JPH0226241Y2 - - Google Patents
Info
- Publication number
- JPH0226241Y2 JPH0226241Y2 JP1982010701U JP1070182U JPH0226241Y2 JP H0226241 Y2 JPH0226241 Y2 JP H0226241Y2 JP 1982010701 U JP1982010701 U JP 1982010701U JP 1070182 U JP1070182 U JP 1070182U JP H0226241 Y2 JPH0226241 Y2 JP H0226241Y2
- Authority
- JP
- Japan
- Prior art keywords
- steering
- grain culm
- sensor
- uncut
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007790 scraping Methods 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 26
- 210000000078 claw Anatomy 0.000 claims description 12
- 238000009434 installation Methods 0.000 claims description 4
- 238000012937 correction Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 244000025254 Cannabis sativa Species 0.000 description 3
- 238000009333 weeding Methods 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 2
- 241001124569 Lycaenidae Species 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000013138 pruning Methods 0.000 description 1
Landscapes
- Guiding Agricultural Machines (AREA)
- Outside Dividers And Delivering Mechanisms For Harvesters (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Description
本考案は操向制御装置を備えたコンバイン、詳
しくは機体前部に、穀稈に対し機体位置を検出す
る2個の操向センサーと、穀稈の引起爪をもつ穀
稈引起装置とを備え、前記操向センサーによる検
出信号を操向装置に出力させて、機体の方向修正
を行なうごとく構成し、かつ前記穀稈引起装置の
前方で、かつ、未刈側となる機体の幅方向一側
に、穀稈の掻分爪をもつ穀稈掻分装置を着脱自在
に取付けるごとくしたコンバインに関する。
一般にこの種のコンバインにあつては、圃場に
植立する穀稈が列間で互に絡合つている場合、引
起装置の前方に掻分装置を取付けて、互に絡合る
穀稈を両側に掻分けるごとくするのであるが、こ
の場合、操向センサーから掻分装置先端までの距
離が長くなつて、この掻分装置により掻分けた穀
稈が操向センサーに至るまでの時間が長くなり、
所謂操向センサーによる穀稈の検出に時間的遅れ
が生じ、このセンサーからの出力信号により操向
装置を動作させて、機体の方向修正を行なうとき
には、前記掻分装置の先端が刈取るべき穀稈の列
から既に外れていて、穀稈を既刈側に刈残した
り、未刈側穀稈の列に突込み、設定刈取条数以上
の穀稈列を刈取つたりする問題があつた。
本考案は斯かる問題点を解決すべく考案したも
ので、穀稈引起装置の前方で、かつ、未刈側とと
なる機体の幅方向一側に、穀稈の掻分爪をもつ穀
稈掻分装置を着脱自在に取付けるごとくしたコン
バインにおいて、前記穀稈掻分装置の取付け時、
掻分装置の取付け側に設けた未刈側の操向センサ
ーからの検出信号をカツトオフし、かつ、既刈側
の操向センサーからの検出信号を操向装置に出力
させ、かつ、前記穀稈掻分装置を離脱した時、前
記既刈側及び未刈側操向センサーからの検出信号
を操向装置に出力させるべく構成して、前記掻分
装置の離脱時、前記各操向センサーを共に用いて
既刈側センサーのみを用いる場合に比較し、未刈
側センサーによる修正をもとに、操向の精度と安
定性とを期待できながら、前記掻分装置の取付時
には、前記各操向センサーを共に用いることによ
る問題点、つまり、機体が既刈側に片寄つた場合
で、未刈側の操向センサーが既刈側方向への旋回
を指示する場合で、この指示で既刈側方向へ旋回
することによる問題点、換言すると、前記掻分装
置の先端部が刈取るべき穀稈を未刈側に分草して
しまい、未刈側において刈残しが生ずる問題を解
決すべくしたものである。
所で従来のコンバインにおいて、機体前部に2
個の操向センサーを設け、機体を圃場の穀稈列に
沿うごとく走行させて、穀稈を刈取る場合、所謂
条刈作業時、主として機体の進行方向に対し未刈
側に位置する操向センサーをして機体の方向修正
を行ない、機体が未刈側に大きく片寄つた場合、
未刈側操向センサーに優先して、既刈側操向セン
サーからの検出信号により機体を既刈側に方向修
正すべく構成し、操向の安定性を計り、所謂機体
の急激な方向修正を少なくし、それでいて穀稈の
既刈側への刈残しを確実に防止すべく構成し、ま
た機体を圃場の穀稈列に対し直交するごとく走行
させて、穀稈を刈取る場合、所謂中割作業時、既
刈側操向センサーからの検出信号だけで機体の方
向修正を行ない、機体の緩かで大きな蛇行を防止
して、中割作業を適確に行なわせるべく構成した
ものがある。
本考案は以上の如く構成したコンバインを利用
すべく成し、即ち本考案における穀稈掻分装置は
刈取るべき穀稈と次工程で刈取る穀稈、所謂未刈
側穀稈とを掻分けるもので、この掻分装置は、穀
稈引起装置の前方で未刈側に設けるのであるか
ら、穀稈掻分装置を取外して行なう通常の刈取時
には、両操向センサーをして機体の方向修正を行
なわせ、穀稈掻分装置を取付けた場合には、未刈
側の操向センサーによる検出信号をカツトオフ
し、既刈側の操向センサーによる検出信号のみを
操向装置に出力させて、機体の方向修正を行なう
ごとく成し、既述した如き機能をもつ2個の操向
センサーを利用すべく成したのである。
以下本考案の実施例を図面に基づいて説明す
る。
第1図及び第2図はコンバインを一部省略して
機体前部の刈取装置部分を示し、機体(図示せ
ず)前下部に横架支持した刈刃1、この機体から
刈刃1の前方に延びる4本の支持杆2a,2b,
2c,2d、各支持杆2a乃至2dの前端に設け
た分草板3…、前記機体の前部で刈刃1の上方に
起立支持させた穀稈引起装置4などを備えてい
る。
また前記支持杆2a乃至2dの内、機体の進行
方向に対し左側となる支持杆2aには操向センサ
ー5を、右側となる支持杆2dには操向センサー
6を取付ける一方、前記穀稈引起装置4の前方
で、未刈側となる機体の前記支持杆2aに対応す
る位置に穀稈掻分装置7を着脱自在に取付けるご
とくする。
尚、前記穀稈引起装置4は、引起ケース4a内
に多数の引起爪4bを回行可能に支持して成るも
ので、機体の進行に伴なつて分草板3により分草
した穀稈を引起爪4bに引起し、刈刃1により刈
取るべくしており、この刈取られた穀稈は、機体
後部側に搭載した脱穀装置(図示せず)に供給し
て脱穀処理すべくしている。
前記穀稈掻分装置7は、掻分ケース7a内に多
数の掻分爪7bを回行可能に支持して成るもの
で、圃場に植立する穀稈が列間で互に絡合つてい
る場合に取付けて、この絡合う穀稈を両側に掻分
けるべくしている。
前記両操向センサー5,6は、センサーボツク
ス51,61に支持したセンサーアーム52,6
2と、このセンサーボツクス51,61に内装し
た2乃至3個のスイツチ群とから成るもので、前
記センサーアーム62,52は機体の進行方向後
