JPH0226360B2 - - Google Patents

Info

Publication number
JPH0226360B2
JPH0226360B2 JP58181837A JP18183783A JPH0226360B2 JP H0226360 B2 JPH0226360 B2 JP H0226360B2 JP 58181837 A JP58181837 A JP 58181837A JP 18183783 A JP18183783 A JP 18183783A JP H0226360 B2 JPH0226360 B2 JP H0226360B2
Authority
JP
Japan
Prior art keywords
gas
plasma
nozzle
support
plasma torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58181837A
Other languages
Japanese (ja)
Other versions
JPS5983400A (en
Inventor
Maritsuku Jeraru
Shafu Deidee
Rumi Furanshisu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reeru Rikuitsudo SA Puuru Rechuudo E Rekusupurowatashion De Purosede Jioruju Kuroodo
Original Assignee
Reeru Rikuitsudo SA Puuru Rechuudo E Rekusupurowatashion De Purosede Jioruju Kuroodo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reeru Rikuitsudo SA Puuru Rechuudo E Rekusupurowatashion De Purosede Jioruju Kuroodo filed Critical Reeru Rikuitsudo SA Puuru Rechuudo E Rekusupurowatashion De Purosede Jioruju Kuroodo
Publication of JPS5983400A publication Critical patent/JPS5983400A/en
Publication of JPH0226360B2 publication Critical patent/JPH0226360B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/28Cooling arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3436Hollow cathodes with internal coolant flow
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3442Cathodes with inserted tip

Description

【発明の詳細な説明】 この発明は、金属製電極支持体、金属製ノズル
支持体および分割手段に通じる単一のガス供給管
を有し、分割手段によつてガス流をプラズマ発生
ガスの第1流と冷却ガスの第2流とに分割するよ
うな種類のプラズマトーチに関する。この種のト
ーチは以下では「単ガスプラズマトーチ」と称せ
られる。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a metal electrode support, a metal nozzle support and a single gas supply pipe leading to a dividing means, which divides the gas flow into a plasma generating gas. The present invention relates to a plasma torch of the kind that is split into a first stream and a second stream of cooling gas. This type of torch will be referred to below as a "monogas plasma torch".

プラズマ発生ガスを供給しかつ電極、ノズル、
絶縁体などのトーチの主な要素を冷却するために
単一の回路を利用することは、構造が複雑でなく
なるので注目に値する。
Supplying plasma generating gas, electrodes, nozzles,
Utilizing a single circuit to cool the main elements of the torch, such as the insulator, is noteworthy as it reduces the complexity of the structure.

しかしながら、作業中にかなりの温度変化が生
じるにも拘わらず精密な方法で2つの流れの間の
比を制御しなければならないということはきびし
い設計上の問題を生じる。このことがおそらく
は、原理が何年も前から解決されているにも拘わ
らず(フランス国特許第2275270号明細書参照)
どんな種類の単ガスプラズマトーチも工業的に作
られていないことの理由であると思われる。
However, the need to control the ratio between the two streams in a precise manner despite significant temperature changes occurring during operation creates severe design problems. This is probably despite the fact that the principle has been worked out for many years (see FR 2275270).
This is likely the reason why no single gas plasma torch of any kind has been made industrially.

よつてこの発明の目的は利用の実際の条件下に
満足すべき方法で作動できる単ガスプラズマトー
チを提供することにある。
It is therefore an object of the invention to provide a monogas plasma torch which can operate in a satisfactory manner under the actual conditions of use.

この目的の達成のため、この発明によるプラズ
マトーチにおいては、このトーチが、電極を支持
する中空の電極支持体と、電極支持体に連結さ
れ、ガスの流れを供給する単一のガス供給管と、
ノズル支持体と、電極支持体とノズル支持体の間
の絶縁体と、ノズル支持体によつて支持され、電
極支持体と共にプラズマ形成ガス室を形成するノ
ズルと、前記のガスの流れをプラズマ形成ガスの
流れおよび冷却ガスの流れに分割するための分割
手段と、前記のプラズマ形成ガスの流れを前記プ
ラズマ形成ガス室に導き、前記の冷却ガスの流れ
をノズルのまわりに導くための手段とを有し、前
記分割手段が、1組のプラズマ形成ガスのオリフ
イスと1組の冷却ガスのオリフイスとを備え、双
方の組のオリフイスが、トーチの共通の金属部分
を貫通し、或いは互に接近した膨脹係数を有する
トーチの別別の金属部分を貫通する。
To achieve this objective, the plasma torch according to the invention comprises a hollow electrode support supporting the electrodes and a single gas supply tube connected to the electrode support and supplying the gas flow. ,
a nozzle support; an insulator between the electrode support and the nozzle support; a nozzle supported by the nozzle support and forming a plasma-forming gas chamber together with the electrode support; dividing means for dividing into a flow of gas and a flow of cooling gas; means for directing said flow of plasma-forming gas into said plasma-forming gas chamber and said flow of cooling gas around a nozzle; and the dividing means comprises a set of plasma-forming gas orifices and a set of cooling gas orifices, both sets of orifices passing through a common metal part of the torch or close to each other. Penetrating another metal part of the torch that has a coefficient of expansion.

