JPH02262104A - Antireflection plastic lens having high refractive index - Google Patents

Antireflection plastic lens having high refractive index

Info

Publication number
JPH02262104A
JPH02262104A JP1083391A JP8339189A JPH02262104A JP H02262104 A JPH02262104 A JP H02262104A JP 1083391 A JP1083391 A JP 1083391A JP 8339189 A JP8339189 A JP 8339189A JP H02262104 A JPH02262104 A JP H02262104A
Authority
JP
Japan
Prior art keywords
film
refractive index
high refractive
plastic lens
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1083391A
Other languages
Japanese (ja)
Other versions
JPH07119843B2 (en
Inventor
Koji Sato
弘次 佐藤
Tokio Suzuki
鈴木 時夫
Hajime Kamiya
神谷 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP1083391A priority Critical patent/JPH07119843B2/en
Priority to EP19900106204 priority patent/EP0390218B1/en
Priority to ES90106204T priority patent/ES2075084T3/en
Priority to DE1990621420 priority patent/DE69021420T2/en
Publication of JPH02262104A publication Critical patent/JPH02262104A/en
Priority to US07/839,684 priority patent/US5181141A/en
Publication of JPH07119843B2 publication Critical patent/JPH07119843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve mar-proof and optical characteristics by forming a specified hard coat film and a specified multilayered antireflection film on the surface of the substrate of a plastic lens based on polyurethane. CONSTITUTION:A hard coat film contg. silicone resin and a multilayered antireflection film having a vapor-deposited film of a mixture of oxides of metals including Ta, Zr and Y as a film having a high refractive index is formed on the surface of the substrate of a plastic lens based on polyurethane obtd. by polymerizing polyisocyanate and polythiol. A thin lightweight antireflection plastic lens having a high refractive index is obtd. This lens has improved mar-proof and optical characteristics without reducing the shock resistance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、反射防止性高屈折率プラスチックレンズに係
り、特にポリウレタンレンズ基板に設けられたハードコ
ート膜の」−に多層反射防止膜を設けてなる反射防止性
高屈折率プラスチックレンズに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an antireflection high refractive index plastic lens, and in particular, a multilayer antireflection film is provided on the hard coat film provided on a polyurethane lens substrate. This invention relates to antireflection high refractive index plastic lenses.

[従来の技術] 近年、眼鏡レンズ、写真カメラレンズ、ビデオカメラレ
ンズ等の光学レンズの材料として、無機ガラスに代わっ
てプラスチックが使用されるようになってきている。プ
ラスチックレンズは、従来のガラスレンズに比較して軽
量で耐衝撃性に優れており、また染色が容易である等多
くの利点を有している。
[Prior Art] In recent years, plastics have come to be used instead of inorganic glass as materials for optical lenses such as eyeglass lenses, photographic camera lenses, and video camera lenses. Plastic lenses have many advantages over conventional glass lenses, such as being lighter, having better impact resistance, and being easier to dye.

しかしながら、プラスチックレンズの主流として使用さ
れているジエチレングリコールビスアリルカーボネート
は、屈折率が1.50と無機ガラスに比べて低く、特に
マイナスレンズにおいてはコバ厚が大きくなる為、より
薄いプラスチックレンズが要望されている。
However, diethylene glycol bisallyl carbonate, which is mainly used in plastic lenses, has a refractive index of 1.50, which is lower than inorganic glass, and the edge thickness becomes large, especially in minus lenses, so thinner plastic lenses are desired. ing.

より薄いプラスチックレンズへの要望に対しては種々の
提案がなされている。たとえば特開昭60−19901
6号公報においては、ポリイソシアネートとポリチオー
ルとの共重合体からなるポリウレタンレンズが提案され
ている。このポリウレタンレンズは、ndが1.56〜
1.64と高く、比重が1.22〜1.44と小さいの
で、特に薄くて軽い光学レンズとして好適である。また
このポリウレタンレンズは、本来耐衝撃性及び染色性に
も優れている。
Various proposals have been made in response to the demand for thinner plastic lenses. For example, JP-A-60-19901
No. 6 proposes a polyurethane lens made of a copolymer of polyisocyanate and polythiol. This polyurethane lens has an nd of 1.56~
Since it has a high specific gravity of 1.64 and a low specific gravity of 1.22 to 1.44, it is particularly suitable as a thin and light optical lens. Additionally, this polyurethane lens inherently has excellent impact resistance and dyeability.

しかしながら、このポリウレタンレンズは、他のプラス
チックレンズと同様に耐擦傷性に劣り、この耐擦傷性を
改善するために、有機ハードコート膜を設ける等の表面
処理を施すことが好ましい。
However, like other plastic lenses, this polyurethane lens has poor scratch resistance, and in order to improve this scratch resistance, it is preferable to perform surface treatment such as providing an organic hard coat film.

そこで、特公昭61−48123号公報には、ジアリル
フタレート、ジアリルイソフタレート、ジアリルクロレ
ンデート等の重合体の如き比較的に屈折率の高い合成樹
脂レンズ表面にメラミン系樹脂の有機ハードコート膜を
形成する方法が開示されており、この方法においては、
ヘキサメトキシメチロールメラミン及びこのメラミン化
合物と架橋反応をするOH基、C0OH基、NF2基、
エポキシ基等を含む樹脂に溶媒、架橋触媒を加えた混合
液を前記合成樹脂レンズ基板上に塗布し、加熱硬化する
ことによりメラミン系樹脂硬化膜を得ている。
Therefore, in Japanese Patent Publication No. 61-48123, an organic hard coat film of melamine-based resin is applied to the surface of a synthetic resin lens with a relatively high refractive index, such as a polymer such as diallyl phthalate, diallyl isophthalate, diallyl chlorendate, etc. A method of forming is disclosed, the method comprising:
Hexamethoxymethylolmelamine and OH groups, COOH groups, NF2 groups that undergo crosslinking reactions with this melamine compound,
A cured melamine resin film is obtained by applying a mixture of a resin containing epoxy groups, etc., a solvent and a crosslinking catalyst onto the synthetic resin lens substrate, and curing with heat.

一方、多層反射防止膜は、−船釣には光学素子表面上に
無機物からなる高屈折率および低屈折率の各蒸着膜を交
互に積層していき、反射防止機能を付与させるものであ
る。
On the other hand, a multilayer antireflection film is used for boat fishing by alternately laminating high and low refractive index vapor-deposited films made of an inorganic material on the surface of an optical element to impart an antireflection function.

このような多層反射防止膜として、例えば特開昭55−
22704号公報には、膜強度を高め、温度依存性のな
い多層反射防止膜として、Ta2O、とZrO2の混合
蒸着原料を使用した高屈折率蒸着膜を含むものが開示さ
れており、この反射防止膜は下地(膜、基板)温度が1
40℃以上の蒸着条件で成膜されている。また同様に、
特開昭46−4759号公報には、ZrとTa(少なく
とも一方は酸化物)の混合蒸着原料を使用した高屈折率
蒸着膜を含む多層反射防止膜が開示されている。
As such a multilayer anti-reflection film, for example, Japanese Patent Application Laid-Open No.
Publication No. 22704 discloses a multilayer antireflection film with increased film strength and no temperature dependence that includes a high refractive index vapor deposited film using a mixed vapor deposition raw material of Ta2O and ZrO2. The film has a base (film, substrate) temperature of 1.
The film is formed under vapor deposition conditions of 40° C. or higher. Similarly,
JP-A-46-4759 discloses a multilayer antireflection film including a high refractive index vapor-deposited film using a mixed vapor deposition raw material of Zr and Ta (at least one of which is an oxide).

