 0.000 claims description 21
- 229920005989 resin Polymers 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 15
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 229920001187 thermosetting polymer Polymers 0.000 claims description 8
- 239000004642 Polyimide Substances 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 6
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 229920005992 thermoplastic resin Polymers 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 claims 2
- 239000011248 coating agent Substances 0.000 abstract description 12
- 238000000576 coating method Methods 0.000 abstract description 12
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 abstract description 6
- 239000004020 conductor Substances 0.000 abstract description 5
- 239000000113 methacrylic resin Substances 0.000 abstract description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 abstract description 5
- 239000002904 solvent Substances 0.000 abstract description 4
- 239000003822 epoxy resin Substances 0.000 abstract description 3
- 229920000647 polyepoxide Polymers 0.000 abstract description 3
- 229930185605 Bisphenol Natural products 0.000 abstract description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 abstract 1
- 239000007767 bonding agent Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 239000004848 polyfunctional curative Substances 0.000 abstract 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 21
- 229910052715 tantalum Inorganic materials 0.000 description 19
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 15
- 229920000620 organic polymer Polymers 0.000 description 14
- 239000003973 paint Substances 0.000 description 14
- 229910052709 silver Inorganic materials 0.000 description 13
- 239000004332 silver Substances 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 238000001035 drying Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000007784 solid electrolyte Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はタンタル、アルミ等の固体電解コンデンサに関
するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to solid electrolytic capacitors made of tantalum, aluminum, etc.
従来の技術
従来、この種の固体電解コンデンサ、特にチップ状タン
タル固体電解コンデンサにおいては、第4図に示すよう
な構造であった。第4図に示す様にタンタル陽極導出線
1を具備したタンタル多孔質電極体2の陽極導出線根本
部に絶縁板を取り付けた後、タンタル多孔質電極体2に
陽極酸化によりタンタル誘電体酸化皮膜3を形成し、更
に二酸化マンガンなどの固体電解質層4.カーボン層5
、銀、銅、ニッケル、カーボンなどの粉末と有機高分子
と有機溶剤等からなる塗料を塗布、乾燥してなる陰極層
6を順次積層させてコンデンサ素子とし、このコンデン
サ素子のタンタル陽極導出線lと陽極端子7を溶接によ
り接続、続いて陰極層6と鍮極端子8を半田又は銀、銅
、ニッケル。2. Description of the Related Art Conventionally, solid electrolytic capacitors of this type, particularly chip-shaped tantalum solid electrolytic capacitors, have had a structure as shown in FIG. As shown in FIG. 4, after attaching an insulating plate to the base of the anode lead wire of the tantalum porous electrode body 2 equipped with the tantalum anode lead wire 1, a tantalum dielectric oxide film is applied to the tantalum porous electrode body 2 by anodization. 3, and further a solid electrolyte layer 4 such as manganese dioxide. carbon layer 5
A capacitor element is formed by sequentially laminating cathode layers 6 made by coating and drying a paint consisting of powders of silver, copper, nickel, carbon, etc., organic polymers, organic solvents, etc., and connecting the tantalum anode lead wire l of this capacitor element and the anode terminal 7 are connected by welding, and then the cathode layer 6 and the brass electrode terminal 8 are connected with solder or silver, copper, or nickel.
カーボンなどの粉末と有機高分子と有機溶剤等からなる
導電性接着剤9を塗布、乾燥して接続した後、陽極端子
7と陰極端子8が互いに反対方向に引出されるよう外装
樹脂10を施し、この両端子をコンデンサ本体の下方向
に向かって端面及び底面に沿って内側に折り曲げ加工し
チップ状タンタル固体電解コンデンサとしていた。After applying a conductive adhesive 9 made of powder such as carbon, an organic polymer, an organic solvent, etc., drying and connecting, an exterior resin 10 is applied so that the anode terminal 7 and the cathode terminal 8 are pulled out in opposite directions. Both terminals were bent inward toward the bottom of the capacitor body along the end and bottom surfaces to form a chip-shaped tantalum solid electrolytic capacitor.
発明が解決しようとする課題 しかしながら、上記の従来の構成で、陰極層。Problems that the invention aims to solve However, in the conventional configuration described above, the cathode layer.
導電性接着剤が銀粉末と有機高分子とからなる場合、高
温高湿中で銀のマイグレーションが起こり電気短絡故障
となる問題点を有していた。When the conductive adhesive is composed of silver powder and an organic polymer, there is a problem in that silver migrates under high temperature and high humidity, resulting in electrical short circuit failure.
