JPH0226365B2 - - Google Patents

Info

Publication number
JPH0226365B2
JPH0226365B2 JP17444884A JP17444884A JPH0226365B2 JP H0226365 B2 JPH0226365 B2 JP H0226365B2 JP 17444884 A JP17444884 A JP 17444884A JP 17444884 A JP17444884 A JP 17444884A JP H0226365 B2 JPH0226365 B2 JP H0226365B2
Authority
JP
Japan
Prior art keywords
case
heat dissipation
transformer case
transformer
dissipation fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17444884A
Other languages
Japanese (ja)
Other versions
JPS6151807A (en
Inventor
Kenji Okumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP17444884A priority Critical patent/JPS6151807A/en
Publication of JPS6151807A publication Critical patent/JPS6151807A/en
Publication of JPH0226365B2 publication Critical patent/JPH0226365B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は新規な塗装を施した変圧器ケースと、
その塗装方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a transformer case with a novel coating,
Regarding the painting method.

〔発明の技術的背景と問題点〕[Technical background and problems of the invention]

一般に配電用変圧器のケースには種々の構成の
放熱器が取付けられている。例えば、変圧器ケー
スの側板の上、下部に、コ字状に湾曲した放熱管
をケース内と連通させて溶着したもの、又、ケー
ス側板自体を波形状に連続的に折り曲げて放熱フ
インを形成したもの、更には、帯状金属板を波形
状に連続的に折り曲げて形成した放熱フインをケ
ース側板の外周に溶着したり、金属板をV字状に
折り曲げて形成した放熱フインをケース側板に複
数個配列して溶着したもの等が用いられている。
そして、前記のような放熱器を付設した変圧器ケ
ースを塗装する場合、前二者の放熱器を備えた変
圧器ケースにおいては、その表面にケース側板と
一体に形成された放熱フインあるいは放熱管が突
出しているだけであるため、塗装処理は比較的良
好に行うことができる。しかし、後二者の放熱
器、(即ち、金属帯板を波形に連続成形した放熱
フインをケースに溶着したり、金属板をV字状に
折り曲げた放熱フインを複数個ケースに溶着した
もの)を有する変圧器ケースにおいては、その表
面に上、下方向のみが開口された中空状の放熱フ
インが取付けられている関係上、ケース表面の塗
装は良好に行い得るが、放熱フインの裏面あるい
は放熱フインと対応するケース表面は、放熱フイ
ン自体が中空状となつているため、塗装処理を十
分に行うことができず、特に、放熱フインの波形
頂部の裏面においてはこの傾向が強く、従つて、
長年月の間には、錆が発生して、放熱フインの一
部が腐食して損傷するおそれがあつた。このた
め、波形フインを取付けた変圧器ケースを塗装処
理する場合は、第5図に示す概略工程図に従つて
行つていた。即ち、変圧器ケースの塗装は大別す
ると、第5図のように、塗料の下塗り工程(耐蝕
処理)と上塗り工程(耐候処理)とによつて行な
われているが、これらの工程では、いづれも波形
状に形成された放熱フインの裏面を一つづつスプ
レーガンを通しながら塗料の下塗りと上塗りを2
回にわたり行つていた。従つて、塗装作業は非常
に手間と時間を要すると共に、放熱フインの裏側
を一つづつスプレー塗装していたので、塗装作業
の自動化が極めて困難であつた。
Generally, heat sinks of various configurations are attached to the case of a power distribution transformer. For example, U-shaped curved heat dissipation pipes are welded to the top and bottom of the transformer case side plates to communicate with the inside of the case, or the case side plates themselves are continuously bent into a wave shape to form heat dissipation fins. Furthermore, heat dissipation fins formed by continuously bending a band-shaped metal plate into a wave shape are welded to the outer periphery of the case side plate, or multiple heat dissipation fins formed by bending a metal plate into a V shape are attached to the case side plate. Those that are arranged and welded are used.
When painting a transformer case equipped with a heatsink as described above, in the case of a transformer case equipped with the first two heatsinks, a heatsink fin or heatsink tube integrally formed with the case side plate is added to the surface of the transformer case equipped with the first two heatsinks. Since only the surface is protruding, the painting process can be performed relatively well. However, the latter two types of heat sinks (i.e., heat dissipation fins made by continuously molding a metal strip into a corrugated shape are welded to the case, or multiple heat dissipation fins made by bending a metal plate into a V shape are welded to the case). In transformer cases with Since the heat dissipation fin itself is hollow, the surface of the case corresponding to the fin cannot be sufficiently coated, and this tendency is particularly strong on the back side of the corrugated top of the heat dissipation fin.
Over the years, rust has formed and there is a risk that some of the heat dissipation fins may corrode and be damaged. For this reason, when painting a transformer case to which corrugated fins are attached, the process has been carried out according to the schematic process diagram shown in FIG. In other words, the painting of transformer cases can be roughly divided into the undercoating process (corrosion-resistant treatment) and the top-coating process (weathering treatment), as shown in Figure 5. Apply the undercoat and topcoat of paint one by one through a spray gun on the back side of the heat dissipation fins, which are formed in a wave shape.
I went there several times. Therefore, the painting process is extremely time-consuming and labor-intensive, and since the back sides of the heat dissipation fins are spray-painted one by one, it is extremely difficult to automate the painting process.