[発明が解決しようとする課題] しかしながら、ハードコート膜としてメラミン系樹脂の
ような付加縮合により硬化する樹脂を用いた場合、一般
に加熱硬化の処理温度はかなり高くなければならず、金
属やガラスのように耐熱性が良好な基板には好ましいが
、耐熱性の悪い基板の場合には処理温度に限界があり、
仮に処理温度を低くし硬化時間を長くしても、金属やガ
ラスに適用したほどの硬度はでないという欠点がある。
[Problems to be Solved by the Invention] However, when using a resin that hardens by addition condensation, such as a melamine resin, as a hard coat film, the heat curing processing temperature must generally be quite high, and the Although it is preferable for substrates with good heat resistance such as, there is a limit to the processing temperature for substrates with poor heat resistance.
Even if the treatment temperature is lowered and the curing time is increased, the hardness is not as strong as that applied to metal or glass.

したがって、メラミン系樹脂含有コーティング組成物を
、通常のプラスチックレンズより耐熱性に劣るとされて
いるポリウレタンレンズに塗布、硬化させた場合にも、
同様の欠点が生ずることは明らかである。
Therefore, even when a melamine-based resin-containing coating composition is applied and cured to a polyurethane lens, which is said to have lower heat resistance than ordinary plastic lenses,
It is clear that similar drawbacks arise.

また、反射防止膜の成膜において、上述の特開昭46−
4759号公報、特開昭55−22704号公報に開示
されたTa205 、ZrO2の混合蒸着原料を用いた
蒸着膜は、温度依存性の少ない、強度の優れた光学物性
を示すことが知られているが、蒸着膜自身に吸収がある
ため着色作用が生じ、透明性を必要とする光学レンズに
は用いにくいという問題点や、ポリウレタンレンズのよ
うに成膜時の基板温度を十分に高(することができない
基板には、十分な機械的強度や化学的耐久性を有する蒸
着膜を成膜することが困難であるという問題点があり、
優れた光学的特性を有する反射防止性高屈折率プラスチ
ックレンズを得ることは困難であった。
In addition, in forming an antireflection film, the above-mentioned Japanese Patent Application Laid-Open No.
It is known that the vapor deposited film using the mixed vapor deposition raw material of Ta205 and ZrO2 disclosed in JP-A-4759 and JP-A-55-22704 exhibits excellent optical properties with less temperature dependence and strength. However, since the vapor-deposited film itself absorbs, a coloring effect occurs, making it difficult to use for optical lenses that require transparency, and it is difficult to use the film at a sufficiently high substrate temperature during film formation, such as with polyurethane lenses. There is a problem in that it is difficult to form a vapor deposited film with sufficient mechanical strength and chemical durability on a substrate that cannot be used.
It has been difficult to obtain antireflection high refractive index plastic lenses with excellent optical properties.

したがって本発明の目的は、上述の従来技術の欠点を解
消して、薄型軽量の反射防止性高屈折率プラスチックレ
ンズであって、耐擦傷性および光学的特性の向上が図ら
れた反射防止性高屈折率プラスチックレンズを提供する
ことにある。
Therefore, an object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a thin and lightweight anti-reflection high refractive index plastic lens with improved scratch resistance and optical properties. Our objective is to provide refractive index plastic lenses.

[問題点を解決するための手段] 本発明は、上記目的を解決するためになされたもので、
本発明の反射防止性高屈折率プラスチックレンズは、ポ
リイソシアネートとポリチオールとを重合することによ
って得られるポリウレタンを主成分とするプラスチック
レンズ基板と、前記プラスチック基板の表面に設けられ
た、有機ケイ素重合体を含むハードコート膜と、タンタ
ル、ジルコニウムおよびイツトリウムを含む金属酸化物
の混合蒸着膜を高屈折率膜として有する、前記ハ−ドコ
ート膜の上に設けられた多層反射防止膜とを具備するこ
とを特徴とするものである。
[Means for solving the problems] The present invention has been made to solve the above objects, and
The antireflection high refractive index plastic lens of the present invention comprises a plastic lens substrate mainly composed of polyurethane obtained by polymerizing polyisocyanate and polythiol, and an organosilicon polymer provided on the surface of the plastic substrate. and a multilayer anti-reflection film provided on the hard coat film, the multilayer antireflection film having a mixed vapor-deposited film of metal oxides containing tantalum, zirconium, and yttrium as a high refractive index film. This is a characteristic feature.

本発明において、ポリイソシアネートとポリチオールと
を重合することによって得られるポリウレタンを主成分
とするプラスチックレンズ基板は、ポリイソシアネート
とポリチオールの混合液をレンズ成形用型と樹脂製ガス
ケットからなる鋳型中で注型重合することにより得られ
る。
In the present invention, a plastic lens substrate whose main component is polyurethane obtained by polymerizing polyisocyanate and polythiol is produced by casting a mixed solution of polyisocyanate and polythiol in a mold consisting of a lens mold and a resin gasket. Obtained by polymerization.

ポリウレタンレンズを製造するための単量体として用い
られるポリイソシアネートとしては特に限定はないが、
トリレンジイソシアネート、ジフェニルメタンジイソシ
アネート、ポリメリック型ジフェニルメタンシイソイシ
アネート、ナフチレンジイソシアネート、ヘキサメチレ
ンジイソシアネート、イソホロンジイソシアネート、キ
シリレンジイソシアネート、水添キシリレンジイソシア
ネート、水添ジフェニルメタンジイソシアネート、リジ
ンジイソシアネート、トリフェニルメタントリイソシア
ネート、トリス(イソシアネートフェニル)チオフォス
フェート、トランス−シクロヘキサン−1,4−ジイソ
シアネート、p−フェニレンジイソシアネート、テトラ
メチレンジイソシアネート、1,6.11−ウンデカン
トリイソシアネート、1,8−ジイソシアネート−4−
イソシアネートメチルオクタン、リジンエステルトリイ
ソシアネート、1. 3. 6−ヘキサメチレントリイ
ソシアネート、ビシクロヘプタントリイソシアネート等
のポリイソシアネート化合物及びそれらの化合物のアロ
ファネート変性体、ビユレット変性体、イソシアヌレー
ト変性体、ポリオールまたはポリチオールとのアダクト
変性体等があげられ、単独で用いてもよいし、必要に応
じて2種以上の混合物としてもよい。
There are no particular limitations on the polyisocyanate used as a monomer for manufacturing polyurethane lenses, but
Tolylene diisocyanate, diphenylmethane diisocyanate, polymeric diphenylmethane diisocyanate, naphthylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, lysine diisocyanate, triphenylmethane triisocyanate, Tris (Isocyanate phenyl) thiophosphate, trans-cyclohexane-1,4-diisocyanate, p-phenylene diisocyanate, tetramethylene diisocyanate, 1,6.11-undecane triisocyanate, 1,8-diisocyanate-4-
Isocyanate methyl octane, lysine ester triisocyanate, 1. 3. Examples include polyisocyanate compounds such as 6-hexamethylene triisocyanate and bicycloheptane triisocyanate, and allophanate-modified products, biuret-modified products, isocyanurate-modified products, and adduct-modified products with polyols or polythiols of these compounds, which can be used alone. Alternatively, a mixture of two or more types may be used as necessary.

その他公知のイソシアネート化合物を用いることもでき
るが、主成分となるイソシアネート化合物は2官能以上
のものでなければならない。公知の芳香族イソシアネー
ト化合物にCj2やBr等のハロゲン原子を導入しても
よい。特に好ましいイソシアネート化合物としては、キ
シリレンジイソシアネート、イソホロンジイソシアネー
ト、ヘキサメチレンジイソシアネートで代表される無黄
変型イソシアネート化合物が挙げられる。
Other known isocyanate compounds may also be used, but the isocyanate compound serving as the main component must be bifunctional or higher. Halogen atoms such as Cj2 and Br may be introduced into known aromatic isocyanate compounds. Particularly preferred isocyanate compounds include non-yellowing type isocyanate compounds represented by xylylene diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate.