次に銅粉末と有機高分子又はニッケル粉末と有機高分子
とからなる場合、高温高湿中で銀のようなマイグレーシ
ョンは起さないが、金属粉末が酸化されてjanδ値が
大きくなる問題点を有していた。Next, when it is made of copper powder and an organic polymer or nickel powder and an organic polymer, it does not undergo migration like silver does in high temperature and high humidity, but it does have the problem that the metal powder is oxidized and the janδ value becomes large. had.
又、カーボン粉末と有機高分子とからなる場合、非常に
安価で且つ高温高湿中で銀のようなマイグレーションは
起さないが、上記の金属粉末と比較して固有抵抗値が高
いため初期janδ値が非常に大きくなる問題点を有し
ていた。In addition, when it is made of carbon powder and organic polymer, it is very cheap and does not undergo migration like silver in high temperature and high humidity, but it has a high specific resistance value compared to the above metal powder, so the initial janδ The problem was that the value was very large.
本発明は上記従来の問題点を解決するもので、初期ja
nδ値が小さく、高温高湿中でtanδ値変化が小さく
、且つ電気短絡故障の少ない固体電解コンデンサを提供
することを目的とする。The present invention solves the above-mentioned conventional problems.
It is an object of the present invention to provide a solid electrolytic capacitor having a small nδ value, a small change in tanδ value under high temperature and high humidity, and less electrical short circuit failure.
課題を解決するための手段
この目的を達成するために本発明の固体電解コンデンサ
は、陰極層を粒径1〜30μmのパラジウムフレーク状
粉末と、アクリル系、ポリエチレン系、ビニル系、セル
ロース系熱可塑性樹脂又は、エポキシ系、フェノール系
、ポリイミド系熱硬化性樹脂のうち少なくとも1種類の
重量比が9.5〜6.0 : 0.”5〜4.0となる
導電体にするか、又は接着剤を粒径1〜30μmのパラ
ジウムフレーク状粉末と、エポキシ系、フェノール系。Means for Solving the Problems To achieve this object, the solid electrolytic capacitor of the present invention has a cathode layer made of palladium flake powder with a particle size of 1 to 30 μm and an acrylic, polyethylene, vinyl, or cellulose thermoplastic. The weight ratio of the resin or at least one of the epoxy, phenol, and polyimide thermosetting resins is 9.5 to 6.0:0. ``A conductor with a diameter of 5 to 4.0, or an adhesive consisting of palladium flake powder with a particle size of 1 to 30 μm, and an epoxy or phenol type.
ポリイミド系熱硬化性樹脂のうち少なくとも1種類の重
量比が9.5〜6.0 : 0.5〜4.0となる導電
体としている。The conductor has a weight ratio of at least one type of polyimide thermosetting resin of 9.5 to 6.0:0.5 to 4.0.
作用
この構成によってパラジウム粉末は金属中比較的電気伝
導度が小さ(、高温高湿中で化学的に安定でイオン化し
に(い性質を有しており、導電性塗料化においても有機
高分子の種類を選定すること、作業性を考慮してパラジ
ウム粉末粒径を選定すること、形状を接触抵抗の小さい
フレーク状にすること、塗膜強度を考慮してパラジウム
粉末と有機高分子の重量比でパラジウム粉末を多(する
ことにより塗膜の固有抵抗を小さくすることができ、初
期tanδ値が小さく、高温高湿中でtanδ値変化の
小さい、電気短絡故障の少ない固体電解コンデンサを得
ることができる。Effect Due to this structure, palladium powder has a property of having relatively low electrical conductivity among metals (and is chemically stable and resistant to ionization at high temperatures and high humidity). The particle size of the palladium powder should be selected by considering workability, the shape should be made into flakes with low contact resistance, and the weight ratio of palladium powder and organic polymer should be determined by considering the strength of the coating film. By adding a large amount of palladium powder, it is possible to reduce the specific resistance of the coating film, and it is possible to obtain a solid electrolytic capacitor with a small initial tan δ value, a small change in tan δ value under high temperature and high humidity, and fewer electrical short circuit failures. .
