JPH02263974A - Surface hardening treatment for titanium or titanium alloy - Google Patents

Surface hardening treatment for titanium or titanium alloy

Info

Publication number
JPH02263974A
JPH02263974A JP8458589A JP8458589A JPH02263974A JP H02263974 A JPH02263974 A JP H02263974A JP 8458589 A JP8458589 A JP 8458589A JP 8458589 A JP8458589 A JP 8458589A JP H02263974 A JPH02263974 A JP H02263974A
Authority
JP
Japan
Prior art keywords
titanium
reaction accelerator
treated
carburizing treatment
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8458589A
Other languages
Japanese (ja)
Inventor
Toshimi Hashiba
羽柴 利美
Akihiro Suzuki
昭弘 鈴木
Nobuyuki Mizuno
信之 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP8458589A priority Critical patent/JPH02263974A/en
Publication of JPH02263974A publication Critical patent/JPH02263974A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a hardened layer of higher hardness and larger thickness difficult to wear and peel by providing a reaction accelerator for carburizing treatment onto the surface of a Ti-base metal and then carrying out carburizing treatment. CONSTITUTION:A reaction accelerator acting as a reaction catalyst at the time of carburizing treatment is provided onto the surface of a material to be treated consisting of Ti or Ti alloy. As this reaction accelerator, Cr, Ni, Mo, Co, copper, Zn, etc., are used, or, carbonates, hydroxides, chlorides, etc., generating the above elements at the time of carburizing treatment are used. The powder of the reaction accelerator is impasted together, e.g. with solvent, such as water, and the resulting paste is provided onto the surface of the material to be treated by means of application or immersion, or, the above reaction accelerator is provided onto the surface of the material to be treated in the form of foil or by means of plating, thermal spraying, etc. Subsequently, carburizing treatment is applied to the resulting treated body, by which the desired hardened layer can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

(産業上の利用分野) この発明は2例えば、内燃機関のコネクティングロッド
、バルブ、ロッカーアーム、カム等の軽量でかつ十分な
機械的強度を有ししかも耐摩耗性に優れていることが要
求される部品の素材として適したものとするべくチタン
またはチタン合金の表面を硬化して耐摩耗性を向上させ
るのに利用されるチタンまたはチタン合金の表面硬化処
理方法に関するものである。 (従来の技術) チタンおよびチタン合金は比重が小さζ軽量であると共
にある程度機械的特性にも優れさらには耐食性にも優れ
ているため、軽量であることが要望される自動車用エン
ジンや宇宙航空機器部品の素材として用いられあるいは
用いられようとしている。 この種のチタンおよびチタン合金において、その耐摩耗
性を向上させるために表面硬化処理を施すこともあり、
代表的な表面硬化処理法として、ガス窒化やガス酸化が
ある。 このガス窒化やガス酸化は、チタンまたはチタン合金か
らなる被処理材を窒素ガスや酸素ガス雰囲気中において
600°Cないし800℃以上の温度で数十時間加熱保
持することによりなされるものであって、被処理材の最
表面部分に形成された窒化物(T i N)や酸化物(
T i 02 )によってチタンまたはチタン合金の耐
摩耗性を改善しようとしたものである。 (発明が解決しようとする課題) しかしながら、このようなチタンまたはチタン合金から
なる被処理材の表面をガス窒化やガス酸化する方法では
、被処理材の最表面に形成された窒化物(T i N)
や酸化物(Ti02)の厚さが2〜3ルm程度とかなり
薄いものであるため、摩滅したり@離したすして消失し
やすいものとなっており、耐摩耗性が早期のうちに著し
く劣化したものになるというa題を有していた。 (発明の目的) この発明は、上述した従来の課題にかんがみてなされた
もので、チタンまたはチタン合金からなる被処理材の表
面に、より大きな表層硬さでかつより大きな硬化層深さ
を有していて摩滅や!Il#のおそれが著しく小ざい硬
化層を形成させることが可能であって、硬化層が容易に
摩滅したり2q#シたりして耐摩耗性が早期に劣化する
ことのないようにすることが可能であるチタンまたはチ
タン合金の表面硬化処理方法を提供することを目的とし
ている。
(Industrial Application Field) This invention is applicable to 2. For example, connecting rods, valves, rocker arms, cams, etc. of internal combustion engines are required to be lightweight, have sufficient mechanical strength, and have excellent wear resistance. The present invention relates to a method for surface hardening titanium or titanium alloys, which is used to harden the surface of titanium or titanium alloys to improve their wear resistance so as to make them suitable as materials for parts. (Prior art) Titanium and titanium alloys have a low specific gravity, are lightweight, have excellent mechanical properties to some extent, and are also excellent in corrosion resistance, so they are used in automobile engines and aerospace equipment that require light weight. It is used or is about to be used as a material for parts. This type of titanium and titanium alloys are sometimes subjected to surface hardening treatment to improve their wear resistance.
Typical surface hardening treatment methods include gas nitriding and gas oxidation. Gas nitriding and gas oxidation are performed by heating and holding a material made of titanium or a titanium alloy at a temperature of 600°C to 800°C or higher for several tens of hours in a nitrogen gas or oxygen gas atmosphere. , nitride (T i N) and oxide (
This is an attempt to improve the wear resistance of titanium or a titanium alloy by using T i 02 ). (Problems to be Solved by the Invention) However, in the method of gas nitriding or gas oxidation of the surface of a material to be treated made of titanium or titanium alloy, nitrides (Ti N)
Since the thickness of Ti02 and oxide (Ti02) is quite thin, about 2 to 3 m, it is easy to wear away or disappear when separated, and the wear resistance deteriorates significantly in the early stages. It had the problem of becoming a deteriorated product. (Purpose of the Invention) The present invention was made in view of the above-mentioned conventional problems, and it is possible to create a hardened layer with greater surface hardness and greater hardened layer depth on the surface of a treated material made of titanium or titanium alloy. It wears out! It is possible to form a hardened layer with a significantly small risk of Il#, and it is possible to prevent the hardened layer from being easily worn away or becoming 2q#, resulting in early deterioration of wear resistance. The present invention aims to provide a surface hardening treatment method for titanium or titanium alloys that is possible.