方で機体内側に向うごとく傾斜状に延び、機体の
前進に伴なつて穀稈A,Bに当接したとき、後方
に回動し、穀稈A,Bがないとき、センサーボツ
クス51,61内のスプリング作用により前方に
回動するようになつており、かつ前記センサーボ
ツクス51,61内の各スイツチは、センサーア
ーム52,62の回動位置によつて作動すべく構
成している。尚、通常の穀稈刈取作業時にあつて
は、機体の進行方向に対し左側に配置した操向セ
ンサー5が未刈側となり、右側に配置した操向セ
ンサー6が既刈側となり、以下機体の進行方向に
対し未刈側となるセンサー5を左センサーと称
し、既刈側となるセンサー6を右センサーと称し
て説明する。
しかして前記左センサー5は3個のスイツチS
−LL,S−LR1,S−LR2を、前記右センサー6
は2個のスイツチS−RL,S−RRを備え、これ
ら各スイツチ群の開閉動作の組合せによつて、第
3図に示した操向制御回路を介して操向装置を制
御し、機体の方向修正を行なうごとく構成するの
である。
即ち、第3図において操向装置は附号8で全体
的に示され、左旋回用ソレノイドSOL−Lと右
旋回用ソレノイドSOL−Rとを備え、この両ソ
レノイドSOL−L,SOL−Rを電源Eに、脱穀
装置(図示せず)に連動する作動スイツチSW1及
びメーンスイツチSWを介して接続し、かつこの
ソレノイドSOL−L,SOL−Rの各アース側線
路にスイツチング回路Tr1,Tr2を介装する一方、
マイクロコンピユータ9におけるI/Oインター
フエースの旋回制御用入力端子IN−1乃至IN−
5に前記両センサー5,6の各スイツチを接続す
ると共に、旋回力切換用入力端子IN−6乃至IN
−8に旋回力切換スイツチSW2を、中割作業用入
力端子IN−9と条刈作業用入力端子IN−10と
に中割条刈切換スイツチSW3を、手動用入力端子
IN−11に手動優先スイツチSW4をそれぞれ接
続して、各スイツチのオン信号をマイクロコンピ
ユータ9に入力させるべく構成し、かつこのマイ
クロコンピユータ9におけるI/Oインターフエ
ースの出力端子OUT−1,OUT−2に前記スイ
ツチング回路Tr1,Tr2を接続して、マイクロコ
ンピユータ9からの出力によりスイツチング回路
Tr1,Tr2の開閉を行なわせるべく構成する。
尚、前記左センサー5のスイツチS−LLは、
センサーアーム52が第2図における領域の穀
稈Aに当接した場合にのみ「ON」、他の領域で
は「OFF」となり、スイツチS−LR1は、センサ
ーアーム52が領域及びの穀稈Aに当接した
場合に「ON」となり、スイツチS−LR2は、セ
ンサーアーム52が領域の穀稈Aに当接した場
合、若しくはセンサーアーム52が穀稈Aに当接
しない場合に「OFF」、他の領域では「ON」と
なるごとく設定し、また前記右センサー6におけ
るスイツチS−RLは、センサーアーム62が第
2図における領域の穀稈Bに当接した場合に
「ON」となり、スイツチS−RRは、センサーア
ーム62が領域の穀稈Bに当接した場合に
「ON」となり、センサーアーム62が領域の
穀稈Bに当接した場合、両スイツチS−RL,S
−RRが「OFF」となるごとく設定している。
また前記マイクロコンピユータ9からの出力は
パルス信号として行なわれるのであつて、切換ス
イツチSW2により入力端子IN−6を選択した場
合、前記パルス信号のオン幅が小さくなつて、ソ
レノイドSOL−L,SOL−Rの励磁時間が短か
くなり、これに伴なつて機体の旋回力(方向修正
力)が小さくなるのであり、また切換スイツチ
SW2により入力端子IN−8を選択すれば旋回力
が大きくなり、通常は切換スイツチSW2により入
力端子IN−7を選択して、中位の旋回力をして
機体の旋回を行なわせるごとくするのである。
また切換スイツチSW3により入力端子IN−9
を選択した場合、左センサー5による検出信号、
実質的にはスイツチS−LL,S−LR1,S−LR2
のオン信号をカツトオフして、右センサー6によ
る検出信号のみを受けて、マイクロコンピユータ
9からスイツチング回路Tr1,Tr2への出力を行
ない、切換スイツチSW3により入力端子IN−1
0を選択した場合、両センサー5,6による検出
信号に基づきマイクロコンピユータ9からスイツ
チング回路Tr1,Tr2への出力を行なわせるごと
くしている。
斯くして本考案は以上の如きコンバインにおい
て、穀稈引起装置4の前方で、かつ、未刈側とな
る機体の幅方向一側に穀稈掻分装置7を取付けた
場合、左センサー5による検出信号をカツトオフ
して、右センサー6による検出信号をマイクロコ
ンピユータ9を介して操向装置8に出力させるべ
く構成するのであつて、具体的には第4図に示す
ごとく掻分装置7が取付けられる引起装置4の前
面側に検出スイツチ10を設けて、掻分装置7の
取付け時検出スイツチ10が押動されるよう構成
する一方、この検出スイツチ10の切換接点SW5
を、切換スイツチSW3の条刈側端子と入力端子
IN−9,IN−10との間に介装して、切換スイ
ツチSW3が条刈側端子を選択しているも、掻分装
置7が取付けられると、検出スイツチ10の押動
をして切換接点SW5が条刈作業用入力端子IN−
10の接続をカツトオフし、中割作業用入力端子
IN−9を選択すべく構成するのである。
本考案の操向制御装置は以上の如く構成するも
ので、メーンスイツチSWを投入すると共に、脱
穀装置を駆動して作動スイツチSW1をオンさせ、
切換スイツチSW3を中割作業側に切換えることに
より、後記する第1表に示した態様の中割制御方
式による操向制御が行なえるのであり、また前記
切換スイツチSW3を条刈作業側に切換えることに
より、第1表に示した態様の条刈制御方式による
操向制御が行なえるのである。尚、作業方式とし
て横刈作業であるが、この場合条刈制御方式によ
る操向制御をして行なえばよい。
The present invention is a combine harvester equipped with a steering control device, more specifically, it is equipped with two steering sensors at the front of the machine body that detect the position of the machine relative to the grain culm, and a grain culm pulling device with a grain culm pulling claw. , configured to output a detection signal from the steering sensor to a steering device to correct the direction of the aircraft, and one side in the width direction of the aircraft that is in front of the grain culm pulling device and is the uncut side; The present invention relates to a combine harvester in which a grain culm scraping device having grain culm scraping claws is removably attached. Generally, with this type of combine harvester, if the grain culms planted in the field are intertwined with each other between rows, a scraping device is installed in front of the hoisting device to separate the intertwined grain culms from both sides. However, in this case, the distance from the steering sensor to the tip of the raking device becomes longer, and the time it takes for the grain culms raked by the raking device to reach the steering sensor becomes longer. ,