実施例
以下、本発明の実施例について、図面を参照しながら説
明する。第1図は本発明の第1の実施例における固体電
解コンデンサでパラジウム粉末と有機高分子とからなる
チップ状タンタル固体電解コンデンサの側断面図を示す
ものである。1はタンタル陽極導出線、2はタンタル多
孔質電極体、3はタンタル誘電体酸化皮膜、4は固体電
解質層、5はカーボン層、7は陽極端子、8は陰極端子
、10は外装樹脂、11はパラジウム粉末と有機高分子
とからなる陰極層(以下、パラジウム陰極層という)、
12はパラジウム粉末と有機高分子とからなる接着剤(
以下、パラジウム接着剤という)である。EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings. FIG. 1 is a side sectional view of a chip-shaped tantalum solid electrolytic capacitor made of palladium powder and an organic polymer, which is a solid electrolytic capacitor according to a first embodiment of the present invention. 1 is a tantalum anode lead wire, 2 is a tantalum porous electrode body, 3 is a tantalum dielectric oxide film, 4 is a solid electrolyte layer, 5 is a carbon layer, 7 is an anode terminal, 8 is a cathode terminal, 10 is an exterior resin, 11 is a cathode layer made of palladium powder and an organic polymer (hereinafter referred to as palladium cathode layer),
12 is an adhesive (
(hereinafter referred to as palladium adhesive).
まず、粒径が5μmのパラジウムフレーク状粉末:高純
度のメチルメタクリル樹脂:キシレン溶剤=8.5.1
.5 : 3.0の重量比で調合したものを三本ロール
で混練しパラジウム陰極用導電性塗料を作成し、次に粒
径5μmのパラジウムフレーク状粉末:高純度ビスフェ
ノール型エポキシ樹脂:フェノール硬化剤:イミダゾー
ル:ブチルセルソルブ溶剤=85’: 9.1 F 5
.9 : 0.1 : 15の重量比で混練しパラジウ
ム接着剤用導電性塗料を作成しておく。First, palladium flake powder with a particle size of 5 μm: high purity methyl methacrylic resin: xylene solvent = 8.5.1
.. A conductive paint for palladium cathode was prepared by kneading the mixture at a weight ratio of 5:3.0 using three rolls, and then palladium flake powder with a particle size of 5 μm: high-purity bisphenol type epoxy resin: phenol curing agent. : Imidazole: Butyl cellosolve solvent = 85': 9.1 F 5
.. A conductive paint for palladium adhesive was prepared by kneading at a weight ratio of 9:0.1:15.
そして、タンタル金属粉末100n++rに断面が円形
の線径0.3mmのタンタル線を埋設し陽極導出線とし
一般的な方法で焼結し、35V6.8μF用のタンタル
多孔質電極体を得、絶縁板を陽極導出線根本部に取り付
けた後、タンタル誘電体酸化皮膜、固体電解質である二
酸化マンガン、カーボン層を順次形成する。これに先は
ど作成したパラジウム陰極層用導電性塗料をディッピン
グ法により塗布、30分常温放置した後120℃、IH
r乾燥し、パラジウム陰極層を形成しコンデンサ素子と
する。次に陰極端子に作成したパラジウム接着剤用導電
性塗料をデイスペンサーで塗布し、この上にパラジウム
陰極層が、且つタンタル陽極導出線が陽極端子方向にな
るようコンデンサ素子を配置し、タンタル陽極導出線と
陽極端子を溶接により接続した後、コンデンサ素子のパ
ラジウム陰極層が陰極端子と確実に接続されるよう少し
加圧して180℃、IHrの条件で乾燥し接続する。Then, a tantalum wire with a circular cross section and a wire diameter of 0.3 mm was embedded in tantalum metal powder 100n++r and sintered as an anode lead wire by a general method to obtain a tantalum porous electrode body for 35V6.8μF, and an insulating plate After attaching it to the base of the anode lead wire, a tantalum dielectric oxide film, a solid electrolyte of manganese dioxide, and a carbon layer are sequentially formed. On this, the conductive paint for the palladium cathode layer prepared earlier was applied by the dipping method, and after being left at room temperature for 30 minutes, it was heated to 120℃ and IH.
Dry and form a palladium cathode layer to form a capacitor element. Next, the conductive paint for palladium adhesive prepared on the cathode terminal is applied with a dispenser, and the capacitor element is placed on top of this so that the palladium cathode layer and the tantalum anode lead wire are in the direction of the anode terminal, and the tantalum anode lead wire is placed on top of the palladium cathode layer. After the wire and the anode terminal are connected by welding, a little pressure is applied to ensure that the palladium cathode layer of the capacitor element is connected to the cathode terminal, and the connection is made by drying at 180° C. and IHr.
