JPH02264246A - Photochromic material using clay as carrier matrix - Google Patents

Photochromic material using clay as carrier matrix

Info

Publication number
JPH02264246A
JPH02264246A JP8531889A JP8531889A JPH02264246A JP H02264246 A JPH02264246 A JP H02264246A JP 8531889 A JP8531889 A JP 8531889A JP 8531889 A JP8531889 A JP 8531889A JP H02264246 A JPH02264246 A JP H02264246A
Authority
JP
Japan
Prior art keywords
clay
film
photochromic
composite
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8531889A
Other languages
Japanese (ja)
Inventor
Katsuhiko Takagi
克彦 高木
Toshio Kurematsu
槫松 俊夫
Yasuhiko Sawaki
沢木 泰彦
Kenji Furukawa
古川 顕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP8531889A priority Critical patent/JPH02264246A/en
Publication of JPH02264246A publication Critical patent/JPH02264246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To easily and inexpensively fix a photochromic compd. and to enhance practicability by using a composite material composed of an ionic org. material having a specific structure and clay ore. CONSTITUTION:The composite material consisting of the ionic org. material having the structure expressed by formula I and the clay ore is used. In the formula I, R denotes a dialkyl ammonium salt or nitrogenous arom. quaternary salt; X denotes CnH2n+1(n=0 to 10), OCmH2m+110), NO2 groups. The clay ore is the smectite mineral generic to silicate ores having a three-layer structure. A film and surface coated film exhibiting a photochromic effect are easily obtd. by immobilizing a spiropyrane compd. to the clay ore as the composite therewith in such a manner. The recording or erasing of images is possible by irradiating this composite film, etc., with a laser beam, visible rays, etc. The applications of the photochromic compd. are thus widened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、表示あるいは記録材料として有用なホトクロ
ミック現象を機能化したもので、粘土に複合された上記
スピロピランの利用にある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a functionalized photochromic phenomenon useful as a display or recording material, and consists in the use of the above-mentioned spiropyran combined with clay.

[従来の技術とその問題点] 光あるいは熱的作用により可逆的発光−消色過程である
ホトクロミック現象を示す物質は有機、・無機系共に膨
大な数のものが知られているが、現在実用化されている
のはハロゲン化物ガラスのみである。有機系ホトクロミ
ック材料においても実用化の研究が盛んになされており
、その代表的なものはスピロピランである。しかしスピ
ロピランの結晶はホトクロミック現象を示さず、大多数
のものは溶液中や高分子マトリックス中で光または熱の
作用により変色する。実用化のためには他の機能材料と
同様に固相で使用されると考えられるのでスピロピラン
化合物の固相系担持マトリックスへの固定化が必要であ
る。固定化の方法とじて■高分子媒質中への分散 ■固体支持体表面に塗布 ■ラングミュアープロジェット膜(以下LBIIiと称
す)の形成 などが知られている。
[Prior art and its problems] A huge number of organic and inorganic substances are known to exhibit the photochromic phenomenon, which is a reversible light-emitting and decolorizing process due to the action of light or heat. Only halide glass has been put into practical use. Research on the practical application of organic photochromic materials is also being actively conducted, and spiropyran is a representative example. However, spiropyran crystals do not exhibit photochromic phenomena, and the majority change color under the action of light or heat in solution or in a polymer matrix. For practical use, spiropyran compounds must be immobilized on a solid-phase support matrix, as they are likely to be used in a solid phase like other functional materials. Known methods for immobilization include 1) dispersion in a polymeric medium, 2) coating on the surface of a solid support, and 2) formation of a Langmuir-Prodgett film (hereinafter referred to as LBIIi).

高分子媒質中ヘスピロピラン化合物を分散させる方法と
しては、通常高分子材料とスピロピラン化合物の両方が
溶解する溶媒に両者を溶解した後溶媒を除去するフィル
ムキャスト法が用いられる。この方法の欠点は高分子お
よびスピロピラン化合物の両方の良溶媒を捜さなけりば
ならず、溶媒が限定される。また溶媒蒸発時の両者の溶
解度の差によるムラが生じやすい。しかも用いる高分子
は可視領域において透明でなければならない等制約条件
が多い。また高分子に直接スピロピランをペンダントと
して化学的に修飾することも行われているが、成形加工
時に長時間高温に保持されるため安定性に問題があり、
実用化はされていない。
As a method for dispersing a hespiropyran compound in a polymeric medium, a film casting method is usually used in which the polymeric material and the spiropyran compound are both dissolved in a solvent and then the solvent is removed. The disadvantage of this method is that a good solvent for both the polymer and the spiropyran compound must be sought, and the solvents are limited. Furthermore, unevenness is likely to occur due to the difference in solubility between the two during evaporation of the solvent. Moreover, there are many restrictive conditions, such as the polymer used must be transparent in the visible region. It has also been attempted to chemically modify polymers directly with spiropyran as pendants, but this has problems with stability as it is held at high temperatures for long periods of time during the molding process.
It has not been put into practical use.