〔発明の目的〕[Purpose of the invention]

本発明は前記の欠点を除去して、波形状の放熱
フインを付設した変圧器ケースの塗装を行うに際
し、前記放熱フインの裏側をいちいちスプレー塗
装を施すことなく耐蝕および耐候性に優れた塗装
処理を施した変圧器ケースとその塗装方法を提供
することを目的とする。
The present invention eliminates the above-mentioned drawbacks and provides a coating process with excellent corrosion resistance and weather resistance without spray painting the back side of the heat dissipation fins when painting a transformer case equipped with wave-shaped heat dissipation fins. The purpose of the present invention is to provide a transformer case coated with paint and a method for painting the transformer case.

〔発明の概要〕[Summary of the invention]

本発明は耐蝕性が要求される変圧器ケースの下
塗り塗装工程には、水溶性樹脂塗料の電解塗料液
に変圧器ケースを浸漬させ、変圧器ケースを一方
の電極とし、別個に設けた他方の電極との間に直
流通電を行うことにより変圧器ケースの表面およ
びこのケースに付設した波形放熱フインの内側に
樹脂塗料を析出させて電着塗膜を形成する所謂電
着塗装を行い、耐候性が要求される上塗り工程に
おいては静電塗装を行うことにより、耐蝕、耐候
性に優れた変圧器ケースとその塗装方法を提供す
ることにある。
In the process of undercoating a transformer case, which requires corrosion resistance, the present invention involves immersing the transformer case in an electrolytic paint solution made of water-soluble resin paint, using the transformer case as one electrode, and using the other separately provided electrode. By applying direct current between the electrodes, resin paint is deposited on the surface of the transformer case and on the inside of the corrugated heat dissipation fins attached to the case to form an electrodeposition film, which is called electrodeposition coating. An object of the present invention is to provide a transformer case with excellent corrosion resistance and weather resistance by performing electrostatic coating in the top coating process that requires coating, and a method for coating the transformer case.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を第1図乃至第4図により
説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