その後、互いに反対方向の両端に両端子が引出されるよ
うトランスファーモールド金型にセットして外装樹脂を
施し、この端子がコンデンサ本体の下方向に向かって端
面及び底面に沿って内側に折り曲げ加工しチップ状固体
電解コンデンサを得る。After that, the terminals are set in a transfer mold mold so that they are pulled out from both ends in opposite directions, and an exterior resin is applied.The terminals are bent inward along the end and bottom surfaces toward the bottom of the capacitor body. A chip-shaped solid electrolytic capacitor is obtained.
先はど作成した導電性塗料の抵抗値は固体電解コンデン
サのjanδ値の代用値とできるため、導電性塗料化に
おけるパラジウム粉末の形状、パラジウム粉末と有機高
分子との重量比、パラジウム粉末粒径の決定は抵抗値で
評価した。。Since the resistance value of the conductive paint previously prepared can be used as a substitute value for the janδ value of the solid electrolytic capacitor, the shape of the palladium powder, the weight ratio of palladium powder to organic polymer, and the palladium powder particle size in making the conductive paint are The determination was evaluated based on the resistance value. .
粉末粒径5μmで且つ粉末形状が球状、フレーク状の各
パラジウム粉末とメチルメタクリル樹脂との重量比を変
化させたものにキシレンを加えて混練、塗料化し、これ
をガラス基板上に面積1cd 、厚み200μmで塗布
し、120℃、30分乾燥した後塗膜の抵抗値を測定し
た結果を第2図(パラジウム各形状の粉末と有機高分子
重量比−抵抗値特性曲線)に示す。この第2図かられか
るように、コンデンサ用陰極材料として使用できるのは
パラジウム粉末:メチルメタクリル樹脂の重量比が9.
5〜6.0 : 0.5〜4.0の範囲である。但しパ
ラジウム粉末が多くなりすぎると塗膜強度が弱くなるの
で注意が必要である。又、パラジウム粉末の形状はフレ
ーク状の方が良い。Xylene was added to various palladium powders with a powder particle size of 5 μm and powder shapes of spherical and flake shapes in varying weight ratios and methyl methacrylic resin, kneaded to form a paint, and this was applied onto a glass substrate with an area of 1 cd and a thickness of The resistance value of the coating film was measured after coating at a thickness of 200 μm and drying at 120° C. for 30 minutes, and the results are shown in FIG. 2 (weight ratio of palladium powder and organic polymer weight ratio-resistance value characteristic curve). As can be seen from FIG. 2, the weight ratio of palladium powder to methyl methacrylic resin that can be used as a cathode material for capacitors is 9.
5-6.0: Range of 0.5-4.0. However, care must be taken as too much palladium powder will weaken the strength of the coating. Moreover, it is better for the palladium powder to have a flake shape.
次に、粒径5μmで且つ形状がフレーク状のパラジウム
粉末:メチルメタクリル樹脂:キシレン=8.5 :
1.5.3.0の重量比でパラジウム粉末の粒径を変え
て塗料化し、これをガラス基板上に面積1cnf、厚み
200μmで塗布し、120℃、30分乾燥した後塗膜
の抵抗値を測定した結果を第3図(パラジウム粉末粒径
−抵抗値特性曲線)に示す。粒径はあまり大きくても抵
抗値は変らないが、塗料の沈降性を考えると1〜30μ
mが良い。以上の検討に陰極用導電塗料の樹脂を用いた
が、接着剤用導電性塗料の樹脂を用いても同様の結果が
得られた。Next, palladium powder with a particle size of 5 μm and a flake shape: methyl methacrylic resin: xylene = 8.5:
A coating was prepared by changing the particle size of palladium powder at a weight ratio of 1.5.3.0, and this was coated on a glass substrate with an area of 1 cnf and a thickness of 200 μm, and after drying at 120°C for 30 minutes, the resistance value of the coating film was determined. The measurement results are shown in FIG. 3 (palladium powder particle size-resistance value characteristic curve). Even if the particle size is too large, the resistance value will not change, but considering the sedimentation property of the paint, it should be 1 to 30μ.
m is good. Although the resin of the conductive paint for the cathode was used in the above study, similar results were obtained using the resin of the conductive paint for the adhesive.