またポリウレタンレンズの製造のためにポリイソシアネ
ートとの反応に供せられるポリチオールも特に限定され
るものではなく、公知のものを用いることができる。例
えば、エタンジチオール、プロパンジチオール、プロパ
ントリチオール、ブタンジチオール、ペンタンジチオー
ル、ヘキサンジチオール、ヘプタンジチオール、オクタ
ンジチオール、シクロヘキサンジチオール、シクロヘプ
タンジチオール、2,5−ジクロロベンゼン−1゜3−
ジチオール、ペンタエリスリトールテトラキス−3−メ
ルカプトプロピオネート、ペンタエリスリトールテトラ
キスチオグリコレート等が挙げられるが、ペンタエリス
リトール誘導体が特に好ましい。
Furthermore, the polythiol used in the reaction with polyisocyanate for producing polyurethane lenses is not particularly limited, and any known polythiol can be used. For example, ethanedithiol, propanedithiol, propanetrithiol, butanedithiol, pentanedithiol, hexanedithiol, heptanedithiol, octanedithiol, cyclohexanedithiol, cycloheptanedithiol, 2,5-dichlorobenzene-1°3-
Examples include dithiol, pentaerythritol tetrakis-3-mercaptopropionate, pentaerythritol tetrakis thioglycolate, and pentaerythritol derivatives are particularly preferred.

ポリイソシアネートとポリチオールとの注型重合に際し
て、離型剤として下記一般式で表されるリン酸エステル
を単量体混合物に添加することにより、優れた光学面を
持ち、屈折率が高く、アラベ数も大きい、光学レンズと
して使用するに十分な性能を持ったプラスチックレンズ
が得られる。
During cast polymerization of polyisocyanate and polythiol, by adding a phosphoric acid ester represented by the following general formula as a mold release agent to the monomer mixture, it has an excellent optical surface, a high refractive index, and a low Arabe number. A large plastic lens with sufficient performance to be used as an optical lens can be obtained.

(RO)2P−OH (ここで、Rは炭素数が8以下のアルキル基である。) 次に、本発明においてポリウレタンレンズ基板上に形成
される、有機ケイ素重合体を含むハードコート膜は、下
記の一般式を有する化合物群および/またはこれらの加
水分解物からなる群より選ばれた化合物からなる層を、
デイツプ法、塗布法等によりポリウレタンレンズ基板上
に形成したのち硬化させることにより得ることできる。
(RO)2P-OH (Here, R is an alkyl group having 8 or less carbon atoms.) Next, in the present invention, the hard coat film containing an organosilicon polymer formed on the polyurethane lens substrate is: A layer consisting of a compound selected from the group consisting of compounds having the following general formula and/or their hydrolysates,
It can be obtained by forming it on a polyurethane lens substrate by a dipping method, coating method, etc. and then curing it.

一般式 %式% (ここで、R1、R2は、炭素数1〜10のアルキル基
、アリール基、ハロゲン化アルキル、ハロゲン化アリー
ル、アルケニル、またはエポキシ基、(メタ)アクリル
オキシ基、メルカプト基、もしくはシアノ基を有する有
機基で5i−C結合によりケイ素と結合されるものであ
り、R3は、炭素数1〜6のアルキル基、アルコキシア
ルキル基またはアシル基であり、aおよびbは0.1ま
たは2であり、a+bが1または2である。)これらの
化合物の例としては、メチルトリメトキシシラン、メチ
ルトリエトキシシラン、メチルトリメトキシエトキシシ
ラン、メチルトリアセトキシシラン、メチルトリプロポ
キシシラン、メチルトリブトキシシラン、エチルトリメ
トキシシラン、エチルトリエトキシシラン、ビニルトリ
メトキシシラン、ビニルトリエトキシシラン、ビニルト
リアセトキシシラン、ビニルトリメトキシエトキシシラ
ン、フェニルトリメトキシシラン、フェニルトリエトキ
シシラン、フェニルトリアセトキシシラン、γ−クロロ
プロピルトリメトキシシラン、γ−クロロプロピルトリ
エトキシシラン、γクロロプロピルトリプロポキシシラ
ン、3,3゜3−トリフロロプロピルトリメトキシシラ
ン、γ−グリシドキシプロピルトリメトキシシラン、γ
グリシドキシプロピルトリエトキシシラン、γ−(β−
グリシドキシエトキシ)プロピルトリメトキシシラン、
β−(3,4−エポキシシクロヘキシル)エチルトリメ
トキシシラン、β−(3゜4−エポキシシクロヘキシル
)エチルトリエトキシシラン、γ−メタクリルオキシプ
ロピルトリメトキシシラン、γ−アミノプロピルトリメ
トキシシラン、γ−アミノプロピルトリエトキシシラン
、γ−メルカプトプロピルトリメトキシシラン、γメル
カプトプロピルトリエトキシシラン、Nβ(アミノエチ
ル)−γ−アミノプロピルトリメトキシシラン、β−シ
アノエチルトリエトキシシラン等のトリアルコキシまた
はトリアジルオキシシラン類、およびジメチルジメトキ
シシラン、フェニルメチルジメトキシシラン、ジメチル
ジェトキシシラン、フェニルメチルジェトキシシラン、
γ−グリシドキシプロピルメチルジメトキシシラン、γ
−グリシドキシプロピルメチルジェトキシシラン、γ−
グリシドキシプロピルフエニルジメトキシシラン、γ−
グリシドキシプロピルフェニルジエトキシシラン、γ−
クロロプロピルメチルジメトキシシラン、γ−クロロプ
ロピルメチルジェトキシシラン、ジメチルジアセトキシ
シラン、γ−メタクリルオキシプロピルメチルジメトキ
シシラン、γ−メタクリルオキシプロピルメチルジェト
キシシラン、γ−メルカプトプロピルメチルジメトキシ
シラン、γ−メルカプトプロピルメチルジェトキシシラ
ン、γ−アミノプロピルメチルジメトキシシラン、γ−
アミノプロピルメチルジェトキシシラン、メチルビニル
ジメトキシシラン、メチルビニルジェトキシシラン等の
ジアルコキシシランまたはジアシルオキシシラン類が挙
げられる。
General formula % formula % (where R1 and R2 are an alkyl group having 1 to 10 carbon atoms, an aryl group, an alkyl halide, an aryl halide, an alkenyl, or an epoxy group, a (meth)acryloxy group, a mercapto group, or an organic group having a cyano group that is bonded to silicon through a 5i-C bond, R3 is an alkyl group, alkoxyalkyl group, or acyl group having 1 to 6 carbon atoms, and a and b are 0.1 or 2, and a+b is 1 or 2.) Examples of these compounds include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltripropoxysilane, methyltripropoxysilane, Butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ -Chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γchloropropyltripropoxysilane, 3,3゜3-trifluoropropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ
Glycidoxypropyltriethoxysilane, γ-(β-
glycidoxyethoxy)propyltrimethoxysilane,
β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, β-(3゜4-epoxycyclohexyl)ethyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-amino Trialkoxy or triazyloxysilanes such as propyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γmercaptopropyltriethoxysilane, Nβ (aminoethyl)-γ-aminopropyltrimethoxysilane, β-cyanoethyltriethoxysilane, etc. , and dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyljethoxysilane, phenylmethyljethoxysilane,
γ-glycidoxypropylmethyldimethoxysilane, γ
-glycidoxypropylmethyljethoxysilane, γ-
Glycidoxypropylphenyldimethoxysilane, γ-
Glycidoxypropylphenyldiethoxysilane, γ-
Chloropropylmethyldimethoxysilane, γ-chloropropylmethyljethoxysilane, dimethyldiacetoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyljethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercapto Propylmethyljethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-
Examples include dialkoxysilanes or diacyloxysilanes such as aminopropylmethyljethoxysilane, methylvinyldimethoxysilane, and methylvinyljethoxysilane.