There is a time delay in the detection of grain culms by the so-called steering sensor, and when the steering device is operated based on the output signal from this sensor to correct the direction of the aircraft, the tip of the raking device must be aligned with the grain to be harvested. There was a problem in which the grain culms that had already come off the row of culms were left uncut on the cut side, or the grain culms were pushed into the row of grain culms on the uncut side, and more rows of grain culms than the set number of reaping rows were harvested. The present invention was devised to solve this problem, and includes a grain culm with a grain culm scraping claw located in front of the grain culm pulling device and on one side in the width direction of the machine body, which is the uncut side. In a combine harvester in which the raking device is detachably attached, when the grain culm raking device is installed,
Cut off the detection signal from the steering sensor on the uncut side provided on the installation side of the raking device, output the detection signal from the steering sensor on the cut side to the steering device, and When the raking device is detached, the steering device is configured to output detection signals from the mowed side and uncut side steering sensors, and when the raking device is detached, the steering sensors are connected together. Compared to the case where only the mowed side sensor is used, steering accuracy and stability can be expected based on corrections made by the uncut side sensor. The problem with using both sensors is that when the machine leans toward the mowed side, the steering sensor on the unmoved side instructs to turn toward the mowed side, and this instruction causes the machine to turn toward the mowed side. This is intended to solve the problem caused by turning the grain to the uncut side, in other words, the tip of the scraping device divides the grain culm to be harvested to the uncut side, resulting in uncut grass on the uncut side. It is. However, in conventional combine harvesters, there are two
When the machine is equipped with several steering sensors and the machine is moved along grain culm rows in the field to harvest the grain culms, the steering is mainly located on the uncut side with respect to the direction of movement of the machine during so-called row mowing work. If the sensor is used to correct the direction of the machine, and the machine veers too far toward the non-mowing side,
It is configured to give priority to the steering sensor on the uncut side and correct the direction of the machine toward the mowed side based on the detection signal from the steering sensor on the mowed side, and measures the stability of the steering and performs what is called a sudden direction correction of the machine. It is configured to reduce the amount of grain left behind on the already cut side of the grain culm, and to reap the grain by moving the machine perpendicularly to the rows of grain culms in the field. During splitting work, there is a structure that corrects the direction of the machine using only the detection signal from the steering sensor on the cut side, preventing the machine from gently meandering and allowing the machine to perform the splitting work accurately. . The present invention is made to utilize the combine harvester configured