実施例では陰極用導電性塗料の樹脂として、アクリル系
樹脂を使用したが、コンデンサ特性に悪影響を与えない
ポリエチレン系、ビニル系、セルロース系熱可塑性樹脂
又はエポキシ系、フェノール系、ポリイミド系熱硬化性
樹脂を使用しても良い。樹脂は耐熱性、吸水性、塗膜強
度、硬化性が異なるので必要に応じて選択すると良い。In the examples, acrylic resin was used as the resin for the conductive paint for the cathode, but polyethylene, vinyl, or cellulose thermoplastic resins, or epoxy, phenol, or polyimide thermosetting resins that do not adversely affect capacitor characteristics may also be used. Resin may also be used. Since resins differ in heat resistance, water absorption, coating strength, and curability, they should be selected as necessary.
但し、熱硬化性樹脂を用いる時は耐湿試験でjanδ値
が太き(なることがあるので特に注意する必要がある。However, when using a thermosetting resin, special care must be taken since the jan δ value may become large in the moisture resistance test.
名、接着剤用導電性塗料の樹脂としてはエポキシ系樹脂
を使用したが、コンデンサ特性に悪影響を与えないフェ
ノール系、ポリイミド系熱硬化性樹脂を使用しても良い
。特に接着剤用樹脂は塗膜強度、金属に対しての密着性
が優れていなくてはならない。その他の耐熱性、吸水性
、硬化性については必要に応じて選択すると良い。Although an epoxy resin was used as the resin for the conductive paint for the adhesive, a phenolic or polyimide thermosetting resin that does not adversely affect the capacitor characteristics may also be used. In particular, adhesive resins must have excellent coating strength and adhesion to metals. Other heat resistance, water absorption, and hardening properties may be selected as necessary.
実施例の陰極用、接着剤用導電塗料は最適条件のものを
使用したものである。The conductive paints for the cathode and adhesive used in the examples were those under optimal conditions.
以上のように構成された固体電解コンデンサは陰極層・
接着剤を粒径1〜30μmのパラジウムフレーク状粉末
と有機高分子の重量比が9.5〜6.0 : 0.5〜
4.0である導電体としているため、初期janδ値が
小さく、耐湿試験でjanδ値変化、漏れ電流値変化が
小さいものとなる。The solid electrolytic capacitor constructed as above has a cathode layer and
The weight ratio of the adhesive to the palladium flake powder with a particle size of 1 to 30 μm and the organic polymer is 9.5 to 6.0: 0.5 to
4.0, the initial JAN δ value is small, and the JAN δ value change and leakage current value change are small in the moisture resistance test.
以上のように本実施例によれば陰極層、導電性接着剤を
パラ、ジウム陰極層、パラジウム接着剤にかえることに
より、耐湿特性の向上を図ることができる。As described above, according to this embodiment, the moisture resistance can be improved by replacing the cathode layer and conductive adhesive with a palladium cathode layer and a palladium adhesive.
下1表に実施例の本発明品と従来品(銀陰極層・銀接着
剤)の耐湿試験(85℃、90%、1000Hr)での
janδ値、電気的短絡故障発生数をサンプルニ定格電
圧35v、定格容量6.8μF※1 tanδは周波
数f=IKHzで測定※2 短絡故障数は100ケ中発
生した数測定は定格電圧を1分間印加して測定
なお、実施例は陰極層、接着剤に同じパラジウム粉末を
含む導電体を使用したが、溶射による半田、メツキによ
るニッケルなどからなる陰極層とパラジウム接着剤との
組合せ、逆にパラジウム陰極層とカーボン、ニッケルな
どの導電性接着剤。Table 1 below shows the jan δ value and the number of electrical short circuit failures in the moisture resistance test (85°C, 90%, 1000 Hr) of the inventive product and the conventional product (silver cathode layer/silver adhesive) of the example and the rated voltage of the sample. 35V, rated capacity 6.8μF *1 Tan δ is measured at frequency f = IKHz *2 The number of short circuit failures is the number that occurred out of 100. The measurement was performed by applying the rated voltage for 1 minute. The same conductors containing palladium powder were used, but a combination of a cathode layer made of thermal sprayed solder, nickel, etc., and a palladium adhesive, and, conversely, a combination of a palladium cathode layer and a conductive adhesive such as carbon or nickel.