これらの有機ケイ素化合物は、単独または2種以上組合
わせることも可能である。
These organosilicon compounds can be used alone or in combination of two or more.

さらに、単独では用いられないが、上記の有機ケイ素化
合物と併用できるものとして、各種のテトラアルコキシ
シラン類もしくはその加水分解物がある。
Furthermore, although not used alone, there are various tetraalkoxysilanes or their hydrolysates that can be used in combination with the above-mentioned organosilicon compounds.

このようなテトラアルコキシシラン類の例とじては、メ
チルシリケート、エチルシリケート、n−プロピルシリ
ケート、イソプロピルシリケート、n−ブチルシリケー
ト、5eC−ブチルシリケートおよびt−ブチルシリケ
ート等が挙げられる。
Examples of such tetraalkoxysilanes include methyl silicate, ethyl silicate, n-propyl silicate, isopropyl silicate, n-butyl silicate, 5eC-butyl silicate, and t-butyl silicate.

またこれらの有機ケイ素化合物は、触媒が存在しなくて
も硬化が可能であるが、さらに硬化を促進するために、
各種の触媒を用いることが可能である。
These organosilicon compounds can be cured even in the absence of a catalyst, but in order to further accelerate curing,
Various catalysts can be used.

このような触媒としては、ルイス酸、ルイス酸塩を含む
各種酸もしくは塩基、あるいは有機カルボン酸、クロム
酸、次亜塩素酸、ホウ酸、臭素酸、亜セレン酸、チオ硫
酸、オルトケイ酸、チオシアン酸、亜硝酸、アルミン酸
、炭酸等の金属塩とくにアルカリ金属塩またはアンモニ
ウム塩、さらにはアルミニウム、ジルコニウムあるいは
チタニウムのアルコキシドまたはこれらの錯化合物等を
使用することができる。
Such catalysts include Lewis acids, various acids or bases containing Lewis acid salts, or organic carboxylic acids, chromic acid, hypochlorous acid, boric acid, bromic acid, selenite, thiosulfuric acid, orthosilicic acid, and thiocyaninic acid. Metal salts such as acid, nitrous acid, aluminic acid, carbonic acid, especially alkali metal salts or ammonium salts, and alkoxides of aluminum, zirconium, or titanium or complex compounds thereof can be used.

さらに、前述した有機ケイ素重合体と他の有機物との併
用も可能であり、併用する他の有機物としては、エポキ
シ樹脂、アクリル系共重合体、あるいはポリビニルアル
コール等の水酸基含有重合体等が挙げられる。
Furthermore, it is also possible to use the above-mentioned organosilicon polymer in combination with other organic substances, such as epoxy resins, acrylic copolymers, or hydroxyl group-containing polymers such as polyvinyl alcohol. .

また、その他の賦形成分として、オプティカアクタ(1
962年7月発行、251頁)に開示されているような
、5iSAl、Ti5Sb等の無機酸化物のコロイドゾ
ルを使用することができる。
In addition, as other excipient components, Optica Acta (1
A colloidal sol of inorganic oxides such as 5iSAl and Ti5Sb, as disclosed in J. 962, p. 251, can be used.

さらに、コーティング作業を容易にするために保存状態
を良好に保つ溶剤類、および各種添加剤を使用すること
も可能である。
Furthermore, in order to facilitate the coating operation, it is also possible to use solvents and various additives that maintain good storage conditions.

本発明における多層反射防止膜は、低屈折率膜と高屈折
率膜とを交互に積層してなり、このときの高屈折率膜と
して、タンタル、ジルコニウムおよびイツトリウムを含
む金属酸化物の混合蒸着膜を用たちのである。なお、低
屈折率膜としては、耐熱性の面から特に二酸化硅素(S
102)膜を用いることが好ましい。
The multilayer antireflection film in the present invention is formed by alternately laminating low refractive index films and high refractive index films, and the high refractive index film at this time is a mixed vapor-deposited film of metal oxides containing tantalum, zirconium, and yttrium. It is used. In addition, as a low refractive index film, silicon dioxide (S
102) It is preferable to use a membrane.

タンタル、ジルコニウムおよびイツトリウムを含む金属
酸化物の混合蒸着膜は、酸化ジルコニウム(Z r 0
2 )粉末、酸化タンタル(Ta205)粉末および酸
化イツトリウム(Y203)粉末を混合し、加圧プレス
、焼結によりペレット状にしたものを電子ビーム加熱法
にて蒸着させたものが好適である。各粉末を混合してな
る混合原料の組成比は、モル比において、ZrO2が1
.0に対し、Ta205が0.8〜1.8、Y2O3が
0゜05〜0.3であることが好ましい。
The mixed vapor deposited film of metal oxides containing tantalum, zirconium and yttrium is zirconium oxide (Z r 0
2) It is preferable to mix powder, tantalum oxide (Ta205) powder, and yttrium oxide (Y203) powder, pressurize it, and sinter it to form a pellet, which is then vapor-deposited by electron beam heating. The composition ratio of the mixed raw material obtained by mixing each powder is such that ZrO2 is 1 in molar ratio.
.. It is preferable that Ta205 is 0.8 to 1.8 and Y2O3 is 0°05 to 0.3.

このようにして得られる混合蒸着膜は、Ta2O、と同
様に、ZrO2に比べ化学的に極めて安定であり、かつ
ZrO2に匹敵する透明性を有している。さらに屈折率
において、例えば2.05の高い数値を示し、膜設計」
二からも有効である。
The mixed vapor deposition film thus obtained is chemically extremely stable compared to ZrO2, as is Ta2O, and has transparency comparable to ZrO2. Furthermore, the film design shows a high refractive index of 2.05, for example.
It is also effective from the second point.

なお、1モルのZrO2に対して、Ta205が0.8
モル未満の場合や1.8モルを超える場合には、得られ
る混合蒸着膜に吸収が生じ易く、Y2O3が0.3モル
を超えると、蒸着速度が早くなり、得られる混合蒸着膜
に吸収が生じ易くなるとともに、蒸着原料の飛散が生じ
易くその制御が困難となる。
In addition, Ta205 is 0.8 for 1 mol of ZrO2.
When the amount is less than 1.8 mol or more than 1.8 mol, absorption tends to occur in the mixed vapor deposited film obtained, and when Y2O3 exceeds 0.3 mol, the vapor deposition rate increases and absorption occurs in the obtained mixed vapor deposited film. At the same time, the vapor deposition raw material is likely to scatter, making it difficult to control it.

本発明における多層反射防止膜の膜構成は、λ/2− 
)、/4の2層膜、λ/4−λ/4−λ/4あるいは1
./4−λ/2−λ/4の3層膜とすることが実用的に
は良いが、反射特性の用途から4層膜以上の多層膜でも
可能である。ここで、3層膜の基板側から数えて第1層
のλ/4膜は、」二記の混合蒸着膜と5102膜を使用
した3層対称等価膜、あるいは2層のコンポジットの等
価膜であってもよい。
The film structure of the multilayer antireflection film in the present invention is λ/2-
), /4 double layer film, λ/4-λ/4-λ/4 or 1
.. A three-layer film of /4-λ/2-λ/4 is practically preferable, but a multilayer film of four or more layers is also possible from the viewpoint of reflection characteristics. Here, the first layer λ/4 film counting from the substrate side of the three-layer film is a three-layer symmetrical equivalent film using the mixed vapor deposition film and 5102 film described in "2", or an equivalent film of a two-layer composite. There may be.

また、多層反射防止膜を成膜するにあたっては、上述し
た真空蒸着法に代えて、同様の焼結体をターゲット材料
とするスパッタリング法や、イオンブレーティング法等
の方法を用いることもできる。
Furthermore, in forming the multilayer antireflection film, instead of the vacuum evaporation method described above, a method such as a sputtering method using a similar sintered body as a target material or an ion blating method can also be used.