as described above, that is, the grain culm separating device in the present invention separates the grain culm to be harvested from the grain culm to be harvested in the next step, the so-called uncut side grain culm. This raking device is installed on the uncut side in front of the grain culm pulling device, so during normal harvesting when the grain culm raking device is removed, both steering sensors are used to correct the direction of the machine. When the grain culm rake device is installed, the detection signal from the steering sensor on the uncut side is cut off, and only the detection signal from the steering sensor on the cut side is output to the steering device. This was done to correct the direction of the aircraft, and it was done to utilize two steering sensors with the functions described above. Embodiments of the present invention will be described below based on the drawings. Figures 1 and 2 partially omit the combine harvester and show the reaping device at the front of the machine. Four support rods 2a, 2b,
2c, 2d, a grass dividing plate 3 provided at the front end of each of the support rods 2a to 2d, and a grain culm lifting device 4 supported upright above the cutting blade 1 at the front of the machine body. Further, among the support rods 2a to 2d, a steering sensor 5 is attached to the support rod 2a on the left side with respect to the traveling direction of the aircraft, and a steering sensor 6 is attached to the support rod 2d on the right side. In front of the device 4, a grain culm scraping device 7 is detachably attached to a position corresponding to the support rod 2a of the machine body on the uncut side. The grain culm pulling device 4 is constructed by rotatably supporting a number of pulling claws 4b in a lifting case 4a, and as the aircraft advances, the grain culm pulled up by the weeding plate 3 is removed. The grain culms are pulled up by the pulling claws 4b and harvested by the cutting blade 1, and the harvested grain culms are supplied to a threshing device (not shown) mounted on the rear side of the machine body for threshing. The grain culm raking device 7 is constructed by rotatably supporting a number of raking claws 7b in a raking case 7a, and the grain culms planted in the field are entwined with each other between rows. It is installed in the case to separate the intertwined grain culms from both sides. Both steering sensors 5 and 6 are provided by sensor arms 52 and 6 supported on sensor boxes 51 and 61.
The sensor arms 62, 52 extend slantingly toward the inside of the aircraft at the rear in the direction of movement of the aircraft. When it comes into contact with the grain culms A and B as it moves forward, it rotates backward, and when there are no grain culms A and B, it rotates forward due to the spring action in the sensor boxes 51 and 61. In addition, each switch in the sensor boxes 51 and 61 is configured to be operated depending on the rotational position of the sensor arms 52 and 62. In addition, during normal grain culm reaping work, the steering sensor 5 placed on the left side with respect to the moving direction of the machine is on the uncut side, and the steering sensor 6 placed on the right side is on the cut side. In the following description, the sensor 5 on the uncut side in the direction of travel will be referred to as a left sensor, and the sensor 6 on the already cut side will be referred to as a right sensor. However, the left sensor 5 has three switches S.
-LL, S-LR 1 and S-LR 2 are connected to the right sensor 6.
