JPH02261389A - Production of 5-aminolevulinic acid - Google Patents

Production of 5-aminolevulinic acid

Info

Publication number
JPH02261389A
JPH02261389A JP8221989A JP8221989A JPH02261389A JP H02261389 A JPH02261389 A JP H02261389A JP 8221989 A JP8221989 A JP 8221989A JP 8221989 A JP8221989 A JP 8221989A JP H02261389 A JPH02261389 A JP H02261389A
Authority
JP
Japan
Prior art keywords
acid
ala
aminolevulinic acid
bacterial cells
changes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8221989A
Other languages
Japanese (ja)
Other versions
JPH0655147B2 (en
Inventor
Shiro Nagai
史郎 永井
Naomichi Nishio
尚道 西尾
Tadaaki Kawasugi
河杉 忠昭
Naotatsu Yano
直達 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP8221989A priority Critical patent/JPH0655147B2/en
Publication of JPH02261389A publication Critical patent/JPH02261389A/en
Publication of JPH0655147B2 publication Critical patent/JPH0655147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain the subject compound useful as a herbicide at a low cost by culturing Clostridium thermoaceticum ATCC 31490 in an absolute anaerobic state. CONSTITUTION:Clostridium thermoaceticum ATCC 31490 is cultured in absolute anaerobic state and the cultured liquid is treated and separated into solid and liquid. The objective compound is collected from the separated liquid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、除草剤として効果のある5−アミノレブリン
酸(ALA)の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing 5-aminolevulinic acid (ALA), which is effective as a herbicide.

〔従来の技術〕[Conventional technology]

従来、5−アミノレブリン酸(ALA)は、光合成細菌
や、メタン生成細菌を培養する際に、培地中にレブリン
酸(LA)を添加することによって、生成させることが
提案されていた。
Conventionally, it has been proposed that 5-aminolevulinic acid (ALA) be produced by adding levulinic acid (LA) to a culture medium when culturing photosynthetic bacteria or methanogenic bacteria.

つまり、一般に光合成細菌やメタン生成細菌は、単に培
養するだけでは、菌体内での中間生成物としての5−ア
ミノレブリン酸(ALA)が蓄積されず、そのために、
ALA脱水酵素の阻害剤として知られているレブリン酸
(■、A)によって、5−アミノレブリン酸(ALA)
からポルホビリノーゲン(PBG)に至る生合成を阻害
して、5−アミノレブリン酸(ALA)を採取すること
が考えられていた。
In other words, in general, photosynthetic bacteria and methanogenic bacteria do not accumulate 5-aminolevulinic acid (ALA) as an intermediate product within the bacterial cells simply by culturing them, and therefore,
5-Aminolevulinic acid (ALA) is produced by levulinic acid (■, A), which is known as an inhibitor of ALA dehydratase.
It has been considered to inhibit biosynthesis from PBG to porphobilinogen (PBG) to collect 5-aminolevulinic acid (ALA).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、それらの菌の培養に際し、培地にレブリン酸(
LA)を添加しなければならないために、コスト高にな
るという欠点があるだけでなく、菌体が活性を失なって
増殖率が低下するという欠点があっな。
However, when culturing these bacteria, levulinic acid (
Since it is necessary to add LA), there is not only the disadvantage that the cost is high, but also the disadvantage that the bacterial cells lose their activity and the growth rate decreases.

本発明の目的は、菌体を増殖させながらレブリン酸を添
加せずとも5−アミノレブリン酸を生産できるようにす
る点にある。
An object of the present invention is to make it possible to produce 5-aminolevulinic acid without adding levulinic acid while growing bacterial cells.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、ホモ酢酸菌であるところのクロストリデイウ
ム・サーモアセチカム(C1ostridiumthe
rn+oaceticus) ATCC31490が、
単に培養するだけで5−アミノレブリン酸(ALA)を
生成して蓄積することを見出すに至り、その本発明にお
ける5−アミノレブリン酸(ALA)の製法の特徴手段
は、クロストリデイウム・サーモアセチカム(Clos
tridium thermoaceticum)AT
CC31490を、絶対嫌気状態で培養し、培養後の処
理液を固液分離して分離液を取出し、前記分離液から5
−アミノレブリン酸(ALA)を採取することにあり、
その作用効果は、次の通りである。
The present invention relates to Clostridium thermoaceticum, which is a homoacetic acid bacterium.
rn+oaceticus) ATCC31490 is
It has been discovered that 5-aminolevulinic acid (ALA) can be produced and accumulated simply by culturing, and the characteristic means of the method for producing 5-aminolevulinic acid (ALA) in the present invention is based on Clostridium thermoaceticum. (Clos
tridium thermoaceticum)AT
CC31490 was cultured in an absolute anaerobic state, and the treated solution after the culture was separated into solid and liquid to take out the separated solution.
- To collect aminolevulinic acid (ALA),
Its effects are as follows.