以上のようにして、ポリウレタンレンズ基板にハードコ
ート膜および多層反射防止膜を設けることにより、薄型
軽量の反射防止性高屈折率プラスチックレンズであって
、レンズの耐衝撃性の低下をまねくことなく耐擦傷性お
よび光学的特性の向上が図られた反射防止性高屈折率プ
ラスチックレンズを得ることができる。
As described above, by providing a hard coat film and a multilayer anti-reflection film on a polyurethane lens substrate, a thin and lightweight anti-reflection high refractive index plastic lens can be produced with high durability without reducing the impact resistance of the lens. An antireflection high refractive index plastic lens with improved scratch resistance and optical properties can be obtained.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

実施例1 (高屈折率ポリウレタンレンズの作製)m−キシリレン
ジイソシアネート100重量部と、ペンタエリスリトー
ルテトラキス−3−メルカプトプロピオネート142重
量部と、リン酸ジ−n−ブチル6重量部と、ジブチルス
ズジラウレート0.25重量部と、紫外線吸収剤として
2(2′−ヒドロキシ−5′−t−オクチルフェニル)
ベンゾトリアゾール0.5重量部とを混合し、十分に撹
拌したのち1 mmm1(の真空下で60分脱気を行っ
た。
Example 1 (Production of high refractive index polyurethane lens) 100 parts by weight of m-xylylene diisocyanate, 142 parts by weight of pentaerythritol tetrakis-3-mercaptopropionate, 6 parts by weight of di-n-butyl phosphate, and dibutyltin. 0.25 parts by weight of dilaurate and 2(2'-hydroxy-5'-t-octylphenyl) as an ultraviolet absorber.
After mixing with 0.5 parts by weight of benzotriazole and stirring thoroughly, deaeration was performed for 60 minutes under a vacuum of 1 mm.

次いで、ガラス製レンズ成形用型と樹脂製ガスケットと
からなる鋳型中に前記混合液を注入し、25°Cから1
20°Cまで連続的に20時間かけて昇温し、次いで1
20°Cで2時間保持して重合を行なった。重合後ガス
ケットを除去し、レンズ成形型とレンズを分離して高屈
折率ポリウレタンレンズを得た。
Next, the mixed solution was poured into a mold consisting of a glass lens mold and a resin gasket, and heated at 25°C for 1 hour.
Continuously raise the temperature to 20°C over 20 hours, then 1
Polymerization was carried out by holding at 20°C for 2 hours. After polymerization, the gasket was removed and the lens mold and lens were separated to obtain a high refractive index polyurethane lens.

得られたレンズはnd=1.592、シd−36という
良好な光学物性を有していた。
The obtained lens had good optical properties of nd=1.592 and d-36.

(コーテイング液の調製) γ−グリシドキシプロピルトリメトキシシラン212重
量部に、0.06規定塩酸水溶液54重量部を撹拌しな
がら滴下した。滴下終了後、24時間撹拌を行ない加水
分解物を得た。
(Preparation of coating liquid) 54 parts by weight of a 0.06N hydrochloric acid aqueous solution was added dropwise to 212 parts by weight of γ-glycidoxypropyltrimethoxysilane with stirring. After the dropwise addition was completed, the mixture was stirred for 24 hours to obtain a hydrolyzate.

次いで、五酸化アンチモンゾル(メタノール分散状ゾル
、平均粒子径10nm、固形分30%)424重量部と
、エポキシ化合物としてブナコールEX−521(ナガ
セ化成株式会社製、ポリグリセロールポリグリシジルエ
ーテル)34重量部とを添加し、5時間撹拌した後、硬
化触媒としてジブチルスズラウレートを6.8重量部添
加して、更に100時間熟成することによりコーテイン
グ液を得た。
Next, 424 parts by weight of antimony pentoxide sol (methanol dispersion sol, average particle size 10 nm, solid content 30%) and 34 parts by weight of Bunacol EX-521 (manufactured by Nagase Kasei Co., Ltd., polyglycerol polyglycidyl ether) as an epoxy compound. After stirring for 5 hours, 6.8 parts by weight of dibutyltin laurate was added as a curing catalyst, and the mixture was further aged for 100 hours to obtain a coating liquid.

(ハードコート膜の形成) 前述の方法で作製した高屈折率ポリウレタンレンズを5
0℃の10%NaOH水溶液に5分間浸漬し、十分に洗
浄を行なった後、上記の方法で調製されたコーテイング
液を用いて、デイツプ法(引き上げ速度12cm/分)
でコーティングを行ない、120℃で1時間加熱して硬
化させたのち徐冷してハードコート膜を得た。
(Formation of hard coat film) The high refractive index polyurethane lens produced by the method described above was
After being immersed in a 10% NaOH aqueous solution at 0°C for 5 minutes and thoroughly washed, the dip method (pulling speed 12 cm/min) was performed using the coating solution prepared by the above method.
Coating was carried out, heated at 120° C. for 1 hour to cure, and then slowly cooled to obtain a hard coat film.

(多層反射防止膜の形成) 下地層および低屈折率膜の蒸着原料として、SiO2の
焼結体を、また高屈折率膜である混合蒸着膜の蒸着原料
として、ZrO2粉末、Ta2O、粉末およびY2O3
粉末をモル比で1:1゜370.2の割合で混合し、プ
レス成形したのち1200℃で焼結してペレット状にし
たものを用い、前述の方法でハードコート膜を設けたポ
リウレタンレンズを蒸着槽に入れ、排気しながら85℃
に加熱し、2 X 1O−5Torrまで排気した後、
電子ビーム加熱法にて上記蒸着原料を蒸着させて、表−
1に示すように、硅素酸化物膜からなる下地層、混合蒸
着膜と硅素酸化物膜とのコンポジット等価膜からなる第
1層の低屈折率膜、混合蒸着膜からなる第2層の高屈折
率膜および硅素酸化物からなる第3層の低屈折率膜を順
次成膜してなる膜構成の多層反射防止膜を得た。
(Formation of multilayer antireflection film) A sintered body of SiO2 was used as a vapor deposition raw material for the base layer and a low refractive index film, and ZrO2 powder, Ta2O, powder, and Y2O3 were used as vapor deposition raw materials for a mixed vapor deposition film that was a high refractive index film.
The powders were mixed at a molar ratio of 1:1°370.2, press-molded, and then sintered at 1200°C to form pellets, which were then used to form a polyurethane lens with a hard coat film provided using the method described above. Place in a vapor deposition tank and heat to 85℃ while exhausting.
After heating to 2 X 1O-5 Torr,
The above vapor deposition raw materials were vapor deposited using the electron beam heating method, and the following results were obtained.
1, a base layer made of a silicon oxide film, a first layer of low refractive index film made of a composite equivalent film of a mixed vapor deposited film and a silicon oxide film, and a second layer of high refractive index made of a mixed vapor deposited film. A multilayer antireflection film having a film structure in which a low refractive index film and a third low refractive index film made of silicon oxide were sequentially formed was obtained.

なお下地層は、基板との密着性を向上させるものとして
好ましい。
Note that the base layer is preferable because it improves adhesion to the substrate.

表−1 このようにして得た反射防止性高屈折率プラスチックレ
ンズの、可視光線の波長域における吸収率の測定結果を
表−2に示す。なお表−2における吸収率(%)は、上
記反射防止性高屈折率プラスチックレンズの380〜7
80nm波長域における反射率(R)および透過率(T
)を、日立製作新製340型自記分光光度計を用いて測
定し、100− (R+T)で換算して求めた。
Table 1 Table 2 shows the measurement results of the absorptivity of the antireflection high refractive index plastic lens thus obtained in the wavelength range of visible light. The absorption rate (%) in Table 2 is 380 to 7 for the above antireflection high refractive index plastic lens.
Reflectance (R) and transmittance (T) in the 80 nm wavelength range
) was measured using a new model 340 self-recording spectrophotometer manufactured by Hitachi, and was calculated by converting it by 100-(R+T).