特に電極を有効に冷却しようとする実施例にお
いては、電極支持体の中に管状バツフルが位置
し、これが流入ガスを最初に電極の活性部分に向
け次いで2連のオリフイスへ向けるようになつて
いる。この場合に冷却ガスの温度を低下させるた
め、冷却ガスが外気を吸込むための穿孔を少くと
も1つ有する環状スカートとノズル支持体との間
で案内され、かつ補充の通路がガス供給管をバツ
フルの下流に位置する冷却回路の部分に連結し、
若しくはそのいずれかであるようにできる。
Particularly in embodiments where effective cooling of the electrode is desired, a tubular buffle is located within the electrode support, which directs the incoming gas first to the active portion of the electrode and then to a series of orifices. . In order to reduce the temperature of the cooling gas in this case, the cooling gas is guided between a nozzle support and an annular skirt having at least one perforation for sucking in outside air, and a replenishment channel is provided in which the gas supply pipe is routed through the gas supply pipe. connected to the part of the cooling circuit located downstream of the
or either of the above.

以下、図面を参照しながらこの発明の実施例に
ついて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

図示のプラズマ切断トーチは把手1とその1端
の切断ヘツド2とを有し、ヘツド2は全体として
軸線X−Xを中心とする旋回体を形成する。説明
を簡単にするため軸線X−Xは垂直であつてヘツ
ド2は下向きであるとする。
The plasma cutting torch shown has a handle 1 and a cutting head 2 at one end thereof, which together form a rotating body about an axis X--X. For the sake of simplicity, it is assumed that the axis X--X is vertical and that the head 2 points downward.

把手1は絶縁包鞘4によつて包囲されるガスお
よび切断電流を供給するための単一管3と、電気
ケーブル5とを収容する。ヘツド2は管3に電気
的に接続される第1金属組立体6、ケーブル5に
電気的に接続される第2金属組立体7、およびこ
れら組立体7と8の間に介在する絶縁体8を収容
する。
The handle 1 houses a single tube 3 for supplying gas and cutting current surrounded by an insulating envelope 4 and an electrical cable 5. The head 2 includes a first metal assembly 6 electrically connected to the tube 3, a second metal assembly 7 electrically connected to the cable 5, and an insulator 8 interposed between these assemblies 7 and 8. to accommodate.

組立体6は3つの中空要素からなる。第1の中
空要素である電極支持体9は下端で開く軸線方向
の盲孔10を有し、その他端は半径方向のガス入
口11を介して管3と連通する。第2の中空要素
である非消耗電極12はカツト13によつて形成
され、その上端は電極支持体9の下端にねじ嵌め
され、その底部は上向き突起14を有する。この
突起は底部で開く盲座15を備え、これは例えば
ジルコニウムからなる挿入体16を収容する。第
3の中空要素である管状バツフル17の上端はガ
ス入口11の直下で電極支持体9の管(盲孔)1
0の中にねじ嵌めされ、管状バツフル17の下端
は電極の突起14から僅かな距離でこれにかぶさ
るように拡大されている。
The assembly 6 consists of three hollow elements. The first hollow element, the electrode support 9, has an axial blind bore 10 that opens at its lower end and communicates with the tube 3 via a radial gas inlet 11 at its other end. The second hollow element, the non-consumable electrode 12, is formed by a cut 13, the upper end of which is screwed into the lower end of the electrode support 9, and the bottom of which has an upwardly directed projection 14. This projection is provided with a blind seat 15 that opens at the bottom and accommodates an insert 16 made of zirconium, for example. The upper end of the tubular buttful 17, which is the third hollow element, is directly below the gas inlet 11 and the tube (blind hole) 1 of the electrode support 9.
0, the lower end of the tubular buffle 17 is enlarged to overlie the protrusion 14 of the electrode at a short distance from it.