The aircraft is equipped with two switches S-RL and S-RR, and by the combination of the opening and closing operations of these switch groups, the steering system is controlled via the steering control circuit shown in Figure 3, and the aircraft is controlled. It is constructed so as to correct the direction. That is, in FIG. 3, the steering device is indicated as a whole by number 8, and includes a left turning solenoid SOL-L and a right turning solenoid SOL-R. is connected to the power source E via an operating switch SW 1 and a main switch SW that are linked to a threshing device (not shown), and a switching circuit Tr 1 is connected to each earth side line of the solenoids SOL-L and SOL-R. While interposing Tr 2 ,
I/O interface rotation control input terminals IN-1 to IN- in the microcomputer 9
Connect each switch of both sensors 5 and 6 to 5, and connect the input terminals IN-6 to IN for switching the turning force.
-8 is the turning force changeover switch SW 2 , and the input terminal for intermediate cutting work IN-9 and the input terminal for row mowing work IN-10 is the intermediate row cutting changeover switch SW 3 , and the input terminal for manual operation is
The configuration is such that manual priority switches SW 4 are connected to IN-11, and the ON signals of each switch are input to the microcomputer 9, and the output terminals OUT-1 and OUT of the I/O interface in this microcomputer 9 are connected to the manual priority switches SW4. -2, the switching circuits Tr 1 and Tr 2 are connected, and the switching circuit is activated by the output from the microcomputer 9.
It is configured to open and close Tr 1 and Tr 2 . In addition, the switch S-LL of the left sensor 5 is
The switch S-LR 1 is turned ON only when the sensor arm 52 comes into contact with the grain culm A in the area shown in FIG. 2, and is turned OFF in other areas. The switch S-LR 2 is turned "ON" when the sensor arm 52 contacts the grain culm A in the area, or "OFF" when the sensor arm 52 does not contact the grain culm A in the area. , is set to be "ON" in other areas, and the switch S-RL in the right sensor 6 is set to be "ON" when the sensor arm 62 comes into contact with the grain culm B in the area shown in FIG. The switch S-RR turns "ON" when the sensor arm 62 comes into contact with the grain culm B in the region, and when the sensor arm 62 comes into contact with the grain culm B in the region, both switches S-RL and S
-RR is set to "OFF". Further, the output from the microcomputer 9 is performed as a pulse signal, and when the input terminal IN-6 is selected by the changeover switch SW2 , the ON width of the pulse signal becomes small, and the solenoid SOL-L, SOL -R's excitation time becomes shorter, and as a result, the turning force (direction correction force) of the aircraft becomes smaller.
If input terminal IN-8 is selected with SW 2 , the turning force will be increased, but normally, selecting input terminal IN-7 with changeover switch SW 2 will cause the aircraft to turn by applying a medium turning force. That's what I do. In addition, input terminal IN-9 is set by switch SW 3 .
If you select , the detection signal from the left sensor 5,
Essentially switches S-LL, S-LR 1 , S-LR 2
After receiving only the detection signal from the right sensor 6, the microcomputer 9 outputs to the switching circuits Tr 1 and Tr 2 , and the changeover switch SW 3 outputs the output from the input terminal IN-1 to the switching circuits Tr 1 and Tr 2.
When 0 is selected, the microcomputer 9 outputs to the switching circuits Tr 1 and Tr 2 based on the detection signals from both the sensors 5 and 6. Thus, in the combine harvester as described above, when the grain culm lifting device 7 is installed in front of the grain culm pulling device 4 and on one side in the width direction of the machine body which is the uncut side, the left sensor 5 The configuration is such that the detection signal is cut off and the detection signal from the right sensor 6 is output to the steering device 8 via the microcomputer 9. Specifically, as shown in FIG. A detection switch 10 is provided on the front side of the lifting device 4 to be moved, and the detection switch 10 is configured to be pushed when the scraping device 7 is installed .
, the row cutting side terminal and input terminal of selector switch SW 3 .
Although the changeover switch SW 3 is installed between IN-9 and IN-10 and selects the row cutting side terminal, when the scraping device 7 is installed, the detection switch 10 is pushed. Switching contact SW 5 is input terminal IN− for row mowing work.
Cut off the 10 connections and use the input terminal for intermediate work.
It is configured to select IN-9. The steering control device of the present invention is constructed as described above, and when the main switch SW is turned on, the threshing device is driven and the operation switch SW 1 is turned on.
By switching the changeover switch SW 3 to the intermediate cutting work side, it is possible to perform steering control according to the intermediate control method shown in Table 1 below, and by switching the changeover switch SW 3 to the row cutting work side. By switching, it is possible to perform steering control using the row mowing control method shown in Table 1. Note that the work method is horizontal mowing work, but in this case, steering control using the row mowing control method may be used.