1は配電用の変圧器ケースで、帯状金属板を周
知のロール加工により筒状に成形しその両端の接
合部を突き合せ又は重ね合せて溶接により一体に
溶着する。この際、ケース1側板に1次、2次ブ
ツシングを取付けるための取付孔2は、あらかじ
め金属板の所定位置に前記取付孔2を穿設してか
らロール加工を行う。3は変圧器ケース1の一方
の開口端に、「あげ底」状に溶着された円形逆皿
状の底板、4は変圧器ケース1の側板に取付けら
れた波形の放熱フインで、この放熱フイン4は帯
状金属板をV字状に折り曲げたものを複数個ケー
ス1側板に波形状に配設したもので、これら各放
熱フイン4には第1図に示すように、縦方向のほ
ぼ中央地点に近い側面において小径の透孔5(直
径約4〜7mm程度)が1個づつ穿孔されている。
この透孔5は放熱フイン4内を通り抜ける空気の
流れを阻害して変圧器の冷却効果を損なわない程
度の大きさに穿孔されていることは勿論である。
Reference numeral 1 designates a transformer case for power distribution, in which a band-shaped metal plate is formed into a cylindrical shape by well-known roll processing, the joints at both ends are butted or overlapped, and welded together by welding. At this time, the mounting holes 2 for mounting the primary and secondary bushings on the side plate of the case 1 are formed in advance by drilling the mounting holes 2 at predetermined positions in the metal plate and then performing roll processing. 3 is a circular inverted dish-shaped bottom plate welded to one open end of the transformer case 1 in a "raised bottom"shape; 4 is a corrugated heat dissipation fin attached to the side plate of the transformer case 1; 4 is a band-shaped metal plate bent into a V-shape and arranged in a wave shape on the side plate of the case 1. Each of these heat dissipation fins 4 has a point approximately at the center in the vertical direction, as shown in FIG. One small-diameter through hole 5 (approximately 4 to 7 mm in diameter) is bored on the side surface near the .
It goes without saying that the through holes 5 are formed to a size that does not obstruct the flow of air passing through the heat dissipation fins 4 and impair the cooling effect of the transformer.

次に、前記変圧器ケース1を塗装処理する場合
について説明する。
Next, a case where the transformer case 1 is painted will be described.

変圧器ケース1の塗装処理は第4図の概略工程
図に示す順序で行う。
The painting process of the transformer case 1 is carried out in the order shown in the schematic process diagram of FIG.