電極支持体9は段階式の外部形状を有する。ガ
ス入口11の区域においてその上方部分は水平の
肩18で終り、かつこれに直径がやや小さい中間
部分が従う。中間部分は第2の水平の肩19によ
つて下方部分に連結され、この下方部分はカツト
13の外径とほぼ等しいはつきりと小さい直径を
有する。互に90゜で位置する4個の半径向きオリ
フイス20は肩19の直下で電極支持体9を貫通
し、同じく半径向きの小径の2個のオリフイス2
1はカツプ(カツト)13の上縁のすぐ上方で電
極支持体を貫通する。
The electrode support 9 has a stepped external shape. In the area of the gas inlet 11, its upper part ends in a horizontal shoulder 18, and an intermediate part of slightly smaller diameter follows this. The intermediate part is connected by a second horizontal shoulder 19 to the lower part, which lower part has a significantly smaller diameter approximately equal to the outer diameter of the cut 13. Four radial orifices 20, located at 90° to each other, pass through the electrode support 9 directly below the shoulder 19, and two orifices 2 of smaller diameter, also radial, pass through the electrode support 9 directly below the shoulder 19.
1 passes through the electrode support just above the upper edge of the cup 13.

第2金属組立体7は2つの要素すなわち管状ノ
ズル支持体22およびカツプの形のノズル23か
らなり、ノズルの頂縁はノズル支持体の下端にね
じ嵌めされ、またノズルの底部を軸線向きオリフ
イス24が貫通する。
The second metal assembly 7 consists of two elements: a tubular nozzle support 22 and a cup-shaped nozzle 23, the top edge of which is screwed into the lower end of the nozzle support, and the bottom of the nozzle with an axial orifice 24. penetrates.

適当な絶縁材料から形成された絶縁体8は3つ
の部分を有する。絶縁体の上方部分は電極支持体
9の中間部分に係合しかつ肩18に突当る。厚い
絶縁体の中間部分は肩19と環状室25を限定
し、この中間部分を1連の長手通路26が貫通す
る。絶縁体の下方部分はオリフイス21の区域で
環状間隙を以つて電極支持体を包囲する。環状室
25はまた1つまたは多くの補充通路27によつ
て電極支持体の通路(盲孔)10の上端に連接連
通する。
Insulator 8, formed from a suitable insulating material, has three parts. The upper part of the insulator engages the middle part of the electrode support 9 and abuts the shoulder 18. The intermediate portion of the thick insulator defines a shoulder 19 and an annular chamber 25 through which a series of longitudinal passages 26 pass. The lower part of the insulator surrounds the electrode support with an annular gap in the area of the orifice 21. The annular chamber 25 also communicates with the upper end of the channel (blind hole) 10 of the electrode support by one or more refill channels 27 .

ノズル支持体22は、絶縁体8の中間部分およ
び上方部分のまわりに係合する上方部分、この絶
縁体の下方部分のまわりに係合する厚い中間部
分、およびノズルを受ける下方部分からなる。ノ
ズル支持体の中間部分は絶縁体の中間部分と共に
環状室28を限定し、このノズル支持体の中間部
分を1連の長手通路29が貫通する。これら長手
通路29は最後の環状室30の中に通じ、この環
状室は内方ではノズル支持体22の下方部分およ
びノズルによつて限定されかつ外方ではねじ嵌め
その他の手段によつてノズル支持体の上方部分に
固定される絶縁スカートによつて限定される。こ
のスカート31を貫通するいくつかの通気開孔3
2は内下方に傾斜する。
The nozzle support 22 consists of an upper part that engages around the middle and upper parts of the insulator 8, a thicker middle part that engages around the lower part of this insulator, and a lower part that receives the nozzle. The middle part of the nozzle support, together with the middle part of the insulator, defines an annular chamber 28 through which a series of longitudinal passages 29 pass. These longitudinal passages 29 lead into the last annular chamber 30, which is delimited on the inside by the lower part of the nozzle support 22 and the nozzle and on the outside by the nozzle support by screw fittings or other means. It is defined by an insulating skirt that is fixed to the upper part of the body. Several ventilation holes 3 pass through this skirt 31
2 is inclined inwardly and downwardly.

トーチはプラスチツク材料の絶縁被覆33によ
つて完成され、これはスカート31の頂縁のレベ
ルまでの把手1およびヘツド2の外方部分を形成
する。
The torch is completed by an insulating sheath 33 of plastic material, which forms the outer part of the handle 1 and the head 2 up to the level of the top edge of the skirt 31.

作業の際に組立体6は切断すべき品物(図示な
し)と比べて適当な電位まで管3によつて上げら
れ、組立体7はケーブル5によつて中間電位まで
上げられ、適当なガス例えば圧縮空気が管3の中
へ向けられる。
During operation, the assembly 6 is raised by the tube 3 to a suitable potential compared to the article to be cut (not shown), the assembly 7 is raised to an intermediate potential by the cable 5, and a suitable gas, e.g. Compressed air is directed into tube 3.