【表】
斯くして条刈作業時において、圃場に植立する
穀稈が列間で互に絡合つている場合、穀稈引起装
置4の前方で、かつ、未刈側となる機体の幅方向
一側に穀稈掻分装置7を取付けて、この絡合う穀
稈を両側に掻分けるごとくするのである。
前記穀稈掻分装置7を離脱している場合、第1
表に示した通り、条刈及び横刈においては、右セ
ンサー6が領域にあるとき、つまり、機体が既
刈側(第3図右側)に片寄つているとき、左セン
サー5が領域にあれば、この左センサー5も左
旋回の指示を出力して、左旋回の制御を行なうの
であるが、左センサー5が領域にあれば、右セ
ンサー6が左旋回の指示を出力しているに拘わら
ず、左旋回の制御を行なわないし、また、左セン
サー5が領域にあれば、右センサー6が左旋回
の指示を出力しているに拘わらず、左センサー5
からの右旋回指示を優先させて右旋回の制御を行
なうのである。
この制御により、未刈側穀稈列に沿つた操向を
より精度よく行なえるのである。
所が、前記穀稈掻分装置7を未刈側となる機体
一側に取付けた場合、第1表による操向制御をし
た場合、前記右センサー6が領域に位置すると
きで、前記左センサー5が領域に位置するとき
に次の問題が生ずるのである。
即ち、この場合、左センサー5は前記した通り
の右旋回の指示をするのであるから、未刈側の機
体一側に取付けた穀稈掻分装置7の先端は、前記
左センサー5に対し遠い位置にあることから、大
きく右旋回し、未刈側の穀稈であつて、刈取るべ
き穀稈を分草してしまうことになる。
しかも、この右旋回は、前記左センサー5が前
記掻分装置7により分草する前の刈取側穀稈に対
し領域に位置するまで継続し、領域に位置し
て始めて左旋回に修正されることになるのである
から、前記掻分装置7で分草した後、前記左セン
サー5が領域に位置するまでの間刈取るべき穀
稈が刈残されてしまうのである。
之に対し、本考案では前記掻分装置7の取付け
を検出スイツチ10により検出し、該スイツチ1
0の切換接点SW5をして穀稈の刈取形態を条刈形
態から中割形態に切換え、所謂左センサー5にお
ける各スイツチS−LL,S−LR1,S−LR2のオ
ン信号をマイクロコンピユータ9によりカツトオ
フし、右センサー6における両スイツチS−RL,
S−RRのオン信号のみをマイクロコンピユータ
9に入力させて、ソレノイドSOL−L,SOL−
Rの駆動制御、即ち操向装置8による機体の方向
修正を行なわせることにより、前記した問題を解
決できるのである。
即ち、前記掻分装置7の取付時、前記左センサ
ー5からの指示をカツトオフし、前記右センサー
6からの指示のみで操向制御するのであるから、
前記左センサー5が領域に位置していても、前
記右センサー6からの左旋回指示により左旋回制
御が行なわれることになり、前記した右旋回制御
が行なわれることによる問題を解決できるのであ
る。
尚、この場合、前記右センサー6からの信号の
みにより操向装置8を制御して方向修正を行なう
ものであつて、左旋回が行なわれるが、この左旋
回により前記掻分装置7の先端が未刈即穀稈列に
突込むことになるが、左旋回により右センサー6
が領域に位置することにより、前記左旋回は中
止され、正規の走行方向に修復されるのであつ
て、前記した左センサー5による修復に比較して
早く行なわれることになり、前記掻分装置7の未
刈側への突込みによる問題は最小にできるのであ
る。
以上説明した如く、本考案の操向制御装置を備
えたコンバインは、機体前部で、機体の幅方向両
側に、穀稈に対し機体位置を検出する既刈側操向
センサーと未刈側操向センサーとを設けると共
に、穀稈の引起爪をもつ穀稈引起装置を設け、前
記各操向センサーによる検出信号を操向装置に出
力させて、機体の方向修正を行なうごとく構成
し、かつ前記穀稈引起装置の前方で、かつ、未刈
側となる機体の幅方向一側に、穀稈の掻分爪をも
つ穀稈掻分装置を着脱自在に取付けるごとくした
コンバインにおいて、前記穀稈掻分装置の取付け
時、掻分装置の取付け側に設けた未刈側の操向セ
ンサーからの検出信号をカツトオフし、かつ、既
刈側の操向センサーからの検出信号を操向装置に
出力させ、かつ、前記穀稈掻分装置を離脱した
時、前記既刈側及び未刈側操向センサーからの検
出信号を操向装置に出力させるべく構成したこと
により、前記掻分装置を離脱して刈取作業を行な
う場合には、前記各操向センサーを共に用い、前
記未刈側センサーによる修正を基に、操向の安定
性を図り、機体の急激な方向修正を少なくでき、
かつ、既刈側への刈残しを防止できながら、前記
掻分装置を取付けて刈取作業を行なう場合には、
前記各操向センサーを共に用いることによる問題
点、即ち、機体が既刈側に片寄つた状態で未刈側
操向センサーが既刈側への旋回を指示する場合
で、この指示で既刈側へ旋回制御されることによ
り、前記掻分装置の先端部が刈取るべき穀稈を未
刈側に分草してしまい、未刈側において刈残しを
生ずる問題を解決できるのであり、また、既刈側
操向センサーのみによる操向制御によつて、前記
掻分装置が未刈側に突込むも、その突込量は最小
にできるのである。[Table] During row mowing work, if the grain culms planted in the field are intertwined with each other between rows, the width of the machine that is in front of the grain culm lifting device 4 and on the uncut side. A grain culm scraping device 7 is installed on one side in the direction to separate the intertwined grain culms from both sides. When the grain culm scraping device 7 is removed, the first
As shown in the table, in row mowing and horizontal mowing, when the right sensor 6 is in the area, that is, when the machine is biased towards the already cut side (right side in Figure 3), if the left sensor 5 is in the area, This left sensor 5 also outputs a left turn instruction and controls the left turn, but if the left sensor 5 is in the area, even though the right sensor 6 is outputting a left turn instruction. , does not control the left turn, and if the left sensor 5 is in the area, the left sensor 5 does not control the left turn even though the right sensor 6 outputs a left turn instruction.