表−2から明らかなように、本実施例で得られた反射防
止性高屈折率プラスチックレンズは、可視光線の全波長
域に亘って低い吸収率を示し、優れた光学的特性を有し
ていることが確認された。
As is clear from Table 2, the antireflection high refractive index plastic lens obtained in this example exhibits low absorption over the entire wavelength range of visible light and has excellent optical properties. It was confirmed that there is.

また、機械的特性および化学的特性を評価するにあたり
、本実施例で得られた反射防止性高屈折率レンズの外観
、視感反射率、耐擦傷性、耐衝撃性、密着性、耐熱性、
耐アルカリ性、耐酸性および耐候性を下記の要領で評価
、測定した。
In addition, in evaluating the mechanical properties and chemical properties, the appearance, luminous reflectance, scratch resistance, impact resistance, adhesion, heat resistance, and
Alkali resistance, acid resistance and weather resistance were evaluated and measured in the following manner.

・外観 螢光灯を光源とする照明装置を用い、目視にて下記1)
〜4)を満足するか否か観察した。
・Visually check the following 1) using an exterior lighting device with a fluorescent lamp as the light source.
It was observed whether conditions 4) to 4) were satisfied.

1)透明であること。1) Be transparent.

2)表面に不規則性がないこと。2) No irregularities on the surface.

3)脈理がないこと。3) No striae.

4)表面に異物、傷がないこと。4) There should be no foreign matter or scratches on the surface.

・視感反射率 日立製作新製340型自記分光光度計を用い、380〜
780 nm波長域の反射率を測定し、この反射率と視
感度曲線とから視感率を換算した。
・Luminous reflectance 380 ~ using Hitachi's new model 340 self-recording spectrophotometer
The reflectance in the 780 nm wavelength range was measured, and the luminous efficiency was calculated from this reflectance and the luminous efficiency curve.

・耐擦傷性 スチールウール#0000で多層反射防止膜表面を擦っ
て、傷のつきにくさを目視で判断した。判断基準は以下
のようにした。
- Scratch Resistance The surface of the multilayer antireflection film was rubbed with #0000 steel wool, and the scratch resistance was visually judged. The judgment criteria were as follows.

A・・・強く擦ってもほとんど傷がつかない。A: Even if you rub it hard, there will be almost no scratches.

B・・・強く擦るとかなり傷がつく。B: If you rub it too hard, it will be seriously damaged.

C・・・レンズ基板と同等の傷がつく。C: Scratches similar to those on the lens substrate.

・耐衝撃性 反射防止性高屈折率プラスチクレンズの中心に127c
mの高さから16gの鋼球を落下させ、レンズの破損の
有無を調べた。
・127c at the center of impact resistant anti-reflective high refractive index plastic lens
A steel ball weighing 16 g was dropped from a height of m, and the presence or absence of damage to the lens was examined.

・密着性 反射防止性高屈折率プラスチックレンズ表面を1mm間
隔で100目クロスカツトし、セロファンテープを強く
貼り付けた後、急速に剥がして、多層反射防止膜、下地
層および硬化膜の剥離の有無を調べた。
・Adhesion Anti-reflection After making 100 cross-cuts on the surface of a high refractive index plastic lens at 1 mm intervals and strongly pasting cellophane tape, peel it off rapidly to check whether the multilayer anti-reflection coating, base layer and cured coating have peeled off. Examined.

・耐熱性 反射防止性高屈折率プラスチックレンズをオーブンに1
時間入れて加熱し、クラックの発生の有無を調べた。加
熱温度は、70℃より始め、5℃づつ上げて、クラック
が発生する温度により優劣を判定した。
・Place one heat-resistant anti-reflection high refractive index plastic lens in the oven.
After heating for some time, the presence or absence of cracks was examined. The heating temperature started at 70°C and was increased in 5°C increments, and superiority or inferiority was determined based on the temperature at which cracks occur.

・耐アルカリ性 lQwt%NaOH水溶液に、反射防止性高屈折率プラ
スチックレンズを24時間浸漬し、多層反射防止膜表面
の侵食状態を観察した。
- Alkali resistance An antireflection high refractive index plastic lens was immersed in a 1Qwt% NaOH aqueous solution for 24 hours, and the state of erosion on the surface of the multilayer antireflection film was observed.

・耐酸性 10wt%HCI水溶液および10wt%H2SO4水
溶液に、反射防止性高屈折率プラスチックレンズを24
時間浸漬し、多層反射防止膜表面の侵食状態を観察した
・24 anti-reflection high refractive index plastic lenses are added to acid-resistant 10 wt% HCI aqueous solution and 10 wt% H2SO4 aqueous solution.
After dipping for a period of time, the state of corrosion on the surface of the multilayer antireflection film was observed.

・耐候性 反射防止性高屈折率プラスチックレンズを1箇月屋外暴
露し、この後、外観、視感反射率、耐擦傷性、耐衝撃性
、密着性、耐熱性、耐アルカリ性および耐酸性を上記の
要領で評価、測定した。
・Weather-resistant anti-reflection high refractive index plastic lenses were exposed outdoors for one month, and after this, the appearance, luminous reflectance, scratch resistance, impact resistance, adhesion, heat resistance, alkali resistance and acid resistance were evaluated as above. It was evaluated and measured according to the guidelines.

この結果、本実施例の反射防止性高屈折率プラスチック
レンズにおいては、いずれの項目についても良好な評価
、測定結果が得られ、機械的特性および化学的特性につ
いても優れていることが確認された。
As a result, it was confirmed that the antireflection high refractive index plastic lens of this example obtained good evaluations and measurement results in all items, and was also excellent in mechanical properties and chemical properties. .

なおこれらの評価、測定結果のうち、外観、視感反射率
、耐擦傷性、耐衝撃性、密着性、耐熱性、耐アルカリ性
および耐酸性の8項目の評価、測定結果を表−3に、耐
候性すなわち屋外暴露1箇月後の上記8項目の評価結果
を表−4に示す。
Of these evaluations and measurement results, Table 3 shows the evaluation and measurement results for 8 items: appearance, luminous reflectance, scratch resistance, impact resistance, adhesion, heat resistance, alkali resistance, and acid resistance. Weather resistance, that is, the evaluation results of the above eight items after one month of outdoor exposure are shown in Table 4.

実施例2〜9 実施例1と同様にして、ハードコート膜を有するポリウ
レタンレンズを得、実施例1と同様にして下地層を形成
したのち、多層反射防止膜の第1層の2層等価膜を構成
する混合蒸着膜および第2層の混合蒸着膜を形成するに
あたり、ZrO2粉末、Ta205粉末およびY2O3
粉末をモル比で1:1.3:0.2の割合で混合した実
施例1の混合原料に代えて、1:1:0.1の割合で混
合した混合原料(実施例2)、1:1:0.2の割合で
混合した混合原料(実施例3)、1:に0.3の割合で
混合した混合原料(実施例4)、1:1. 3oo、1
の割合で混合した混合原料(実施例5)、1:1.3:
0.3の割合で混合した混合原料(実施例6)、1:1
. 5:0. 1の割合で混合した混合原料(実施例7
)、1:1゜5:0.2の割合で混合した混合原料(実
施例8)、1:1.5:0.3の割合で混合した混合原
料(実施例9)をそれぞれ用いた以外は実施例1と同条
件で、同じ膜構成の多層反射防止膜を設けた。
Examples 2 to 9 A polyurethane lens having a hard coat film was obtained in the same manner as in Example 1, a base layer was formed in the same manner as in Example 1, and then a two-layer equivalent film of the first layer of the multilayer antireflection film was formed. In forming the mixed vapor deposition film constituting the second layer and the mixed vapor deposition film of the second layer, ZrO2 powder, Ta205 powder and Y2O3
Instead of the mixed raw material of Example 1 in which powder was mixed in a molar ratio of 1:1.3:0.2, a mixed raw material (Example 2) in which powder was mixed in a molar ratio of 1:1:0.1, 1 : Mixed raw materials mixed at a ratio of 1:0.2 (Example 3), Mixed raw materials mixed at a ratio of 1:0.3 (Example 4), 1:1. 3oo, 1
Mixed raw materials mixed in the ratio of (Example 5), 1:1.3:
Mixed raw materials mixed in a ratio of 0.3 (Example 6), 1:1
.. 5:0. Mixed raw materials mixed at a ratio of 1 (Example 7)
), mixed raw materials mixed at a ratio of 1:1° 5:0.2 (Example 8), and mixed raw materials mixed at a ratio of 1:1.5:0.3 (Example 9) were used, respectively. A multilayer antireflection film having the same film structure was provided under the same conditions as in Example 1.