半田で接続する組合せでも良い。但しマイグレーション
を起す銀粉末と有機高分子とからなる銀陰極層・銀接着
剤とパラジウム陰極層・パラジウム接着剤の組合せを各
種おこなって固体電解コンデンサを作成し、耐湿試験(
85℃、90%、1000Hr)すると、銀陰極層・銀
接着剤、銀陰極層・パラジウム接着剤、パラジウム陰極
層・銀接着剤、パラジウム陰極層・パラジウム接着剤の
順で電気短絡故障が少なくなるため、できるだけマイグ
レーションを起す陰極層・接着剤とは組合せをしない方
が良い。A combination that connects with solder may also be used. However, solid electrolytic capacitors were created using various combinations of silver cathode layers and silver adhesives made of silver powder and organic polymers that cause migration, and palladium cathode layers and palladium adhesives, and moisture resistance tests (
(85℃, 90%, 1000Hr), electrical short circuit failures decrease in the following order: silver cathode layer/silver adhesive, silver cathode layer/palladium adhesive, palladium cathode layer/silver adhesive, palladium cathode layer/palladium adhesive. Therefore, it is best not to combine it with cathode layers and adhesives that cause migration as much as possible.
発明の効果
以上のように本発明はパラジウム陰極層又はパラジウム
接着剤を設けることにより、初期janδ値が小さく、
耐湿試験でjanδ値変化が小さく、電気的短絡故障が
少ない優れた固体電解コンデンサを実現できる。Effects of the Invention As described above, the present invention provides a palladium cathode layer or a palladium adhesive, so that the initial jan δ value is small.
It is possible to realize an excellent solid electrolytic capacitor that has a small change in jan δ value in a humidity test and has few electrical short circuit failures.
第1図は本発明の一実施例における固体電解コンデンサ
の側断面図、第2図はパラジウム各形状の粉末と有機高
分子重量比−抵抗値特性曲線図、第3図はパラジウム粉
末粒径−抵抗値特性曲線図、第4図は従来の固体電解コ
ンデンサの側断面図である。
1・・・・・・タンタル陽極導出線、2・・・・・・タ
ンタル多孔質電極体、3・・・・・・タンタル誘電体酸
化皮膜、4・・・・・・固体電解質層、5・・・・・・
カーボン層、7・・・・・・陽極端子、8・・・・・・
陰極端子、lO・・・・・・外装樹脂、1 ’1・・・
・・・°パラジウム陰極層、12・・・・・・パラジウ
ム接着剤。
代理人の氏名 弁理士 粟野重孝 はが1名it図
富
図
第
図
!/n)
第
図Fig. 1 is a side sectional view of a solid electrolytic capacitor according to an embodiment of the present invention, Fig. 2 is a graph showing palladium powder of various shapes and organic polymer weight ratio-resistance value characteristic curve, and Fig. 3 is a graph showing palladium powder particle size-resistance value characteristic curve. The resistance value characteristic curve diagram, FIG. 4, is a side sectional view of a conventional solid electrolytic capacitor. DESCRIPTION OF SYMBOLS 1...Tantalum anode lead wire, 2...Tantalum porous electrode body, 3...Tantalum dielectric oxide film, 4...Solid electrolyte layer, 5・・・・・・
Carbon layer, 7... Anode terminal, 8...
Cathode terminal, lO...Exterior resin, 1'1...
...°Palladium cathode layer, 12...Palladium adhesive. Name of agent: Patent attorney Shigetaka Awano /n) Figure
Claims (2)
皮膜を形成させ、更にこの上に電解質層,カーボン層及
び粒径1〜30μmのパラジウムフレーク状粉末とアク
リル系,ポリエチレン系,ビニル系,セルロース系熱可
塑性樹脂又は、エポキシ系,フェノール系,ポリイミド
系熱硬化性樹脂のうち少なくとも1種類の重量比が9.
5〜6.0:0.5〜4.0からなる陰極層を順次形成
し、陽極導出線を陽極端子に、前記陰極層を陰極端子に
接続すると共に樹脂外装を施してなる固体電解コンデン
サ。(1) A dielectric oxide film is formed on the surface of the electrode body equipped with the anode lead wire, and then an electrolyte layer, a carbon layer, palladium flake powder with a particle size of 1 to 30 μm, and acrylic, polyethylene, or vinyl The weight ratio of at least one type of thermosetting resin, cellulose-based thermoplastic resin, or epoxy-based, phenol-based, or polyimide-based thermosetting resin is 9.