固体支持体表面に塗布する方法は単にスピロピランを高
分子等に分散させ、その複合物を固体表面に塗布するこ
とにより上記とまったく同し問題を解決しなければなら
ない。
The method for coating the surface of a solid support involves simply dispersing spiropyran in a polymer or the like and coating the composite on the solid surface, thereby solving exactly the same problem as above.

LB膜を形成する方法は現在盛んに研究されているが、
スピロピラン単体ではLB膜を形成出来ないため、LB
膜を形成しやすい化合物に溶解してLB膜を作成しなけ
ればならない、このようにスピロピラン化合物をいかに
して固定するかは実用化のための非常に重要な技術上の
問題である。
Methods for forming LB films are currently being actively researched;
Since spiropyran alone cannot form an LB film, LB
An LB film must be created by dissolving it in a compound that easily forms a film. How to fix spiropyran compounds in this way is a very important technical problem for practical use.

[発明が解決しようとする課題] 本発明の目的は簡単しかも安価にホトクロミンク化合物
を固定し、実用性の高いホトクロミック材料を提供する
ことにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a highly practical photochromic material by fixing a photochromic compound simply and inexpensively.

本発明はスピロピラン骨格をもつホトクロミック化合物
の表示あるいは記録材料への応用に関するものであり、
以下に示すスピロピラン骨格をもつホトクロミック化合
物を粘土層間に取り込み、その光化学的消色−熱的発色
の繰り返し特性を粘土との複合化により向上させた点に
特徴をもつ。
The present invention relates to the application of photochromic compounds having a spiropyran skeleton to display or recording materials.
A photochromic compound having a spiropyran skeleton as shown below is incorporated between the clay layers, and its photochemical decolorization-thermal coloration repeating characteristics are improved by compounding with the clay.

[問題点を解決するための手段コ 本発明は、下記(1)の構成を有する。[Measures to solve the problem] The present invention has the following configuration (1).

(11次の式(1)の構造をもつイオン性有機物と粘土
鉱物との複合材料 (式中のRは、ジアルキルアンモニウム塩または含窒素
芳香族四級塩である。
(11 Composite material of an ionic organic substance and a clay mineral having the structure of the following formula (1) (R in the formula is a dialkyl ammonium salt or a nitrogen-containing aromatic quaternary salt.

Xは、CnH2n+I  (n= ONl0)、OCm
82m++ (ffi =1〜In)、 NO,基を表
す。) ここで、粘土鉱物は、三層構造をもつ珪酸塩鉱物を総称
するスメクタイト群鉱物である。
X is CnH2n+I (n=ONl0), OCm
82m++ (ffi = 1~In), represents a NO group. ) Here, the clay mineral is a smectite group mineral, which is a general term for silicate minerals with a three-layer structure.

本発明の構成と効果につき以下に詳述する。The configuration and effects of the present invention will be explained in detail below.

粘土は珪素化合物の4面体層とアルミニウム化合物の8
面体層から構成される層状構造をとっている。アルミニ
ウムイオンの一部がマグネシウムまたは鉄イオンと置換
しているモンモリロナイトは8面体層の正電荷が不足し
、結晶全体では負に帯電している0層面の電荷密度が比
較的太ぎいため各層間は水を吸着して開放的であり、イ
オン性の有機化合物が層間に潜り込み、有機化合物と複
合体を形成しやすい、該複合体の形成条件は、限定され
ないが、例えば次のとおりである。まず、本発明に係る
上述式(1)の化合物を濃度0.001〜I mg/m
u水、好ましくはQ、01〜0.5a+g/mjlの水
溶液にする。ついで、該水溶液を粘土の水分散液(0,
1〜IOB/mfl水)と混合する。
The clay has a tetrahedral layer of silicon compound and 8 layers of aluminum compound.
It has a layered structure consisting of facepiece layers. Montmorillonite, in which some of the aluminum ions are replaced with magnesium or iron ions, lacks positive charges in the octahedral layers, and the charge density on the negatively charged 0-layer surface of the crystal as a whole is relatively thick, so there is a gap between each layer. Conditions for forming a complex that adsorbs water and is open, allowing the ionic organic compound to sneak between the layers to easily form a complex with the organic compound are not limited, but are, for example, as follows. First, the compound of the above formula (1) according to the present invention is added at a concentration of 0.001 to I mg/m
Make an aqueous solution of u water, preferably Q, 01-0.5a+g/mjl. Next, the aqueous solution was dissolved in an aqueous dispersion of clay (0,
1 to IOB/mfl water).