本質的にガスは入口11を通つて通路10には
いり、バツフル17の中を下降し、電極の突起1
4のまわりを通過し、カツプ13とバツフル17
の間に存し次いでバツフルと通路10の壁との間
に存する環状空間34の中で再び上昇する。
Essentially, the gas enters the passageway 10 through the inlet 11 and descends through the butthole 17 and into the protrusion 1 of the electrode.
Pass around 4, Kup 13 and Batsuful 17
and then rises again in the annular space 34 existing between the buttful and the wall of the passageway 10.

比較的低い割合(例えば10%)のガスは2つの
開孔(オリフイス)21を通つて環状空間34か
ら出現し、電極支持体9と絶縁体8の間にこのレ
ベルで設けられた環状間隙の中へ向い次いで絶縁
体の下方でノズル23とカツプ13の間に自由に
残された環状室の中へ向うようなプラズマ形成ガ
スの噴出を生成する。このプラズマ形成ガスは中
央オリフイス24を通つてヘツド2から出る。
A relatively low proportion (for example 10%) of the gas emerges from the annular space 34 through two orifices 21 and fills the annular gap provided at this level between the electrode support 9 and the insulator 8. A jet of plasma-forming gas is produced which is directed in and then into the annular chamber left free between nozzle 23 and cup 13 below the insulator. This plasma-forming gas exits the head 2 through a central orifice 24.

環状空間34に達したガスの残りはヘツド2お
よび特にノズル23を冷却するに利用される。こ
のガスは、オリフイス20を通つて電極支持体か
ら出現し、次いで環状室、通路26、環状室2
8、通路29および環状室30の中へ進み、ここ
から下向きに外部雰囲気の中へ下向きに吐出され
る。ガスの特別の流れは入口11から電極支持体
の通路27を通つて環状室25へ直接進行し、環
状室30の中への冷却ガスの流れはスカート31
の開孔32を通してかなりの量の外気を吸込む。
The remainder of the gas reaching the annular space 34 is used to cool the head 2 and in particular the nozzle 23. This gas emerges from the electrode support through an orifice 20 and then into an annular chamber, a passage 26, an annular chamber 2
8, into the passageway 29 and the annular chamber 30, from where it is discharged downwardly into the external atmosphere. A particular flow of gas proceeds directly from the inlet 11 through the passage 27 of the electrode support into the annular chamber 25, and a flow of cooling gas into the annular chamber 30 is carried out through the skirt 31.
A considerable amount of outside air is sucked in through the apertures 32.

かくして明らかに、管3を通つてはいることが
できるガスは実質的に電極12を冷却する最初の
作用を有する。オリフイス20とオリフイス21
の全断面積の間の比によつて形成され電極によつ
て加熱されるこのガスの1部分はプラズマ形成ガ
スを形成するために導かれる。作動の際にこの後
者のガスはかくして管3を通つてはいるガスの温
度の起り得る変化によつて影響されない高温を有
する。このことは、プラズマ形成ガスの温度が上
昇することによつてトーチの切断能力が向上する
ことによつてかかる温度がかかる切断能力に影響
することが知られているから有利である。オリフ
イス21を通つて出る流れの部分は、オリフイス
20および21のすべてが一様な方法で膨脹する
同一の構成要素の中で穿孔されているから精密な
方法で制御できる。これはさらに電極支持体が膨
脹係数の互に接近したいくつかの要素によつて形
成されていれば有効である。さらにこれらオリフ
イスおよび特にオリフイス21は金属要素に穿孔
されるから極めて小さな直径を持つように容易に
形成できる。これとは対照的に、単に冷却ガスを
導くためだけの絶縁体8の通路26はその直径が
重要でないからオリフイス20と比べてはつきり
と大きい直径を有することができる。
Clearly, the gas that is able to enter through the tube 3 thus has the initial effect of substantially cooling the electrode 12. Orifice 20 and Orifice 21
A portion of this gas formed by the ratio between the total cross-sectional areas of and heated by the electrodes is directed to form a plasma-forming gas. In operation, this latter gas thus has a high temperature which is not affected by possible changes in the temperature of the gas passing through the tube 3. This is advantageous as temperature is known to affect the cutting ability of the torch by increasing the temperature of the plasma forming gas, thereby increasing the cutting ability of the torch. The portion of the flow exiting through orifice 21 can be controlled in a precise manner since orifices 20 and 21 are all drilled in the same component that expands in a uniform manner. This is further advantageous if the electrode support is formed by several elements with closely spaced coefficients of expansion. Furthermore, these orifices, and in particular orifice 21, can easily be made to have a very small diameter since they are drilled into a metal element. In contrast, the passages 26 in the insulator 8, which are solely for conducting cooling gas, can have a much larger diameter than the orifice 20, since their diameter is not critical.