【発明の構成】[Structure of the invention]

(課題を解決するための手段) この発明に係るチタンまたはチタン合金の表面硬化処理
方法は、チタンまたはチタン合金からなる被処理材の表
面に、浸炭処理の際の反応触媒として作用する反応促進
剤を設けたのち、浸炭処理を施すようにしたことを特徴
としており、このようなチタンまたはチタン合金の表面
硬化処理方法の構成を上述した従来の課題を解決するた
めの手段としている。 この発明に係るチタンまたはチタン合金の表面硬化処理
方法において適用きれるチタン合金は、α安定型元素で
あるA又やSnを比較的多く含有させたα型、α安定型
元素であるA文等とβ安定型元素であるV 、 Cr 
、 M o等とを適f11含有させたα+β型、β安定
型元素であるV 、 Cr 、 M 。 等を比較的多く含有させたβ型があり1とくに限定はさ
れない。 また、このようなチタンまたはチタン合金からなる被処
理材の表面に設ける反応促進剤は、浸炭処理時に反応触
媒として作用するものであって、このような反応促進剤
としては、クロム、ニッケル、モリブデン、コバルト、
銅、亜鉛などが用いられ、また浸炭処理時に前記元素を
発生する化合物である炭酩塩、水酸化物、塩化物などが
用いられ、より具体的には炭酸クロム、炭酸ニッケル。 TRmコバルト、炭酸銅、1′!!化モリブデン等が用
いられる。 そして、このような反応促進剤をチタンまたはチタン合
金からなる被処理材の表面に設けるに際しては、反応促
進剤の粉末を水その他の溶剤等と共にペースト状とした
ものを塗布したり浸漬したりすることが可能である。ま
た、前記反応促進剤の箔体として設けたり、めっきや溶
射などによって薄層として設けたりすることも可能であ
る。 次いで、チタンまたはチタン合金からなる被処理材の表
面に十二記のごとく浸炭処理の反応促進剤を設けたのち
浸炭処理を施すに際しては、固体浸炭やガス浸炭などが
用いられる。 この浸炭処理によって、チタンまたはチタン合金からな
る被処理材の表層部分に炭素や酸素が拡散された硬化層
が形成される。この硬化層は、従来のガス窒化やガス酸
化による硬化層に比べてより大きな表層硬さを有してい
ると共により大きな硬化層深さを有していてhaのしが
たいものとなっており、摩滅しがたいと共にたとえ摩滅
を生じたとしても基地が表われるまでに時間を要するた
め耐久性の優れたものとなっており、また、剥離しがた
い点からも耐久性の優れたものになっている。 (発明の作用) この発明に係るチタンまたはチタン合金の表面硬化処理
方法では、チタンまたはチタン合金からなる被処理材の
表面に、)jJiX処理の反応促進剤を設けたのち、浸
炭処理を施すようにしているので、浸炭処理時において
荊記反応併進剤が触媒的な作用をはだすことによって、
浸炭処理後には被処理材の表層部分に炭素や酸素が十分
に拡散したより大きな硬さを有しかつまたより深い硬化
層深さを有する硬化層が形成されるようになり、摩滅や
剥離に強い硬化層が得られるという作用がもたらされる
。 (実施例) 実施例1〜6 第1表に示すα+β型チタン合金(実施例1゜2.3)
、α型チタン合金(実施例4)、β型チタン合金(実施
例5)および純チタン(実施例6)からなる被処理材の
表面に1回じ〈第1表に示す反応促進剤を含むペースト
を20〜30ILmの厚さで塗布したのち乾燥し、次い
でグラファイト粉末中に埋めて同じく第1表に示す処理
条件で固体浸炭による浸炭処理を行った。 次いで、浸炭処理後における被処理材の表層硬さを調べ
たところ、同じく第1表に示す結果であった。また、硬
さHmv450以上が得られる硬化層深さは同じく第1
表に示すとおりであった。 止負fit二上 比較のために、反応促進剤を塗布することなく第1表に
示す条件で固体浸炭を行ったα+β型チタン合金(比較
例1)、α型チタン合金(比較例4)およびβ型チタン
合金(比較例5)よりなる被処理材と、従来のガス窒化
を行ったα+β型チタン合金よりなる被処理材(比較例
2)と、浸炭処理や窒化処理を行わないα+β型チタン
合金(比較例3)および純チタン(比較例6)の未処理
材について、それぞれ表層硬さを調べると共に一部につ
いては硬化層深さを調べた。この結果を同じく第1表に
示す。 第1表に示すように、浸炭処理条件をそれぞれ同じにし
た実施例2,4.5と比較例1,4.5との比較から明
らかなごとく、被処理材の表面に反応促進剤を塗布した
のち浸炭処理を施すことによって、反応促進剤を塗布し
ない比較例の場合に比べて表層硬さをより硬いものにす
ることが可能であると共に硬化層深さもより大きなもの
にできることが認められた。 また、ガス窒化処理した従来の比較例2の被処理材に比
べて著しく短時間の処理によって表層硬さをかなり硬く
できると共に硬化層深さもより大きなものにできること
が認められた。 さらに、実施例6と比較例6との比較から明らかなごと
く純チタンに対しても著しく有効であることが認められ
た。
(Means for Solving the Problems) The surface hardening treatment method for titanium or titanium alloy according to the present invention provides a reaction accelerator that acts as a reaction catalyst during carburizing treatment on the surface of a treated material made of titanium or titanium alloy. The present invention is characterized in that a carburizing treatment is performed after the titanium or titanium alloy has been provided with a surface hardening method. The titanium alloys that can be used in the surface hardening treatment method for titanium or titanium alloys according to the present invention include α type containing a relatively large amount of α-stable elements A or Sn, and A-type titanium alloys that are α-stable elements. β-stable elements V, Cr
V , Cr , M , which are α+β type and β stable elements containing a suitable amount of f11 such as , Mo, etc. There is a β-type containing relatively large amounts of 1, etc., and there is no particular limitation. In addition, the reaction accelerator provided on the surface of the treated material made of titanium or titanium alloy acts as a reaction catalyst during carburizing treatment, and such reaction accelerators include chromium, nickel, molybdenum, etc. ,cobalt,