混合条件は限定されないが、0〜50℃好ましくは室温
下に機械的攪拌又は超音波処理により、1分ないし3時
間攪拌する。この処理により式(■)のスピロピラン化
合物は、01〜90%通常は1〜50%吸着される。
Although the mixing conditions are not limited, the mixture is stirred for 1 minute to 3 hours by mechanical stirring or ultrasonication at 0 to 50°C, preferably at room temperature. By this treatment, the spiropyran compound of formula (■) is adsorbed by 0.1 to 90%, usually from 1 to 50%.

かくして得られた吸着混合物は、脱水濾過転成(好まし
くは減圧下、室温)することにより本発明の複合材料が
得られる。そして上述の脱水濾過を適当なフィルター(
例えばメンブレンフィルター)上で行った後、そのま\
の状態で減圧室温乾燥させることにより、フィルム状の
該複合物が得られる。
The thus obtained adsorption mixture is subjected to dehydration filtration conversion (preferably under reduced pressure at room temperature) to obtain the composite material of the present invention. Then, the above-mentioned dehydration filtration is carried out using an appropriate filter (
For example, after applying it on a membrane filter),
By drying under reduced pressure at room temperature, the composite in the form of a film is obtained.

式(1)のRがイオン性であるので式(1)で示される
化合物が粘土層間に侵入して無機陽イオンと置換して粘
土層内に固定化できる。この複合体の色は淡黄色である
が、加熱するとスピロピラン化合物は開環して式(I+
 )に示すメロシアニン化合物になり発色する。
Since R in formula (1) is ionic, the compound represented by formula (1) can enter between the clay layers, replace inorganic cations, and be immobilized within the clay layers. The color of this complex is pale yellow, but when heated, the spiropyran compound opens its ring and has the formula (I+
) and develops color as a merocyanine compound.

この化合物は可視光を照射することにより閉環して化合
物(I)となり消色する。上述の複合体は容易にフィル
ムにすることが可能であり、また粉体として透明塗料や
透明インクに分散することにより簡単に固体表面に塗布
が可能であり、非常に実用的である。
When irradiated with visible light, this compound undergoes ring closure to become Compound (I) and decolorizes. The above-mentioned composite can be easily made into a film, and can be easily applied to a solid surface by dispersing it in a transparent paint or transparent ink as a powder, making it very practical.

すなわち、ホトクロミック化合物を固定化したフィルム
や表面塗布膜をレーザ等を用いて局所的に加熱すること
により局所的に発色させることができるので、レーザ光
線を走査することにより任意の像を記録、表示すること
ができる。また上記フィルムや表面塗布膜をあらかじめ
加熱処理を施し着色させた後可視光を届所的に照射する
ことにより像を記録、表示することができる。
In other words, by locally heating a film or surface coating film on which a photochromic compound is immobilized using a laser or the like, it is possible to locally develop color, and by scanning a laser beam, an arbitrary image can be recorded. can be displayed. Furthermore, images can be recorded and displayed by subjecting the film or surface coating film to color by heat treatment and then selectively irradiating the film with visible light.

[発明の効果] スピロピラン化合物を粘土鉱物と複合体として固定化す
ることにより、ホトクロミック効果を示すフィルムや表
面塗布膜を容易に得ることかでき、この複合体フィルム
等にレーザ光線や可視光線を照射することによって像を
記録あるいは消去することができ、ホトクロミック化合
物の用途を大きく拓くものであり、その効果が大きいこ
とは自明である。
[Effects of the invention] By immobilizing spiropyran compounds as a composite with clay minerals, it is possible to easily obtain a film or surface coating film that exhibits a photochromic effect. It is obvious that images can be recorded or erased by irradiation, greatly opening up the uses of photochromic compounds, and that their effects are great.