即ち、変圧器ケース1をシヨツトブラスト処理
してからケース1の表面をリン酸・亜鉛液により
表面処理を行い、次にケース1を100〜120℃で加
熱乾燥させてからケース1の下塗り塗装として電
着塗装を行う。この電着塗装処理については第3
図により説明する。表面処理を終えて乾燥処理さ
れたケース1はフツク6を介してコンベア7に懸
吊されて図示矢印方向に搬送される。一方コンベ
ア7に沿つて陽極性の給電ブスバー8が設けられ
ており、フツク6に設けた電刷子9が前記ブスバ
ー8に摺動接触することによりケース1に給電が
行なわれる。又、絶縁ライニングが施され塗料が
満たされた電着塗料槽10には、陰極側の電極1
1が設置されており、この電極11とケース1に
対し直流電源装置12の出力端13,14から給
電が行なわれる。更に、電着塗料槽10には電着
塗装用の水溶性樹脂塗料15が満たされている。
そして、前記コンベア7によつて搬送された変圧
器ケース1は陰極側の電極11を設けた電着塗料
槽10に浸漬される。ケース1の浸漬によつて、
陽極側の給電ブスバー8→電刷子9→ハンガ6を
介してケース1に陽極電流が流れ、一方、陰極電
流は電極11から水溶性樹脂塗料へと流れ、ここ
で始めて電気的に接続され、変圧器ケース1が電
着塗料槽10内をコンベア7によつて移動する間
に耐電した塗料をケース1に電気的に付着させて
電着塗装を行う。この結果、変圧器ケース1の外
表面は、波形放熱フイン4の外表面も含めてほぼ
均一な厚さで電着塗膜が形成される。又、波形放
熱フイン4の裏面は、放熱フイン4の側面に穿孔
5を通して、この放熱フイン4の裏面と、放熱フ
イン4によつて被覆されているケース1側板との
間にも電気が流れるようになるため、放熱フイン
4の裏面も、その外表面とほぼ同様の厚さの電着
塗膜が形成されることとなる。特に、中空状に形
成された放熱フイン4の裏面に施された塗膜は、
前記のように、放熱フイン4の側面に透孔5を設
けることにより、透孔5を設けない場合に比べて
電着塗膜を厚く形成することが可能となつた。
That is, the transformer case 1 is shot blasted, the surface of the case 1 is treated with a phosphoric acid/zinc solution, the case 1 is then heated and dried at 100 to 120°C, and then the undercoat of the case 1 is applied. Electrodeposition coating is performed as follows. Regarding this electrodeposition coating process, please refer to the 3rd page.
This will be explained using figures. The case 1, which has been surface-treated and dried, is suspended from a conveyor 7 via a hook 6 and conveyed in the direction of the arrow in the figure. On the other hand, a positive power supply bus bar 8 is provided along the conveyor 7, and when an electric brush 9 provided on the hook 6 comes into sliding contact with the bus bar 8, power is supplied to the case 1. In addition, an electrode 1 on the cathode side is placed in the electrodeposition paint tank 10 which is provided with an insulating lining and is filled with paint.
1 is installed, and power is supplied to this electrode 11 and case 1 from output ends 13 and 14 of a DC power supply device 12. Further, the electrodeposition paint tank 10 is filled with a water-soluble resin paint 15 for electrodeposition coating.
The transformer case 1 conveyed by the conveyor 7 is immersed in an electrodeposition paint bath 10 provided with a cathode side electrode 11. By immersion in case 1,
The anode current flows to the case 1 via the power supply busbar 8 on the anode side → the electric brush 9 → the hanger 6, while the cathode current flows from the electrode 11 to the water-soluble resin paint, where it is electrically connected for the first time and transforms. Electrodeposition coating is performed by electrically adhering electrically resistant paint to the case 1 while the container case 1 is moved in the electrocoating paint tank 10 by the conveyor 7. As a result, the electrodeposited coating film is formed on the outer surface of the transformer case 1, including the outer surface of the corrugated heat dissipating fins 4, with a substantially uniform thickness. Further, the back surface of the corrugated heat dissipation fin 4 has a perforation 5 formed in the side surface of the heat dissipation fin 4 so that electricity can also flow between the back surface of the heat dissipation fin 4 and the side plate of the case 1 covered by the heat dissipation fin 4. Therefore, an electrodeposited coating film having approximately the same thickness as the outer surface is formed on the back surface of the heat dissipation fin 4 as well. In particular, the coating film applied to the back surface of the heat dissipation fin 4 formed in a hollow shape is
As described above, by providing the through holes 5 on the side surfaces of the heat dissipating fins 4, it became possible to form a thicker electrodeposited coating film than in the case where the through holes 5 were not provided.

ここで、透孔5を有する中空状の放熱フイン4
と、透孔5を有しない中空状の放熱フインとによ
つて、その裏面に形成される電着塗膜の生成度合
を試験した結果を次に示す。
Here, a hollow heat radiation fin 4 having a through hole 5 is used.
The results of testing the degree of formation of an electrodeposition coating film formed on the back surface of a hollow heat dissipating fin having no through holes 5 are shown below.