The right turn command is given priority to control the right turn. This control allows for more accurate steering along the row of grain culms on the uncut side. However, when the grain culm scraping device 7 is installed on one side of the machine that is the uncut side, and when the steering control is performed according to Table 1, when the right sensor 6 is located in the area, the left sensor The following problem occurs when 5 is located in the area. That is, in this case, since the left sensor 5 instructs the right turn as described above, the tip of the grain culm ripping device 7 attached to one side of the machine body on the uncut side is directed against the left sensor 5. Since it is located far away, it turns sharply to the right and ends up weeding the grain culm that should be reaped, which is the uncut side of the grain culm. Moreover, this rightward turning continues until the left sensor 5 is located in the area with respect to the grain culm on the reaping side before being divided by the scraping device 7, and only after being located in the area is the left turning corrected. Therefore, after weeding is done by the raking device 7, the grain culms to be harvested remain uncut until the left sensor 5 is located in the area. In contrast, in the present invention, the installation of the scraping device 7 is detected by a detection switch 10, and the switch 1
0 switching contact SW 5 is used to switch the grain culm reaping mode from the row cutting mode to the mid-splitting mode, and the on-signal of each switch S-LL, S-LR 1 , S-LR 2 in the so-called left sensor 5 is micro-controlled. The computer 9 cuts off both switches S-RL in the right sensor 6,
Only the S-RR ON signal is input to the microcomputer 9, and the solenoids SOL-L and SOL-
The above-mentioned problem can be solved by controlling the drive of R, that is, by controlling the steering device 8 to correct the direction of the aircraft. That is, when the scraping device 7 is installed, the instruction from the left sensor 5 is cut off, and the steering is controlled only by the instruction from the right sensor 6.
Even if the left sensor 5 is located in the area, the left turn control is performed in response to the left turn instruction from the right sensor 6, and the problem caused by the right turn control described above can be solved. . In this case, the direction is corrected by controlling the steering device 8 only by the signal from the right sensor 6, and a left turn is performed, but this left turn causes the tip of the scraping device 7 to It will rush into the row of uncut grain culms immediately, but due to the left turn, the right sensor 6
is located in the area, the left turning is stopped and the normal running direction is restored, which is done more quickly than the restoration by the left sensor 5 described above, and the scraping device 7 Problems caused by the pruning of the mower into the uncut side can be minimized. As explained above, a combine equipped with the steering control device of the present invention has a cut side steering sensor and an uncut side steering sensor, which detect the position of the machine relative to the grain culm, and A grain culm lifting device having a grain culm lifting claw is provided, and detection signals from each of the steering sensors are outputted to the steering device to correct the direction of the aircraft, and the In a combine harvester in which a grain culm scraping device having grain culm scraping claws is removably attached in front of the grain culm pulling device and on one side in the width direction of the machine body which is the uncut side, the grain culm scraping device When installing the raking device, cut off the detection signal from the steering sensor on the uncut side installed on the installation side of the raking device, and output the detection signal from the steering sensor on the cut side to the steering device. and when the grain culm raking device is detached, the detection signals from the cut side and uncut side steering sensors are output to the steering device, so that when the grain culm raking device is detached, the culm raking device is detached. When performing reaping work, each of the above-mentioned steering sensors is used together, and based on the corrections made by the non-mowing side sensor, steering stability can be achieved and sudden direction corrections of the machine body can be reduced,
In addition, when performing reaping work with the above-mentioned scraping device installed while preventing uncut leaves on the mowed side,
The problem with using each of the above steering sensors together is that when the machine is biased towards the mowed side, the uncut side steering sensor instructs to turn towards the mown side, and this instruction causes the machine to turn towards the mowed side. By controlling the swivel to the left, it is possible to solve the problem that the tip of the scraping device divides the grain culm to be harvested to the uncut side, resulting in uncut grass on the uncut side. By controlling the steering using only the cutting-side steering sensor, even if the scraping device pushes toward the uncut side, the amount of thrust can be minimized.