オリフイス20の下流で通路27を通つて冷却
回路にはいる新しいガスおよび開孔32を通つて
吸込まれる新しい空気は、有効な方法で役立つ充
分に低温の冷却ガスを各レベルで得ることができ
るようにする。特に通路27からはいるガスは量
産に著しく有利な特別のプラスチツク材料の軟化
点よりも低い温度に絶縁体8を保つことを可能に
する。また、通路27がオリフイス20および2
1と同じ金属材料に穿孔されているという事実に
よれば、この方法で転用されたガス部分の充分な
制御が達成できる。
The fresh gas entering the cooling circuit through the passage 27 downstream of the orifice 20 and the fresh air sucked in through the apertures 32 can obtain at each level sufficiently cool cooling gas to serve in an effective manner. Do it like this. In particular, the gas entering through the channel 27 makes it possible to keep the insulator 8 at a temperature below the softening point of the particular plastic material, which is particularly advantageous for mass production. Also, the passage 27 is connected to the orifice 20 and 2.
Due to the fact that the holes are drilled in the same metal material as 1, a good control of the gas fraction diverted can be achieved in this way.

変型としてその利点は実際上小さいけれども、
流れ分割を達成する2連のオリフイスはノズル支
持体を形成する1つまたは2つの金属要素に形成
できる。この場合に電極支持体はもはやオリフイ
ス21を有せず、環状空間34の中に含まれるガ
スの全体はプラズマ形成ガス室の中への部分再噴
出のためにオリフイス20を通つて出る。この変
型の原理は第1図に略示され、破線で示される通
路21Aは環状室28をプラズマ形成ガス室に連
結しノズル支持体22に穿孔される。絶縁体8の
下方部分はこの連結を可能にするため省略され
る。この変型において、すべてのガス流は同じ金
属要素22にすべて形成される通路29および2
1Aによつて分割される。
Although its advantages as a variant are actually small,
Dual orifices to achieve flow division can be formed in one or two metal elements forming the nozzle support. In this case, the electrode support no longer has an orifice 21 and the entire gas contained in the annular space 34 exits through the orifice 20 for partial re-ejection into the plasma-forming gas chamber. The principle of this variant is schematically illustrated in FIG. 1, where a passage 21A, shown in broken lines, connects the annular chamber 28 to the plasma-forming gas chamber and is drilled in the nozzle support 22. The lower part of the insulator 8 is omitted to enable this connection. In this variant, all gas flows are channeled through channels 29 and 2, which are all formed in the same metal element 22.
Divided by 1A.

この発明によるトーチの設計によれば、オリフ
イス20および21に任意所与の方位を与えるこ
とができる。
The design of the torch according to the invention allows the orifices 20 and 21 to be given any given orientation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による手動プラズマ切断トー
チの軸線を通る断面図、第2図は第1図の−
線に沿う電極支持体の断面図、第3図は第1図の
−線に沿う電極支持体の断面図である。 図面において、3はガス供給管、8は絶縁体、
9は電極支持体、17は管状バツフル、22はノ
ズル支持体、20と21はオリフイス、27は通
路、31はスカート、32は穿孔を示す。
FIG. 1 is a sectional view through the axis of a manual plasma cutting torch according to the present invention, and FIG. 2 is a cross-sectional view of FIG.
FIG. 3 is a cross-sectional view of the electrode support taken along the line - in FIG. 1; In the drawing, 3 is a gas supply pipe, 8 is an insulator,
9 is an electrode support, 17 is a tubular buffle, 22 is a nozzle support, 20 and 21 are orifices, 27 is a passage, 31 is a skirt, and 32 is a perforation.

Claims (1)