Copper, zinc, etc. are used, and compounds that generate the above elements during carburization, such as carbonate, hydroxide, and chloride, are used, and more specifically, chromium carbonate and nickel carbonate. TRm cobalt, copper carbonate, 1'! ! Molybdenum oxide etc. are used. When providing such a reaction accelerator on the surface of a material to be treated made of titanium or titanium alloy, a paste of reaction accelerator powder and water or other solvent is applied or immersed. Is possible. Further, it is also possible to provide the reaction accelerator as a foil, or to provide it as a thin layer by plating, thermal spraying, or the like. Next, a reaction accelerator for carburizing treatment is provided on the surface of the material to be treated made of titanium or a titanium alloy as described in Section 12, and then solid carburizing, gas carburizing, or the like is used to perform the carburizing treatment. By this carburizing treatment, a hardened layer in which carbon and oxygen are diffused is formed on the surface layer of the material to be treated made of titanium or titanium alloy. This hardened layer has greater surface hardness and greater hardened layer depth than conventional hardened layers created by gas nitriding or gas oxidation, making it difficult to maintain ha. It is difficult to wear out, and even if it does wear out, it takes time for the base to appear, making it highly durable.It also has excellent durability because it is difficult to peel off. It has become. (Function of the invention) In the method for surface hardening treatment of titanium or titanium alloy according to the present invention, a reaction accelerator for )jJiX treatment is provided on the surface of the material to be treated made of titanium or titanium alloy, and then carburizing treatment is performed. During the carburizing process, the reaction accelerator exerts a catalytic action, resulting in
After carburizing, a hardened layer with greater hardness and deeper hardened layer depth in which carbon and oxygen have sufficiently diffused is formed on the surface of the treated material, making it less susceptible to wear and peeling. This brings about the effect that a strong hardened layer can be obtained. (Example) Examples 1 to 6 α+β type titanium alloy shown in Table 1 (Example 1゜2.3)
, one time on the surface of the treated material consisting of α-type titanium alloy (Example 4), β-type titanium alloy (Example 5) and pure titanium (Example 6) (containing the reaction accelerator shown in Table 1) The paste was applied to a thickness of 20 to 30 ILm, dried, then buried in graphite powder, and carburized by solid carburization under the treatment conditions shown in Table 1. Next, the surface hardness of the treated material after the carburizing treatment was examined, and the results were also shown in Table 1. In addition, the depth of the hardened layer that provides a hardness of Hmv450 or more is also the first
It was as shown in the table. For comparison, α+β type titanium alloy (Comparative Example 1), α type titanium alloy (Comparative Example 4) and A treated material made of β-type titanium alloy (Comparative Example 5), a treated material made of α+β-type titanium alloy subjected to conventional gas nitriding (Comparative Example 2), and α+β-type titanium without carburizing or nitriding. The surface hardness of the untreated alloy (Comparative Example 3) and pure titanium (Comparative Example 6) was investigated, and the depth of the hardened layer was also investigated for some of them. The results are also shown in Table 1. As shown in Table 1, as is clear from the comparison between Examples 2 and 4.5 and Comparative Examples 1 and 4.5, where the carburizing treatment conditions were the same, a reaction accelerator was applied to the surface of the material to be treated. By subsequently applying carburizing treatment, it was found that it was possible to make the surface layer harder and to increase the depth of the hardened layer compared to the comparative example in which no reaction accelerator was applied. . Furthermore, it was found that the surface hardness could be significantly increased and the depth of the hardened layer could be increased by a significantly shorter treatment time than in the conventional treated material of Comparative Example 2, which was subjected to gas nitriding treatment. Furthermore, as is clear from the comparison between Example 6 and Comparative Example 6, it was found to be extremely effective against pure titanium.