〔作 用〕[For production]

つまり、クロストリデイウム・サーモアセチカム(CI
ostrjdiua+ thermoaceticus
+)ATCC31490を、絶対嫌気状態で培養するこ
とによって、菌体の増殖に連動して、レブリン酸(LA
)を添加しなくとも酢酸以外に多量の5−アミノレブリ
ン酸(ALA)を、菌体外に多く蓄積する。
In other words, Clostridium thermoaceticum (CI)
ostrjdiua+ thermoaceticus
+) By culturing ATCC31490 under absolute anaerobic conditions, levulinic acid (LA
) in addition to acetic acid, a large amount of 5-aminolevulinic acid (ALA) is accumulated outside the bacterial cells.

〔発明の効果〕〔Effect of the invention〕

従って、従来のように、培地にレブリン酸(LA)を添
加して、5−アミノレブリン酸(ALA)からボルホビ
リノーゲン(PBG)に至る生合成を阻害せずとも、単
に通常の培地で培養するだけで5−アミノレブリン酸が
蓄積するために、培養のための材料費を安くでき、しか
も、菌体外に蓄積するために、採取のための作業手間を
少なくでき、生産コストを低く経済性を高めることがで
きるようになった。
Therefore, instead of adding levulinic acid (LA) to the medium and inhibiting the biosynthesis from 5-aminolevulinic acid (ALA) to borphobilinogen (PBG) as in the past, it is possible to simply culture in a normal medium. Because 5-aminolevulinic acid accumulates just by doing this, the cost of materials for culturing can be reduced.Furthermore, since it accumulates outside the bacterial cells, the labor required for collection can be reduced, reducing production costs and making it more economical. It is now possible to increase the

その上、レブリン酸等によって菌体の活性が抑えられる
、ということがないために、増殖率を高く維持しながら
連続的に5−アミノレブリン酸を生産することができや
すくなった。
Furthermore, since the activity of the bacterial cells is not suppressed by levulinic acid or the like, it has become easier to continuously produce 5-aminolevulinic acid while maintaining a high growth rate.

〔実施例〕〔Example〕

次に、本発明の詳細な説明する。 Next, the present invention will be explained in detail.

クロストリデイウム・サーモアセチカム(リユ5tri
diu+s thermoaceticun+)は、好
熱性絶対嫌気性菌で、一般に、グルコース、フラクトー
ス、キシロース等の糖質1モルから3モルの酢酸を生成
することが知られている。
Clostridium thermoaceticum (Ryu 5tri)
diu+s thermoaceticun+) is a thermophilic obligate anaerobic bacterium, and is generally known to produce 3 moles of acetic acid from 1 mole of carbohydrates such as glucose, fructose, and xylose.

そして、本発明者は、特にクロストリデイウム・サーモ
アセチカム(C1ostridius+Lhermoa
ce t icum)ATCC31490が、酢酸以外
にビタミンB+z及びその前駆体としての5−アミノレ
ブリン酸 (ALA)を、菌体内だけでなく、菌体外に
も多く生成して蓄積することを見出すに至った。
In particular, the present inventor has discovered that Clostridium thermoaceticum (C1ostridius+Lhermoa
It was discovered that ATCC 31490 produces and accumulates vitamin B+z and its precursor, 5-aminolevulinic acid (ALA), in addition to acetic acid, not only inside the bacteria but also outside the bacteria. .

そこで、前述の5−アミノレブリン酸 (ALA)の製法は、クロストリデイウム・サーモアセ
チカム(Clostridium thermoace
ticum)ATCC31490を、少なくとも炭素(
C)、カリウム(X)、リン(P)、イオウ(S)、マ
グネシウム(Mg)、及び、チッ素(N)を含有元素と
する培地中において、培養温度47°C〜65℃(望ま
しくは60°C)、常圧p H4,5〜8、絶対嫌気状
態という培養条件で培養し、培養後の処理液を遠心分離
器によって固液分離して、分離液として上清液を取出し
、その上清液を、陽イオン交換樹脂(商品名Dowex
)に対する吸着及び脱着操作によって、5−アミノレブ
リン酸(ALA)を採取する。
Therefore, the method for producing 5-aminolevulinic acid (ALA) described above is based on Clostridium thermoaceticum (Clostridium thermoaceticum).
ticum) ATCC 31490 with at least carbon (
C), potassium (X), phosphorus (P), sulfur (S), magnesium (Mg), and nitrogen (N) at a culture temperature of 47°C to 65°C (preferably 60°C), normal pressure pH 4.5 to 8, and absolute anaerobic conditions. The treated solution after culture is separated into solid and liquid using a centrifuge, and the supernatant is taken out as a separated solution. The supernatant liquid was treated with a cation exchange resin (trade name: Dowex).
5-aminolevulinic acid (ALA) is collected by adsorption and desorption operations on ).