【特許請求の範囲】 1 プラズマトーチにおいて、このトーチが、電
極を支持する中空の電極支持体と、電極支持体に
連結され、ガスの流れを供給する単一のガス供給
管と、ノズル支持体と、電極支持体とノズル支持
体の間の絶縁体と、ノズル支持体によつて支持さ
れ、電極支持体と共にプラズマ形成ガス室を形成
するノズルと、前記のガスの流れをプラズマ形成
ガスの流れおよび冷却ガスの流れに分割するため
の分割手段と、前記のプラズマ形成ガスの流れを
前記プラズマ形成ガス室に導き、前記の冷却ガス
の流れをノズルのまわりに導くための手段とを有
し、前記分割手段が、1組のプラズマ形成ガスの
オリフイスと1組の冷却ガスのオリフイスとを備
え、双方の組のオリフイスが、トーチの共通の金
属部分を貫通し、或いは互に接近した膨脹係数を
有するトーチの別別の金属部分を貫通すること、
を特徴とするプラズマトーチ。 2 前記の共通の金属部分が、前記の電極支持体
である、特許請求の範囲第1項に記載のプラズマ
トーチ。 3 前記の共通の金属部分が、前記のノズル支持
体である、特許請求の範囲第1項に記載のプラズ
マトーチ。 4 冷却ガスのオリフイスが、前記絶縁体に形成
された案内通路の入口に通じる、特許請求の範囲
第2項に記載のプラズマトーチ。 5 案内通路が、絶縁体の中に位置する1組の軸
線方向穿孔によつて形成される、特許請求の範囲
第4項に記載のプラズマトーチ。 6 電極支持体の中に、管状バツフルが配置さ
れ、これが、供給されるガスの流れを、最初に電
極の活動部分に向け、次いで2組のオリフイスに
向ける、特許請求の範囲第2項に記載のプラズマ
トーチ。 7 冷却ガスが、ノズル支持体とノズルを包囲す
る環状のスカートとの間で案内され、このスカー
トが、外気を吸引するための穿孔を少くとも1つ
備える、特許請求の範囲第1項から第6項のいず
れか1項に記載のプラズマトーチ。 8 補充の通路が、ガス供給管をバツフルの下流
に位置する冷却回路に連結させる、特許請求の範
囲第6項に記載のプラズマトーチ。
[Scope of Claims] 1. A plasma torch which includes a hollow electrode support supporting an electrode, a single gas supply pipe connected to the electrode support and supplying a gas flow, and a nozzle support. an insulator between the electrode support and the nozzle support; a nozzle supported by the nozzle support and forming a plasma-forming gas chamber together with the electrode support; and dividing means for dividing into a flow of cooling gas; and means for directing said flow of plasma-forming gas into said plasma-forming gas chamber and said flow of cooling gas around a nozzle; The dividing means comprises a set of plasma-forming gas orifices and a set of cooling gas orifices, both sets of orifices passing through a common metal part of the torch or having coefficients of expansion close to each other. penetrating another metal part of the torch having;
A plasma torch featuring 2. The plasma torch according to claim 1, wherein said common metal part is said electrode support. 3. The plasma torch of claim 1, wherein said common metal part is said nozzle support. 4. A plasma torch according to claim 2, wherein a cooling gas orifice communicates with the entrance of a guide passage formed in the insulator. 5. Plasma torch according to claim 4, wherein the guide passage is formed by a set of axial perforations located in the insulator. 6. A tubular baffle is arranged in the electrode support, which directs the flow of the supplied gas first to the active part of the electrode and then to the two sets of orifices. plasma torch. 7. The cooling gas is guided between the nozzle support and an annular skirt surrounding the nozzle, the skirt comprising at least one perforation for sucking in outside air. The plasma torch according to any one of Item 6. 8. The plasma torch of claim 6, wherein a replenishment passage connects the gas supply pipe to a cooling circuit located downstream of the baffle.
JP58181837A 1982-10-01 1983-10-01 Plasma torch Granted JPS5983400A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8216512A FR2534106A1 (en) 1982-10-01 1982-10-01 MONOGAZ PLASMA TORCH
FR8216512 1982-10-01

Publications (2)

Publication Number Publication Date
JPS5983400A JPS5983400A (en) 1984-05-14
JPH0226360B2 true JPH0226360B2 (en) 1990-06-08

Family

ID=9277904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58181837A Granted JPS5983400A (en) 1982-10-01 1983-10-01 Plasma torch

Country Status (11)