5 to 6.0: A solid electrolytic capacitor in which a cathode layer of 0.5 to 4.0 is sequentially formed, an anode lead wire is connected to an anode terminal, the cathode layer is connected to a cathode terminal, and a resin exterior is applied.
皮膜を形成させ、更にこの上に電解質層,カーボン層,
陰極層を順次形成し、陽極導出線を陽極端子に、粒径1
〜30μmのパラジウムフレーク状粉末とエポキシ系,
フェノール系,ポリイミド系熱硬化性樹脂のうち少なく
とも1種類の重量比が9.5〜6.0:0.5〜4.0
からなる接着剤で、前記陰極層と陰極端子とを接続する
と共に樹脂外装を施してなる固体電解コンデンサ。(2) A dielectric oxide film is formed on the surface of the electrode body equipped with the anode lead wire, and an electrolyte layer, a carbon layer,
The cathode layer is formed in sequence, the anode lead wire is used as the anode terminal, and the particle size is 1.
~30μm palladium flake powder and epoxy system,
The weight ratio of at least one of phenolic and polyimide thermosetting resins is 9.5 to 6.0:0.5 to 4.0
A solid electrolytic capacitor, which connects the cathode layer and the cathode terminal with an adhesive made of the above-mentioned adhesive and is coated with a resin.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1086240A JPH02264415A (en) | 1989-04-05 | 1989-04-05 | Solid electrolytic capacitor |
DE68914955T DE68914955T2 (en) | 1988-12-07 | 1989-12-06 | Solid electrolytic capacitor. |
US07/446,908 US5005107A (en) | 1988-12-07 | 1989-12-06 | Solid electrolytic capacitor |
EP89122472A EP0372519B1 (en) | 1988-12-07 | 1989-12-06 | A solid electrolytic capacitor |
KR1019890018122A KR920010629B1 (en) | 1988-12-07 | 1989-12-07 | Solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1086240A JPH02264415A (en) | 1989-04-05 | 1989-04-05 | Solid electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02264415A true JPH02264415A (en) | 1990-10-29 |
Family
ID=13881280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1086240A Pending JPH02264415A (en) | 1988-12-07 | 1989-04-05 | Solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02264415A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004044936A1 (en) * | 2002-11-13 | 2004-05-27 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitor and process for producing the same |
-
1989
- 1989-04-05 JP JP1086240A patent/JPH02264415A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004044936A1 (en) * | 2002-11-13 | 2004-05-27 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitor and process for producing the same |
US7123468B2 (en) | 2002-11-13 | 2006-10-17 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitor and process for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920010629B1 (en) | Solid electrolytic capacitor | |
US7348194B2 (en) | Electrode compositions containing carbon nanotubes for solid electrolyte capacitors | |
US8896985B2 (en) | Solid electrolytic capacitors with improved reliability | |
CN101622324B (en) | Low temperature curable conductive adhesive and capacitors formed thereby | |
US20100296227A1 (en) | Solid electrolytic capacitors with improved reliabiilty | |
US20090195968A1 (en) | Solid electrolytic capacitor | |
JP5333674B2 (en) | Solid electrolytic capacitor | |
JP4019902B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2008300637A (en) | Conductive paste for solid electrolytic capacitor electrode, and manufacturing method of electrode of solid electrolytic capacitor using the conductive paste | |
US20090089990A1 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH02264415A (en) | Solid electrolytic capacitor | |
JPH02265233A (en) | Solid-state electrolytic capacitor | |
JPH02264416A (en) | Solid electrolytic capacitor | |
JP2638162B2 (en) | Solid electrolytic capacitors | |
JPH02265234A (en) | Solid-state electrolytic capacitor | |
US7211740B1 (en) | Valve metal electromagnetic interference filter | |
WO2024070142A1 (en) | Solid electrolytic capacitor element and solid electrolytic capacitor | |
JPH02264417A (en) | Solid electrolytic capacitor | |
JP3416061B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
WO2023119843A1 (en) | Solid electrolytic capacitor element and solid electrolytic capacitor | |
JP2001338847A (en) | Solid electrolytic capacitor | |
US12087514B2 (en) | Electrolytic capacitor and paste for forming conductive layer of electrolytic capacitor | |
WO2024057931A1 (en) | Additive for organic conductors | |
JPH04148522A (en) | Solid tantalum capacitor | |
JPH04177817A (en) | Tantalum solid electrolytic capacitor |