水溶性樹脂塗料を不揮発分約20%に調整し、こ
の塗料に、リン酸亜鉛処理を行つた変圧器ケース
1(放熱フイン4の縦寸法は800mm)を侵漬し、
電圧300Vを印加し、全没通電時間を4分とした。
この結果、透孔5の有無にかかわらず放熱フイン
表面の塗膜厚は約38μであつた。しかし、透孔5
を有しない放熱フインの裏面では、この放熱フイ
ン裏面の上、下部付近における塗膜厚が約30〜
35μであつたのに対し、中央部付近に進むに従つ
て塗膜厚は次第に薄くなり、中央部分では約8μ
しか形成されていなかつた。一方、透孔5を設け
た放熱フイン4の裏面では、放熱フイン4裏面の
上、下部付近は約35〜39μの塗膜が形成され、そ
の中央部付近においても約30μの塗膜が形成され
ていた。
A water-soluble resin paint was adjusted to have a non-volatile content of about 20%, and a transformer case 1 (the vertical dimension of the heat dissipation fin 4 was 800 mm) treated with zinc phosphate was immersed in this paint.
A voltage of 300 V was applied, and the total energization time was 4 minutes.
As a result, the coating thickness on the surface of the heat dissipation fin was approximately 38 μm regardless of the presence or absence of the through holes 5. However, through hole 5
On the back side of a heat dissipation fin that does not have a
The film thickness was 35μ, but the coating thickness gradually becomes thinner as it moves toward the center, and is about 8μ in the center.
only one had been formed. On the other hand, on the back side of the heat dissipation fin 4 provided with the through holes 5, a coating film of about 35 to 39 μm is formed near the top and bottom of the back surface of the heat dissipation fin 4, and a coating film of about 30 μm is also formed near the center. was.

この試験結果により、中空状に形成された放熱
フイン4の裏面塗装は、放熱フイン4に空気の流
通に妨げとならない範囲で透孔5を形成すること
により、外表面とほぼ同様の電着塗膜を形成でき
ることが判明した。変圧器ケース1に下塗り塗装
として電着塗装処理を行つたあと、変圧器ケース
1を自然乾燥→加熱乾燥(150〜200℃)→冷却さ
せてから、上塗り塗装処理として、変圧器ケース
1の表面に静電塗装を行う。この際、放熱フイン
4の裏面は、耐蝕性に優れた電着塗装が外表面と
ほぼ同様の塗膜厚さで施すことができるので、従
来のように、中空状の放熱フイン4の裏面をスプ
レー塗装する必要はない。静電塗装による変圧器
ケース1の上塗り塗装処理が終了したあとは、自
然乾燥→加熱乾燥(100〜130℃)を行つて変圧器
ケース1の塗装処理を完了する。
According to the test results, the back side of the heat dissipation fin 4 formed in a hollow shape can be coated with electrodeposition almost the same as the outer surface by forming the through holes 5 in the heat dissipation fin 4 in a range that does not impede the flow of air. It was found that a film could be formed. After applying electrodeposition coating to the transformer case 1 as an undercoat, the transformer case 1 is air-dried → heat-dried (150 to 200°C) → cooled, and then the surface of the transformer case 1 is applied as a topcoat. Perform electrostatic painting. At this time, the back surface of the heat dissipation fin 4 can be coated with a highly corrosion-resistant electrodeposition coating with almost the same coating thickness as the outer surface, so that the back surface of the hollow heat dissipation fin 4 can be coated with the same thickness as the outer surface. No need to spray paint. After finishing the top coating process of the transformer case 1 by electrostatic coating, natural drying → heating drying (100 to 130° C.) is performed to complete the coating process of the transformer case 1.

尚、本発明は変圧器ケース1にV字状に形成し
た放熱フイン4を複数個配設した変圧器ケースに
実施した例について説明したが、帯状の金属板を
波形状に連続的に折り曲げて形成した放熱フイン
をケース側板に配設した変圧器ケースに実施して
もよいことは勿論である。
The present invention has been described with reference to an example in which the transformer case 1 is provided with a plurality of heat dissipation fins 4 formed in a V-shape. Of course, the formed heat dissipation fins may be implemented on the transformer case disposed on the side plate of the case.

〔発明の効果〕 本発明は以上説明したように構成されているの
で次に示す効果を有する。
[Effects of the Invention] Since the present invention is configured as described above, it has the following effects.