【発明の効果】 この発明に係るチタンまたはチタン合金の表面硬化処理
方法では、チタンまたはチタン合金からなる被処理材の
表面に、浸炭処理の反応促進剤を設けたのち、浸炭処理
を施すようにしたから、浸炭処理後のチタンまたはチタ
ン合金からなる被処理材の表面に、より大きな表層硬さ
でかつより大きな硬化層深さを有していて摩滅や剥離の
おそれが著しく小さい硬化層を形成させることが可能で
あって、硬化層が容易に摩滅したり剥離したりして耐摩
耗性が早期に劣化することのないようにすることが可能
であり、例えば自動車用内燃機関の構成部品であるバル
ブやロッカーアームなどの軽量化によるエンジン特性の
向上と同時に耐摩几性の改善による耐久性の向上をはか
ることができるようになるという著しく優れた効果がも
たらされる。
[Effects of the Invention] In the method for surface hardening treatment of titanium or titanium alloy according to the present invention, a reaction accelerator for carburization treatment is provided on the surface of a material to be treated made of titanium or titanium alloy, and then carburization treatment is performed. Therefore, after carburizing, a hardened layer is formed on the surface of the treated material made of titanium or titanium alloy, which has a greater surface hardness and a greater hardened layer depth, with significantly less risk of wear and peeling. It is possible to prevent the hardened layer from easily abrading or peeling off, resulting in early deterioration of wear resistance. This has the remarkable effect of improving engine characteristics by reducing the weight of certain valves and rocker arms, and at the same time improving durability by improving wear resistance.