[実施例] 以下、実施例によりさらに具体的に説明するが、本発明
はこれらの実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

i)ホトクロミック複合体の製造 その1)6−ニトロ−1°、3°、3°−トリメチルス
ピロ[2トl−ベンゾビラン−2,2°−インドリン]
−8−(ピリジニウム)メチル クロリド(Rニー0Q
c+−1水溶液(115g/20mIt)  0.2.
2.0 、8.Omjlを粘土の水分散液(420−g
7100sf ) 5 mftと可視光照射(340n
a以上)しながら超音波処理により60分間混合する。
i) Production of photochromic complex part 1) 6-nitro-1°,3°,3°-trimethylspiro[2tol-benzobilane-2,2°-indoline]
-8-(pyridinium)methyl chloride (Rnee0Q
c+-1 aqueous solution (115g/20mIt) 0.2.
2.0, 8. Omjl is an aqueous dispersion of clay (420-g
7100sf) 5 mft and visible light irradiation (340n
Mix by ultrasonication for 60 minutes while performing (a) above.

スピロピランの粘土への吸着率は、各々粘土カチオン交
換容量当り1%、10%、40%となる。スピロピラン
の吸着量の増加とともにフィルム形成能は低下するため
、最大は40%にとどめた。
The adsorption rates of spiropyran to clay are 1%, 10%, and 40%, respectively, based on clay cation exchange capacity. Since the film-forming ability decreases as the adsorption amount of spiropyran increases, the maximum value was kept at 40%.

得られた吸着混合物は遠心分離の上、上澄み液を捨て、
沈殿部分をメンブレンフィルターにて減圧濾過する。減
圧下、室温°にて乾燥させると、フィルターから淡黄色
の粘土−スピロピラン複合体がフィルムとなって剥離す
る。
The obtained adsorption mixture was centrifuged, the supernatant liquid was discarded,
Filter the precipitate using a membrane filter under reduced pressure. When dried under reduced pressure at room temperature, the pale yellow clay-spiropyran complex peels off from the filter as a film.

その2)6−ニトロ−1°、3°、3°−トリメチルス
ピロ[2+1−1−ベンゾピラン−2,2°−インドリ
ン]−8−(N−メチルピペリジニウム)メチル クロ
リド(420ag7100ml! ) 5 mj2と可
視光照射(340nm以上)しながら超音波処理により
60分間攪拌する。スピロピランの粘土への吸着率は1
0%である。得られた吸着混合物は上記と同様に後処理
してフィルムを得た。
Part 2) 6-nitro-1°,3°,3°-trimethylspiro[2+1-1-benzopyran-2,2°-indoline]-8-(N-methylpiperidinium)methyl chloride (420ag7100ml!) 5 Stir for 60 minutes by ultrasonication while irradiating visible light (340 nm or more) with mj2. The adsorption rate of spiropyran to clay is 1
It is 0%. The obtained adsorption mixture was post-treated in the same manner as above to obtain a film.

目)発色実験 l)の方法により得られたフィルムを63℃で30分間
加熱することにより下記の着色状態を示した。
2) Color development experiment The film obtained by the method in 1) was heated at 63° C. for 30 minutes and exhibited the following colored state.

■6−ニトロー1′、3゜ 3°−トリメチルスピロ[21−1−1この発色速度は
、フィルム化せず、水に分散さベンゾビラン−2,2 一インドリンコー8−(ビリジニラ ねたままの状態で測定すると次の如くなる。
■6-nitro 1', 3° 3°-trimethyl spiro [21-1-1 This color development rate is the same as that of benzobylane-2,2-indolinco 8-(viridinyl in a sticky state) without forming a film and dispersing in water. When measured in this state, it is as follows.

■6−ニトロー1 ベンゾビラン 3゛−トリメチルスピロ[2)1−1 −インドリンコ−8−(N−メチルビ 1ii)消色実験 ii)で着色したフィルム状粘土複合体をCorn−i
ng colorフィルター(0−52)  (> 3
40nm )を通した15QWハロゲンランプにて20
cmの距離から光Iq射すると、いずれの場合もフィル
ムの色は淡黄色に消色する。
■6-Nitro 1 benzobylane 3'-trimethylspiro[2) 1-1-indolinco-8-(N-methylbi1ii) The film-like clay composite colored in the decoloring experiment ii) was Corn-i
ng color filter (0-52) (> 3
40nm) with a 15QW halogen lamp.
When light Iq is irradiated from a distance of cm, the color of the film disappears to pale yellow in both cases.

消色に要する時間は次の通りである。The time required for decoloring is as follows.