(1) 波形状の放熱フインを配設した変圧器ケース
の塗装処理に際し、放熱フインの縦方向のほぼ
中央部に小径の透孔を設け、ケースの下塗り塗
装としては電着塗装処理を行い、上塗塗装処理
としては静電塗装を行うことにより、波形状の
放熱フインの裏面にも、その外表面と同様の厚
さで塗膜を形成することができるので、耐蝕性
および耐候性に優れた変圧器ケースを得ること
ができる。しかも、放熱フインに穿孔した透孔
は、空気の流れを阻害して変圧器の冷却効果を
損なわない範囲で、その大きさおよび穿孔数が
設定でき、しかも、本発明のケースを使用した
変圧器を装柱した場合、前記透孔は非常に小さ
いので、放熱器の冷却機能を低下させたり、美
観を損うようなことはない。
(1) When painting a transformer case equipped with wave-shaped heat dissipation fins, a small-diameter through hole is provided approximately in the vertical center of the heat dissipation fin, and an electrodeposition coating is applied as the undercoating for the case. By performing electrostatic painting as the top coating process, it is possible to form a coating film on the back side of the wave-shaped heat dissipation fins with the same thickness as the outer surface, resulting in excellent corrosion and weather resistance. You can get a transformer case. In addition, the size and number of holes drilled in the heat dissipation fins can be set within a range that does not impede air flow and impair the cooling effect of the transformer. When mounted on a pillar, the through hole is very small, so it will not deteriorate the cooling function of the radiator or spoil its aesthetic appearance.

(2) 又、変圧器ケースの塗装工程に、下塗り処理
として電着塗装を採用しているので、従来のよ
うに、放熱フインの裏面をスプレーガンにより
一つづつ塗装処理を行う必要は全くなく、しか
も、放熱フインに透孔を設けることによつて、
電着塗装の機能を効果的に利用して変圧器ケー
スの塗装処理を迅速、確実に行うことができ
る。
(2) In addition, since electrodeposition is used as an undercoat in the transformer case painting process, there is no need to paint the back side of the heat dissipation fins one by one using a spray gun as in the past. , Moreover, by providing through holes in the heat dissipation fins,
It is possible to quickly and reliably paint a transformer case by effectively utilizing the function of electrodeposition painting.

このように、本発明は変圧器ケースの塗装処理
工程が短縮化できると共に自動化、省人化をはか
ることが可能となり、変圧器ケースの塗装処理を
容易にかつ経済的に行うことができる。その上、
前記塗装処理によつて耐蝕性、耐候性に優れた変
圧器ケースを提供することができる。
As described above, the present invention can shorten the transformer case painting process, automate it and save labor, and can easily and economically perform the transformer case painting process. On top of that,
The above-mentioned coating treatment makes it possible to provide a transformer case with excellent corrosion resistance and weather resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の変圧器ケースの要部を示す斜
視図、第2図は継断面図、第3図は変圧器ケース
の下塗り塗装処理を行うための電着塗装装置の全
体構成を示す説明図、第4図は本発明の塗装方法
を説明する概略工程図、第5図は従来の塗装方法
を説明する概略工程図である。 1……変圧器ケース、4……放熱フイン、5…
…透孔。
Fig. 1 is a perspective view showing the main parts of the transformer case of the present invention, Fig. 2 is a cross-sectional view of the joint, and Fig. 3 is the overall configuration of an electrodeposition coating device for performing the undercoat coating process on the transformer case. The explanatory diagram, FIG. 4, is a schematic process diagram illustrating the coating method of the present invention, and FIG. 5 is a schematic process diagram illustrating the conventional coating method. 1...Transformer case, 4...Radiation fin, 5...
...through hole.

Claims (1)