図面は本考案の実施例を示すもので、第1図は
その一部を省略した斜視図、第2図は同要部の概
略平面図、第3図は操向制御回路図、第4図は要
部の斜視図である。
4……穀稈引起装置、4b……引起爪、5,6
……操向センサー、7……穀稈掻分装置、7b…
…掻分爪、8……操向装置。
The drawings show an embodiment of the present invention; Fig. 1 is a partially omitted perspective view, Fig. 2 is a schematic plan view of the main parts, Fig. 3 is a steering control circuit diagram, and Fig. 4 is a perspective view of main parts. 4... Grain culm lifting device, 4b... Pulling claw, 5, 6
...Steering sensor, 7...Grain culm scraping device, 7b...
...Scraping claw, 8...Steering device.
Claims (1)
機体位置を検出する既刈側操向センサーと未刈側
操向センサーとを設けると共に、穀稈の引起爪を
もつ穀稈引起装置を設け、前記各操向センサーに
よる検出信号を操向装置に出力させて、機体の方
向修正を行なうごとく構成し、かつ前記穀稈引起
装置の前方で、かつ、未刈側となる機体の幅方向
一側に、穀稈の掻分爪をもつ穀稈掻分装置を着脱
自在に取付けるごとくしたコンバインにおいて、
前記穀稈掻分装置の取付け時、掻分装置の取付け
側に設けた未刈側の操向センサーからの検出信号
をカツトオフし、かつ、既刈側の操向センサーか
らの検出信号を操向装置に出力させ、かつ、前記
穀稈掻分装置を離脱した時、前記既刈側及び未刈
側操向センサーからの検出信号を操向装置に出力
させるべく構成したことを特徴とする操向制御装
置を備えたコンバイン。 At the front of the machine, a cut side steering sensor and an uncut side steering sensor are provided on both sides in the width direction of the machine body to detect the position of the machine with respect to the grain culm, and a grain culm lifting device having a grain culm lifting claw is provided. is configured to correct the direction of the aircraft by outputting the detection signals from each of the steering sensors to the steering device, and to adjust the width of the aircraft on the uncut side in front of the grain culm pulling device. In a combine harvester in which a grain culm scraping device having grain culm scraping claws is removably attached to one side in the direction,
When installing the grain culm scraping device, cut off the detection signal from the steering sensor on the uncut side provided on the installation side of the grain culm scraping device, and cut off the detection signal from the steering sensor on the cut side. A steering device characterized in that the steering device is configured to output detection signals from the cut side and uncut side steering sensors to the steering device when the grain culm scraping device is detached. Combine harvester with control equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1070182U JPS58113313U (en) | 1982-01-27 | 1982-01-27 | Combine harvester with steering control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1070182U JPS58113313U (en) | 1982-01-27 | 1982-01-27 | Combine harvester with steering control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58113313U JPS58113313U (en) | 1983-08-03 |
JPH0226241Y2 true JPH0226241Y2 (en) | 1990-07-18 |
Family
ID=30023334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1070182U Granted JPS58113313U (en) | 1982-01-27 | 1982-01-27 | Combine harvester with steering control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58113313U (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5583943U (en) * | 1978-12-07 | 1980-06-10 | ||
JPS55147137U (en) * | 1979-04-11 | 1980-10-22 |
-
1982
- 1982-01-27 JP JP1070182U patent/JPS58113313U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58113313U (en) | 1983-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8291684B2 (en) | Swather with automatic reel control | |
JPH0226241Y2 (en) | ||
JP2865100B2 (en) | Combine pilot | |
JPH09294449A (en) | Combine harvester | |
JP2004024147A (en) | Combine | |
JPS6345134Y2 (en) | ||
JP2574064B2 (en) | Combine | |
JP2510773B2 (en) | Harvester | |
JPS6023802B2 (en) | reaping harvester | |
JP2907729B2 (en) | Control unit for raising and lowering the reaping section of the combine with all culms | |
JP2955403B2 (en) | Combine lift controller | |
JPH0216916A (en) | Ordinary-type combine | |
JP2547504Y2 (en) | Combine direction control device | |
JPS6224433Y2 (en) | ||
JPH07308105A (en) | Directional control unit for reaper | |
JPH08814Y2 (en) | Automatic direction control device for mobile harvester | |
JPS598492Y2 (en) | Automatic steering control mechanism for reaping harvester | |
JPH06225623A (en) | Structure for dividing grass of reaping harvester | |
JPH0135128Y2 (en) | ||
JP2501795B2 (en) | Combine harvesting automatic lifting control system | |
JPH08191622A (en) | Theresher for combined harvester | |
JPS6131642Y2 (en) | ||
JPS6320246Y2 (en) | ||
JPS5927720Y2 (en) | Weeding rod positioning device | |
JPS595284Y2 (en) | Automatic rotation device for harvesting machine |