Claims (1)

【特許請求の範囲】[Claims] (1)次の式( I )の構造をもつイオン性有機物と粘
土鉱物との複合材料 ▲数式、化学式、表等があります▼ (式中のRは、ジアルキルアンモニウム塩または含窒素
芳香族四級塩である。 Xは、C_nH_2_n_+_1(n=0〜10)、O
C_mH_2_m_+_1(m=1〜10)、NO_2
基を表す。) ここで、粘土鉱物は、三層構造をもつ珪酸塩鉱物を総称
するスメクタイト群鉱物である。
(1) Composite material of ionic organic matter and clay mineral having the structure of the following formula (I) ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (R in the formula is dialkylammonium salt or nitrogen-containing aromatic quaternary is a salt. X is C_nH_2_n_+_1 (n=0 to 10), O
C_mH_2_m_+_1 (m=1~10), NO_2
represents a group. ) Here, the clay mineral is a smectite group mineral, which is a general term for silicate minerals with a three-layer structure.
JP8531889A 1989-04-04 1989-04-04 Photochromic material using clay as carrier matrix Pending JPH02264246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8531889A JPH02264246A (en) 1989-04-04 1989-04-04 Photochromic material using clay as carrier matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8531889A JPH02264246A (en) 1989-04-04 1989-04-04 Photochromic material using clay as carrier matrix

Publications (1)

Publication Number Publication Date
JPH02264246A true JPH02264246A (en) 1990-10-29

Family

ID=13855267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8531889A Pending JPH02264246A (en) 1989-04-04 1989-04-04 Photochromic material using clay as carrier matrix

Country Status (1)

Country Link
JP (1) JPH02264246A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474715A (en) * 1992-09-10 1995-12-12 Tdk Corporation Photochromic material, photochromic thin film, clay thin film, and their preparation
JP2006282462A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Capsule membrane
JP2009042438A (en) * 2007-08-08 2009-02-26 Hyogo Prefecture Functional thin film and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474715A (en) * 1992-09-10 1995-12-12 Tdk Corporation Photochromic material, photochromic thin film, clay thin film, and their preparation
JP2006282462A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Capsule membrane
JP2009042438A (en) * 2007-08-08 2009-02-26 Hyogo Prefecture Functional thin film and method for producing the same

Similar Documents

Publication Publication Date Title
Schwartz et al. Solution-like behavior of photoswitchable spiropyrans embedded in metal–organic frameworks
JP4558695B2 (en) Re-imageable paper
Sasai et al. Photochromism of clay− diarylethene hybrid materials in optically transparent gelatin films
JPS5950374B2 (en) Antica photochromic honeycomb
Kang et al. Sunlight-driven photochromic hydrogel based on silver bromide with antibacterial property and non-cytotoxicity
Hua et al. Cd-Viologen photochromic coordination compound for inkless and erasable printing and amine-selective sensing
CN111253265B (en) Fluorescent compound, preparation method, application and writing medium
Sun et al. Fast photochromism in solid: Microenvironment in metal-organic frameworks promotes the isomerization of donor-acceptor Stenhouse adducts
Yamaguchi et al. Photochromism of a spiropyran in the presence of a dendritic fibrous nanosilica; simultaneous photochemical reaction and adsorption
Wang et al. The largest aluminum molecular rings: Phenol‐thermal synthesis, photoluminescence, and optical limiting
Sasai et al. Photochromism in oriented thin films prepared by the hybridization of diarylethenes in clay interlayers
Okada et al. Photochromic intercalation compounds
Liu et al. Rewritable Paper Based on Layered Metal–Organic Frameworks with NIR‐Triggered Reversible Color Switching
JPH02264246A (en) Photochromic material using clay as carrier matrix
EP3161102B1 (en) Photochromic articles containing polyoxometalate derivatives and methods of making same
He et al. Achieving enhanced solid-state photochromism and mechanochromism by introducing a rigid steric hindrance group
JPH0695290A (en) Thin clay film and its production
Song et al. Versatile inorganic oligomer-based photochromic spiropyrane gels
Ratner et al. Photochromic polysulfones. 2. Photochromic properties of polymeric polysulfone carrying pendant spiropyran and spirooxazine groups
US5474715A (en) Photochromic material, photochromic thin film, clay thin film, and their preparation
Cavalcanti et al. Designing photochromatic pigments based on clay minerals and spiropyran
Nakato et al. Decomposition of a cyanine dye in binary nanosheet colloids of photocatalytically active niobate and inert clay
Zhang et al. Photochromic porous organic crystals constructed by the self-assembly of triarylethylene derivatives
Bujdák Hybrids with functional dyes
JPH05341433A (en) Spiropyran carrier and its production