【特許請求の範囲】 1 変圧器ケースの側板に波形の放熱フインを備
えたケースにおいて、前記放熱フインに空気の流
通に妨げとならない範囲で小径の透孔を穿孔し、
この透孔を有する放熱フインを取付けた変圧器ケ
ースの表面に、ケース下塗り塗装として電着塗膜
を形成するようにしたことを特徴とする変圧器ケ
ース。 2 変圧器ケースの側板に波形の放熱フインを備
えたケースにおいて、前記ケースの放熱フインに
小径の透孔を穿孔する工程と、この透孔を有する
放熱フインを取付けた変圧器ケースの表面に下塗
り塗装として電着塗膜処理を施す工程と、前記電
着塗膜の表面に上塗り塗装として静電塗膜処理を
施す工程とを有することを特徴とする変圧器ケー
スの塗装方法。
[Claims] 1. In a case in which a side plate of a transformer case is provided with corrugated heat dissipation fins, a through hole of a small diameter is bored in the heat dissipation fin within a range that does not obstruct air circulation;
A transformer case characterized in that an electrodeposited coating film is formed as a case undercoat on the surface of the transformer case to which the heat dissipation fins having the through holes are attached. 2. In a case equipped with corrugated heat dissipation fins on the side plate of the transformer case, the step of drilling small-diameter through holes in the heat dissipation fins of the case, and applying an undercoat to the surface of the transformer case to which the heat dissipation fins having the through holes are attached. A method for painting a transformer case, comprising the steps of applying an electrocoating film treatment as a coating, and applying an electrostatic coating film treatment as a top coat to the surface of the electrodeposition film.
JP17444884A 1984-08-21 1984-08-21 Transformer case and coating method thereof Granted JPS6151807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17444884A JPS6151807A (en) 1984-08-21 1984-08-21 Transformer case and coating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17444884A JPS6151807A (en) 1984-08-21 1984-08-21 Transformer case and coating method thereof

Publications (2)

Publication Number Publication Date
JPS6151807A JPS6151807A (en) 1986-03-14
JPH0226365B2 true JPH0226365B2 (en) 1990-06-08

Family

ID=15978672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17444884A Granted JPS6151807A (en) 1984-08-21 1984-08-21 Transformer case and coating method thereof

Country Status (1)

Country Link
JP (1) JPS6151807A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959937B2 (en) 2004-12-27 2012-06-27 株式会社日立産機システム Distribution transformer with corrosion diagnostic components
KR100744156B1 (en) 2006-05-08 2007-08-01 삼진변압기 주식회사 Method for rust-preventing a transformer outer case with zinc based coating solutions
KR100788722B1 (en) 2006-09-27 2008-01-04 일도레너지주식회사 Device for painting a radiation fin of cool/warm water coil
JP4917137B2 (en) * 2009-09-29 2012-04-18 株式会社日立産機システム Distribution transformer
CN111863383B (en) * 2020-07-30 2021-12-17 鑫大变压器有限公司 Power electrical transformer with long service life

Also Published As

Publication number Publication date
JPS6151807A (en) 1986-03-14

Similar Documents

Publication Publication Date Title
JPH0226365B2 (en)
US3962060A (en) Continuous electrodeposition of coating material on metal sheet stock
US1867736A (en) Corrosion protection
CN114381781A (en) Surface coating process for radiator for transformer
JPS6235030Y2 (en)
JP3278426B2 (en) Corrosion protection structure of metal material
JPS61210200A (en) Method and apparatus for painting of transformer case
JPS60125276A (en) Surface treatment of outer case of electric machinery
JPH02170998A (en) Surface treatment of heat exchanger made of aluminum
JPH09279395A (en) Electrodeposition coating device as well as electrodeposition coating method and formation of coating film
JP2825950B2 (en) Brazing method
JP2621436B2 (en) Body rust prevention treatment method
JP3766757B2 (en) Chemical conversion treatment method, electrodeposition coating method and apparatus for combined products
JPS6332133Y2 (en)
JPH0410218Y2 (en)
JPH05320931A (en) Surface-treated steel material excellent in corrosion resistance and coating property and its production
JPH0319320B2 (en)
JPS60211081A (en) Method and apparatus for electroplated coating
JPS5882639A (en) Manufacturing method of workpiece
JPS61227192A (en) Stripe plating method
JPS5854199B2 (en) Anti-corrosion coating method
JP3144277U (en) Metal and non-metal surface layer structures
JPH0221307B2 (en)
JP4766545B2 (en) Electrodeposition coating method suitable for fine metal articles
JPS58217197A (en) Heat exchanger with fin