このようにして得られた各反射防止性高屈折率プラスチ
ックレンズの、可視光線の波長域における吸収率を実施
例1と同様にして測定したところ、いずれの実施例で得
られたレンズも可視光線の全波長域に亘って低い吸収率
を示し、優れた光学的特性を有していることが確認され
た。なおこの測定結果を一括して、表−2に併記する。
When the absorption rate in the visible light wavelength range of each of the antireflection high refractive index plastic lenses obtained in this way was measured in the same manner as in Example 1, it was found that the lenses obtained in each example It was confirmed that the material showed a low absorption rate over the entire wavelength range, and had excellent optical properties. The measurement results are also listed in Table 2.

また、このようにして得られた各反射防止性高屈折率プ
ラスチックレンズの外観、視感反射率、耐擦傷性、耐衝
撃性、密着性、耐熱性、耐アルカリ性、耐酸性および耐
候性を、実施例1と同様にして評価、測定したところ、
いずれの実施例で得られた反射防止性高屈折率プラスチ
ックレンズも、各項目について良好な評価、測定結果が
得られ、機械的特性および化学的特性についても優れて
いることが確認された。
In addition, the appearance, luminous reflectance, scratch resistance, impact resistance, adhesion, heat resistance, alkali resistance, acid resistance, and weather resistance of each antireflection high refractive index plastic lens obtained in this way were evaluated. When evaluated and measured in the same manner as in Example 1,
It was confirmed that the antireflection high refractive index plastic lenses obtained in all Examples had good evaluation and measurement results for each item, and were also excellent in mechanical properties and chemical properties.

実施例10 ハードコート膜のコーテイング液として、γ−グリシド
キシプロピルトリメトキシシラン212重量部に0.0
6規定塩酸水溶液54重量部を撹拌しながら滴下し、滴
下終了後24時間撹拌を行って得た加水分解物に、五酸
化アンチモンゾル(メタノール分散状ゾル、平均粒子径
10nm、固形分30%)424重量部、エポキシ化合
物としてブナコールEX−521(ナガセ化成株式会社
製、ポリグリセロールポリグリシジルエーテル)68重
量部、およびチタニウム−1so−プロポキシオクチレ
ングリコレート34重量部を添加し、撹拌しながら更に
100時間熟成することにより得たコーテイング液を用
いた以外は実施例1と同様にして、反射防止性高屈折率
プラスチックレンズを得た。
Example 10 As a coating liquid for a hard coat film, 0.0 parts by weight of γ-glycidoxypropyltrimethoxysilane was added to 212 parts by weight.
54 parts by weight of a 6N aqueous hydrochloric acid solution was added dropwise with stirring, and the resulting hydrolyzate was stirred for 24 hours after the addition, and antimony pentoxide sol (methanol dispersion sol, average particle size 10 nm, solid content 30%) was added. 424 parts by weight, 68 parts by weight of Bunacol EX-521 (manufactured by Nagase Kasei Co., Ltd., polyglycerol polyglycidyl ether) as an epoxy compound, and 34 parts by weight of titanium-1so-propoxyoctylene glycolate, and further 100 parts by weight were added while stirring. An antireflection high refractive index plastic lens was obtained in the same manner as in Example 1 except that a coating liquid obtained by time aging was used.

このようにして得られた反射防止性高屈折率プラスチッ
クレンズの、可視光線の波長域における吸収率を実施例
1と同様にして測定したところ、可視光の全波長域に亘
って低い吸収率を示し、優れた光学的特性を有している
ことが確認された。
When the absorption rate in the visible light wavelength range of the antireflection high refractive index plastic lens thus obtained was measured in the same manner as in Example 1, it was found that the absorption rate was low over the entire visible light wavelength range. It was confirmed that it had excellent optical properties.

なおこの測定結果を表−2に併記する。The measurement results are also listed in Table 2.

また、このようにして得られた反射防止性高屈折率プラ
スチックレンズの外観、視感反射率、耐擦傷性、耐衝撃
性、密着性、耐熱性、耐アルカリ性、耐酸性および耐候
性を、実施例1と同様にして評価、測定したところ、い
ずれの各項目についても良好な評価、測定結果が得られ
、機械的特性および化学的特性についても優れているこ
とが確認された。
In addition, the appearance, luminous reflectance, scratch resistance, impact resistance, adhesion, heat resistance, alkali resistance, acid resistance, and weather resistance of the antireflection high refractive index plastic lens obtained in this way were investigated. When evaluated and measured in the same manner as in Example 1, good evaluation and measurement results were obtained for all items, and it was confirmed that the mechanical properties and chemical properties were also excellent.

なお、これらの評価、測定結果のうち、外観、視感反射
率、耐擦傷性、耐衝撃性、密着性、耐熱性、耐アルカリ
性および耐酸性の8項目の評価、測定結果を表−3に、
また耐候性すなわち屋外暴露1箇月後の上記8項目の評
価結果を表−4に、それぞれ併記する。
Of these evaluations and measurement results, Table 3 shows the evaluation and measurement results for 8 items: appearance, luminous reflectance, scratch resistance, impact resistance, adhesion, heat resistance, alkali resistance, and acid resistance. ,
In addition, the weather resistance, that is, the evaluation results of the above eight items after one month of outdoor exposure are also listed in Table 4.

(以下、余白) [発明の効果] 以上説明したように、本発明の反射防止性高屈折率プラ
スチックレンズは、光学的特性に優れ、かつ機械的特性
および化学的特性にも優れたプラスチックレンズである
(Hereinafter, blank space) [Effects of the Invention] As explained above, the antireflection high refractive index plastic lens of the present invention is a plastic lens that has excellent optical properties, as well as excellent mechanical and chemical properties. be.

したがて、本発明を実施することにより、薄型軽量で、
光学的特性に優れ、かつ機械的特性および化学的特性に
も優れた光学レンズを提供することが可能となり、眼鏡
レンズの薄肉軽量化、光学機器の小型軽量化と併せて高
性能化を図ることが可能となる。
Therefore, by carrying out the present invention, a thin and lightweight
It has become possible to provide optical lenses with excellent optical properties, as well as excellent mechanical and chemical properties, and this has enabled us to make eyeglass lenses thinner and lighter, and to make optical instruments smaller and lighter, as well as to improve their performance. becomes possible.