Country Link
US (1) US4625094A (en)
EP (1) EP0110735B1 (en)
JP (1) JPS5983400A (en)
AU (1) AU561117B2 (en)
BR (1) BR8305417A (en)
CA (1) CA1218118A (en)
DE (2) DE3374644D1 (en)
ES (1) ES283176Y (en)
FR (1) FR2534106A1 (en)
PT (1) PT77416B (en)
ZA (1) ZA837071B (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581516A (en) * 1983-07-20 1986-04-08 Thermal Dynamics Corporation Plasma torch with a common gas source for the plasma and for the secondary gas flows
FR2574614B1 (en) * 1984-12-07 1987-01-30 Soudure Autogene Francaise METHOD AND DEVICE FOR FORMING A PLASMA ARC
GB8508758D0 (en) * 1985-04-03 1985-05-09 Goodwin Eng Developments Ltd D Plasma arc apparatus
JPS6296969U (en) * 1985-12-05 1987-06-20
JPH0329022Y2 (en) * 1986-03-12 1991-06-20
US4748312A (en) * 1986-04-10 1988-05-31 Thermal Dynamics Corporation Plasma-arc torch with gas cooled blow-out electrode
GB8615759D0 (en) * 1986-06-27 1986-08-06 W T C Holdings Ltd Air plasma arc torch
US4716269A (en) * 1986-10-01 1987-12-29 L-Tec Company Plasma arc torch having supplemental electrode cooling mechanisms
FR2609591B1 (en) * 1987-01-13 1990-12-07 Soudure Autogene Francaise HEADPHONES FOR ARC WORK TORCHES AND CORRESPONDING TORCHES
US4902871A (en) * 1987-01-30 1990-02-20 Hypertherm, Inc. Apparatus and process for cooling a plasma arc electrode
US5041713A (en) * 1988-05-13 1991-08-20 Marinelon, Inc. Apparatus and method for applying plasma flame sprayed polymers
US4985610A (en) * 1988-05-26 1991-01-15 E. I. Du Pont De Nemours And Company Cutting torch
US5132512A (en) * 1988-06-07 1992-07-21 Hypertherm, Inc. Arc torch nozzle shield for plasma
US5070227A (en) * 1990-04-24 1991-12-03 Hypertherm, Inc. Proceses and apparatus for reducing electrode wear in a plasma arc torch
US5396043A (en) * 1988-06-07 1995-03-07 Hypertherm, Inc. Plasma arc cutting process and apparatus using an oxygen-rich gas shield
US5120930A (en) * 1988-06-07 1992-06-09 Hypertherm, Inc. Plasma arc torch with improved nozzle shield and step flow
US5695662A (en) * 1988-06-07 1997-12-09 Hypertherm, Inc. Plasma arc cutting process and apparatus using an oxygen-rich gas shield
PT96494B (en) * 1990-01-17 1996-10-31 Univ Sydney CATHOLE COOLED BY GAS FOR MACRO OF ARCO
US5039837A (en) * 1990-02-23 1991-08-13 Tescom Corporation Plasma torch head, body, handle and control circuitry
DE4022112C2 (en) * 1990-07-11 1996-03-14 Mannesmann Ag Plasma torch for transmitted arc
JPH0463599U (en) * 1990-10-11 1992-05-29
IT1243170B (en) * 1990-11-29 1994-05-24 Trafimet Trafilerie Metalliche PLASMA CUTTING TORCH WITH TRIGGER FOR CONTACT
US5317126A (en) * 1992-01-14 1994-05-31 Hypertherm, Inc. Nozzle and method of operation for a plasma arc torch
US5214262A (en) * 1992-04-03 1993-05-25 Esab Welding Products, Inc. Electrode adaptor
USD384682S (en) * 1995-09-13 1997-10-07 The Esab Group, Inc. Electrode for a plasma arc torch
JPH10241625A (en) * 1997-02-24 1998-09-11 Hitachi Ltd Plasma ion source mass spectrometer and method
US6130399A (en) * 1998-07-20 2000-10-10 Hypertherm, Inc. Electrode for a plasma arc torch having an improved insert configuration
US6498317B2 (en) 1998-10-23 2002-12-24 Innerlogic, Inc. Process for operating a plasma arc torch
US6326583B1 (en) 2000-03-31 2001-12-04 Innerlogic, Inc. Gas control system for a plasma arc torch
US6163009A (en) * 1998-10-23 2000-12-19 Innerlogic, Inc. Process for operating a plasma arc torch
US6677551B2 (en) * 1998-10-23 2004-01-13 Innerlogic, Inc. Process for operating a plasma arc torch
US6498316B1 (en) 1999-10-25 2002-12-24 Thermal Dynamics Corporation Plasma torch and method for underwater cutting
US6337460B2 (en) 2000-02-08 2002-01-08 Thermal Dynamics Corporation Plasma arc torch and method for cutting a workpiece
US6667459B1 (en) 2000-11-21 2003-12-23 Hypertherm, Inc. Configurable nozzle baffle apparatus and method
EP1369000B1 (en) * 2001-03-09 2012-04-18 Hypertherm, Inc. Method of manufacturing a composite electrode for a plasma arc torch
US8338740B2 (en) * 2008-09-30 2012-12-25 Hypertherm, Inc. Nozzle with exposed vent passage
DE102009016932B4 (en) * 2009-04-08 2013-06-20 Kjellberg Finsterwalde Plasma Und Maschinen Gmbh Cooling tubes and electrode holder for an arc plasma torch and arrangements of the same and arc plasma torch with the same
ITBO20090496A1 (en) * 2009-07-28 2011-01-29 Cebora Spa MONOGAS TORCH FOR PLASMA CUTTING.
IT1401407B1 (en) * 2010-07-30 2013-07-26 Cebora Spa MONOGAS TORCH FOR PLASMA CUTTING.
EP2734015B1 (en) * 2012-05-07 2016-10-19 Manfred Hollberg Cooling pipe for a plasma arc torch
US9949356B2 (en) 2012-07-11 2018-04-17 Lincoln Global, Inc. Electrode for a plasma arc cutting torch
ITVI20130220A1 (en) * 2013-09-05 2015-03-06 Trafimet Spa PLASMA TORCH WITH IMPROVED COOLING SYSTEM AND RELATIVE COOLING METHOD.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112360A (en) * 1974-07-19 1976-01-30 Vni Pk T I Elektrosvarotschno Dendobutsushitsuno purazumakakosochioyobisono sadohoho