Claims (1)

【特許請求の範囲】[Claims] (1)チタンまたはチタン合金からなる被処理材の表面
に、浸炭処理の反応促進剤を設けたのち、浸炭処理を施
すことを特徴とするチタンまたはチタン合金の表面硬化
処理方法。(2)浸炭処理の反応促進剤が、クロム、ニ
ッケル、モリブデン、コバルト、銅、亜鉛および浸炭処
理時に前記元素を発生する化合物のうちから選ばれる特
許請求の範囲第(1)項に記載のチタンまたはチタン合
金の表面硬化処理方法。
(1) A method for surface hardening treatment of titanium or titanium alloy, which comprises providing a reaction accelerator for carburization treatment on the surface of a material to be treated made of titanium or titanium alloy, and then performing carburization treatment. (2) Titanium according to claim (1), wherein the reaction accelerator for carburizing is selected from chromium, nickel, molybdenum, cobalt, copper, zinc, and a compound that generates the element during carburizing. Or surface hardening treatment method for titanium alloy.
JP8458589A 1989-04-03 1989-04-03 Surface hardening treatment for titanium or titanium alloy Pending JPH02263974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8458589A JPH02263974A (en) 1989-04-03 1989-04-03 Surface hardening treatment for titanium or titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8458589A JPH02263974A (en) 1989-04-03 1989-04-03 Surface hardening treatment for titanium or titanium alloy

Publications (1)

Publication Number Publication Date
JPH02263974A true JPH02263974A (en) 1990-10-26

Family

ID=13834751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8458589A Pending JPH02263974A (en) 1989-04-03 1989-04-03 Surface hardening treatment for titanium or titanium alloy

Country Status (1)

Country Link
JP (1) JPH02263974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080958A (en) * 2000-09-11 2002-03-22 Kiyotaka Matsuura Method for forming carbonitride layer on surface of metallic material and titanium based metallic material provided with carbonitride layer on surface
JP2003073796A (en) * 2001-09-03 2003-03-12 Fuji Oozx Inc Surface treatment method for titanium-based material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080958A (en) * 2000-09-11 2002-03-22 Kiyotaka Matsuura Method for forming carbonitride layer on surface of metallic material and titanium based metallic material provided with carbonitride layer on surface
JP4641091B2 (en) * 2000-09-11 2011-03-02 清隆 松浦 Method of forming carbonitride layer on metal material surface and titanium-based metal material having carbonitride layer on surface
JP2003073796A (en) * 2001-09-03 2003-03-12 Fuji Oozx Inc Surface treatment method for titanium-based material

Similar Documents

Publication Publication Date Title
CA1236351A (en) Methods of forming a protective diffusion layer on nickel, cobalt and iron base alloys
CA1222719A (en) Methods of forming a protective diffusion layer on nickel, cobalt and iron base alloys
JP2007523999A (en) Method for carburizing steel components
JP6637231B2 (en) Metal surface modification method and metal product
US5981089A (en) Ferrous alloy with Fe-Al diffusion layer and method of making the same
US7138189B2 (en) Heat-resistant Ti alloy material excellent in resistance to corrosion at high temperature and to oxidation
JPH0571663B2 (en)
JPH02263974A (en) Surface hardening treatment for titanium or titanium alloy
US20100037991A1 (en) Diffusion promoters for low temperature case hardening
TW200424364A (en) Iron based part and production method for the same
EP0043742B1 (en) Method of gas-chromizing steels
DE102009023794A1 (en) Turbocharger housing with a conversion coating and method of making the conversion coating
CN109735796B (en) Carburizing method for inhibiting net carbide structure of high-chromium and high-cobalt carburizing steel and improving carburizing speed
JP3064908B2 (en) Carburized and hardened watch parts or accessories and their methods of manufacture
JP2004346353A (en) Method of forming amorphous carbon film
JP2011252228A (en) Oxidation resistant component with improved high temperature strength and related method
JP3064909B2 (en) Carburized hardware and its manufacturing method
JP2006152385A (en) Composite layer coating member having excellent environmental corrosion resistance and excellent wear resistance and production method thereof
He et al. Stress induced anisotropic diffusion during plasma-assisted nitriding of a Ni-based alloy
JP5930697B2 (en) Material comprising chromium nitride and chromium carbonitride, method for producing the material, and vibration wave driving device using the material
JP2607668B2 (en) Surface hardening method for iron-based metallic materials
RU2716177C1 (en) Method of surface alloying of parts from steel 40x
JPH01237310A (en) Engine intake valve
JP4641091B2 (en) Method of forming carbonitride layer on metal material surface and titanium-based metal material having carbonitride layer on surface
JPH0426751A (en) Surface modification treatment for austenitic stainless steel