Claims (1)

【特許請求の範囲】[Claims] (1)ポリイソシアネートとポリチオールとを重合する
ことによって得られるポリウレタンを主成分とするプラ
スチックレンズ基板と、 前記プラスチック基板の表面に設けられた、有機ケイ素
重合体を含むハードコート膜と、タンタル、ジルコニウ
ムおよびイットリウムを含む金属酸化物の混合蒸着膜を
高屈折率膜として有する、前記ハードコート膜の上に設
けられた多層反射防止膜と を具備することを特徴とする反射防止性高屈折率プラス
チックレンズ。
(1) A plastic lens substrate whose main component is polyurethane obtained by polymerizing polyisocyanate and polythiol, a hard coat film containing an organosilicon polymer provided on the surface of the plastic substrate, and tantalum and zirconium. and a multilayer antireflection film provided on the hard coat film, the antireflection high refractive index plastic lens having a mixed vapor deposited film of a metal oxide containing yttrium as the high refractive index film. .
JP1083391A 1989-03-31 1989-03-31 Anti-reflection high refractive index plastic lens Expired - Lifetime JPH07119843B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1083391A JPH07119843B2 (en) 1989-03-31 1989-03-31 Anti-reflection high refractive index plastic lens
EP19900106204 EP0390218B1 (en) 1989-03-31 1990-03-30 Anti-reflection optical element
ES90106204T ES2075084T3 (en) 1989-03-31 1990-03-30 ANTI-REFLECTION OPTICAL ELEMENT.
DE1990621420 DE69021420T2 (en) 1989-03-31 1990-03-30 Optical anti-reflection element.
US07/839,684 US5181141A (en) 1989-03-31 1992-02-24 Anti-reflection optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083391A JPH07119843B2 (en) 1989-03-31 1989-03-31 Anti-reflection high refractive index plastic lens

Publications (2)

Publication Number Publication Date
JPH02262104A true JPH02262104A (en) 1990-10-24
JPH07119843B2 JPH07119843B2 (en) 1995-12-20

Family

ID=13801131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083391A Expired - Lifetime JPH07119843B2 (en) 1989-03-31 1989-03-31 Anti-reflection high refractive index plastic lens

Country Status (1)

Country Link
JP (1) JPH07119843B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366545A (en) * 1992-07-07 1994-11-22 Hoya Corporation Coating compositions
US5472797A (en) * 1992-07-07 1995-12-05 Hoya Corporation Optical elements having cured coating film
WO1999057212A1 (en) * 1998-05-01 1999-11-11 Hoya Corporation Coating composition and method for preparing the same, and scuff-resistant plastic lense
WO2002074828A1 (en) 2001-03-21 2002-09-26 Hoya Corporation Transparent molded objects, optical member, plastic lens, and processes for producing these
WO2004050560A1 (en) 2002-12-03 2004-06-17 Nissan Chemical Industries, Ltd. Modified stannic oxide sol, stannic oxide-zirconium oxide composite sol, coating composition and optical member
JP2006515827A (en) * 2003-01-28 2006-06-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Permeable zirconium oxide-tantalum and / or tantalum oxide coating
WO2012165620A1 (en) 2011-06-03 2012-12-06 日産化学工業株式会社 Metal oxide particles containing titanium oxide coated with silicon dioxide-tin(iv) oxide complex oxide
WO2015115377A1 (en) 2014-01-30 2015-08-06 日産化学工業株式会社 Coating composition and optical member
WO2019117086A1 (en) 2017-12-11 2019-06-20 日産化学株式会社 Inorganic oxide particles coated with silane compound having nitrogen-containing ring, and coating composition
WO2019117088A1 (en) 2017-12-11 2019-06-20 日産化学株式会社 Coating composition containing silane compound containing nitrogen-containing ring
WO2020105405A1 (en) 2018-11-21 2020-05-28 日産化学株式会社 Reactive silicone composition and cured product of same
US11634589B2 (en) 2015-04-30 2023-04-25 Nissan Chemical Industries, Ltd. Coating composition and optical member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029701A (en) * 1983-07-26 1985-02-15 Asahi Glass Co Ltd Reflection preventing film having five layered structure
JPS60199016A (en) * 1984-03-23 1985-10-08 Mitsui Toatsu Chem Inc Thiocarbomic acid s-alkyl ester resin for lens
JPS63309901A (en) * 1987-06-11 1988-12-19 Nikon Corp Spectacles lens made of plastic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029701A (en) * 1983-07-26 1985-02-15 Asahi Glass Co Ltd Reflection preventing film having five layered structure
JPS60199016A (en) * 1984-03-23 1985-10-08 Mitsui Toatsu Chem Inc Thiocarbomic acid s-alkyl ester resin for lens
JPS63309901A (en) * 1987-06-11 1988-12-19 Nikon Corp Spectacles lens made of plastic

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472797A (en) * 1992-07-07 1995-12-05 Hoya Corporation Optical elements having cured coating film
US5366545A (en) * 1992-07-07 1994-11-22 Hoya Corporation Coating compositions
WO1999057212A1 (en) * 1998-05-01 1999-11-11 Hoya Corporation Coating composition and method for preparing the same, and scuff-resistant plastic lense
AU750507B2 (en) * 1998-05-01 2002-07-18 Hoya Corporation Coating composition and method for preparing the same, and scuff-resistant plastic lense
US6680125B1 (en) 1998-05-01 2004-01-20 Hoya Corporation Coating composition and method for preparing the same, and scuff-resistant plastic lense
EP2090602A2 (en) 2001-03-21 2009-08-19 Hoya Corporation Transparent molded objects, optical member, plastic lens, and processes for producing these
WO2002074828A1 (en) 2001-03-21 2002-09-26 Hoya Corporation Transparent molded objects, optical member, plastic lens, and processes for producing these
WO2004050560A1 (en) 2002-12-03 2004-06-17 Nissan Chemical Industries, Ltd. Modified stannic oxide sol, stannic oxide-zirconium oxide composite sol, coating composition and optical member
JP2006515827A (en) * 2003-01-28 2006-06-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Permeable zirconium oxide-tantalum and / or tantalum oxide coating
WO2012165620A1 (en) 2011-06-03 2012-12-06 日産化学工業株式会社 Metal oxide particles containing titanium oxide coated with silicon dioxide-tin(iv) oxide complex oxide
WO2015115377A1 (en) 2014-01-30 2015-08-06 日産化学工業株式会社 Coating composition and optical member
US11634589B2 (en) 2015-04-30 2023-04-25 Nissan Chemical Industries, Ltd. Coating composition and optical member
WO2019117086A1 (en) 2017-12-11 2019-06-20 日産化学株式会社 Inorganic oxide particles coated with silane compound having nitrogen-containing ring, and coating composition
WO2019117088A1 (en) 2017-12-11 2019-06-20 日産化学株式会社 Coating composition containing silane compound containing nitrogen-containing ring
WO2020105405A1 (en) 2018-11-21 2020-05-28 日産化学株式会社 Reactive silicone composition and cured product of same

Also Published As

Publication number Publication date
JPH07119843B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
US5181141A (en) Anti-reflection optical element
KR100953230B1 (en) Plastic lens and method for producing plastic lens
US5015523A (en) Coated synthetic resin lens
EP1726974B1 (en) Plastic lens and method of manufacturing a plastic lens
KR100884423B1 (en) Transparent Molded Article, Optical member, Plastic Lens, and Methods of Manufacturing same
US4975328A (en) Process for producing polyurethane lens
JPH02262104A (en) Antireflection plastic lens having high refractive index
JP3938636B2 (en) High refractive index plastic lens and manufacturing method thereof
JP5523066B2 (en) Method for manufacturing optical article
JPH07316250A (en) Plastic lens for spectacles
EP0699926B1 (en) Plastic lens with primer layer
JP3379120B2 (en) Plastic lens
JP2983237B2 (en) High refractive index plastic lens
JP2628589B2 (en) Anti-reflection coating for polyurethane lens
JP2577486B2 (en) Plastic lens
JP4742603B2 (en) Manufacturing method of plastic lens
EP0390218B1 (en) Anti-reflection optical element
JP2003315501A (en) Plastic lens
JP2862597B2 (en) Anti-reflection coating for plastic lenses
JP3401303B2 (en) Primer composition for plastic lens and method for producing plastic lens
JPH11133204A (en) Plastic lens with hardened film
JPH11302597A (en) Hard coat composition and optical member
JPH095679A (en) Plastic lens for spectacles
JP2712235B2 (en) Synthetic resin lens
JPH04110918A (en) Optical component

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 14