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2960594A (en) * 1958-06-30 1960-11-15 Plasma Flame Corp Plasma flame generator
FR1322260A (en) * 1962-02-14 1963-03-29 Saint Gobain Plasma flame torch
US3562486A (en) * 1969-05-29 1971-02-09 Thermal Dynamics Corp Electric arc torches
US3832513A (en) * 1973-04-09 1974-08-27 G Klasson Starting and stabilizing apparatus for a gas-tungsten arc welding system
SE376859B (en) * 1974-06-20 1975-06-16 Vni Pk T I Elektrosvarotschno
FR2275270A1 (en) * 1974-06-21 1976-01-16 Inst Elektrosvarochnogo Oborud DEVICE FOR WORKING WITH CONDUCTIVE PLASMA MATERIALS AND METHOD OF USING THE SAID DEVICE
US4463245A (en) * 1981-11-27 1984-07-31 Weldtronic Limited Plasma cutting and welding torches with improved nozzle electrode cooling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112360A (en) * 1974-07-19 1976-01-30 Vni Pk T I Elektrosvarotschno Dendobutsushitsuno purazumakakosochioyobisono sadohoho

Also Published As

Publication number Publication date
JPS5983400A (en) 1984-05-14
FR2534106A1 (en) 1984-04-06
EP0110735B1 (en) 1987-11-19
AU1933883A (en) 1984-04-05
EP0110735A2 (en) 1984-06-13
DE110735T1 (en) 1986-02-13
US4625094A (en) 1986-11-25
ES283176Y (en) 1985-12-16
BR8305417A (en) 1984-05-15
AU561117B2 (en) 1987-04-30
FR2534106B1 (en) 1985-04-19
ES283176U (en) 1985-05-16
CA1218118A (en) 1987-02-17
ZA837071B (en) 1984-05-30
PT77416A (en) 1983-10-01
EP0110735A3 (en) 1984-10-24
PT77416B (en) 1986-03-20
DE3374644D1 (en) 1987-12-23

Similar Documents

Publication Publication Date Title
JPH0226360B2 (en)
US5660743A (en) Plasma arc torch having water injection nozzle assembly
CA2022782C (en) Electrode for plasma arc torch
CN202671651U (en) Nozzle device and chemical gas phase sedimentary reactor
CN101530000B (en) Contoured shield orifice for plasma arc torch
AU678730B2 (en) Plasma arc cutting process and apparatus using an oxygen-rich gas shield
KR100646915B1 (en) Nozzle for Plasma Torch
EP0375747B1 (en) Nozzle shield for a plasma arc torch
US8959772B2 (en) Multipoint injector for turbomachine
JPS60223668A (en) Torch for plasma welding or cutting
US5556560A (en) Welding assembly for feeding powdered filler material into a torch
CN106465529B (en) Air-cooled type plasmatorch and its component
KR920010090B1 (en) Method and apparatus for producing hollow glass filaments
JPH06262367A (en) Plasma cutting device
JPH0957155A (en) Cooling spray nozzle
JPS596823B2 (en) Air nozzle assembly for glass fiber spinning
JPH0331509Y2 (en)
JP3260013B2 (en) Plasma torch nozzle
SU683807A1 (en) Atomising head to electric metalliser
SU1433640A1 (en) Injector for atomizing melt
JPH10274641A (en) Nebulizer
JPS5864240A (en) Air nozzle device for spinning glass fiber
JPS62500715A (en) Glass filament manufacturing method
KR810001970B1 (en) Metal melt spraying equipment
KR20230017997A (en) Underwater Laser Cutting Device and Method