尚、採取された5−アミノレブリン酸 (ALA)は、第1図に示すように、薄層クロマトグラ
フィー(TLC)による同定によって確認した。
The collected 5-aminolevulinic acid (ALA) was identified by thin layer chromatography (TLC) as shown in FIG.

〔実験例1〕 次に各種培地による培養結果を示す。[Experiment example 1] Next, the culture results using various media are shown.

次の表1に示すように、7種類の組成の培地で夫々培養
した。
As shown in Table 1 below, the cells were cultured in media with seven different compositions.

R1 用いた培地の組成億イオン水11に対して)■〜■まで
の複合培地は、既知の組成で、特に酵母エキスやトリプ
トンが含まれ、高価で成分の確定困難なところがあり、
これに対し、■〜■の合成培地と称するものは、今回新
規に酵母エキスやトリプトンの特に存在しない安価な培
地で、それらの培地による培養結果は、表2に示す。
R1 Composition of the medium used The complex media from ■ to ■ (relative to ionized water 11) have known compositions, especially yeast extract and tryptone, and are expensive and difficult to determine the ingredients.
On the other hand, the synthetic media referred to as ① to ② are inexpensive media that do not particularly contain yeast extract or tryptone, and the culture results using these media are shown in Table 2.

尚、表1中の前記微量金属溶液は、ll中に次の成分が
含まれる。
In addition, the trace metal solution in Table 1 contains the following components in 11.

MnC1g ・4HzOO,5g NatSe03      17.21mgH,BOl
         10mgZnCIg       
  5mg AIK(504) z・121h0  10+wgNi
C1z・68zO2111g CLICI! ・28!OLIlg EDTA         0.5mg前記ビタミン溶
液としては、ビオチン、FMN、葉酸、ニコチン酸、パ
ントテン酸、P−アミノ安息香酸、チアミンピロリン酸
が、各々2mg/l含まれる。
MnC1g ・4HzOO, 5g NatSe03 17.21mgH, BOl
10mg ZnCIg
5mg AIK (504) z・121h0 10+wgNi
C1z・68zO2111g CLICI!・28! OLIlg EDTA 0.5 mg The vitamin solution contains 2 mg/l each of biotin, FMN, folic acid, nicotinic acid, pantothenic acid, P-aminobenzoic acid, and thiamine pyrophosphate.

前記アミノ酸溶液としては、L−アラニン、L−アルギ
ニン、L−アスパラギン、L−システィン、L−シスチ
ン、L−グルタミン酸、Lヒスチジン、L−ロイシン、
L−リジン、L−メチオニン、L−フェニルアラニン、
L−セリン、L−スレオニン、L−トリプトファン、L
−バリン、が、各々2mg/l含まれる。
The amino acid solution includes L-alanine, L-arginine, L-asparagine, L-cystine, L-cystine, L-glutamic acid, L-histidine, L-leucine,
L-lysine, L-methionine, L-phenylalanine,
L-serine, L-threonine, L-tryptophan, L
-valine, each containing 2 mg/l.

尚、前記菌体量は、乾燥重量法で調べ、前記酢酸量は、
ガスクロマトグラフィー(F I D)で測定した。
The amount of bacterial cells was determined by the dry weight method, and the amount of acetic acid was
Measured by gas chromatography (FID).

表−2より酵母エキスやトリプトンの含まれない培地■
〜■でも、使用グルコースに対する酢酸の生成率が良い
ことを示す。
From Table 2, medium that does not contain yeast extract or tryptone■
~■ also indicates that the production rate of acetic acid relative to the glucose used is good.

〔実験例2〕 次に、第2図に、培地■での培養時間による各種測定値
の変化を示す。
[Experimental Example 2] Next, FIG. 2 shows changes in various measured values depending on the culture time in medium ①.

これによると、1モルのグルコースより約2.6モルの
酢酸が生成され、72時間後が最大値を示し、また、生
成酢酸の増加に伴なってp H値が低下するために、菌
体量及び消費グルコースが、約84時間後に最大値に達
し、それ以後は菌体の活性が低下することが判る。
According to this, approximately 2.6 moles of acetic acid are produced from 1 mole of glucose, reaching a maximum value after 72 hours, and as the pH value decreases as the amount of acetic acid produced increases, the bacterial cell It can be seen that the amount and consumed glucose reached the maximum value after about 84 hours, and the activity of the bacterial cells decreased thereafter.

〔実験例3〕 次に、第3図に示すように、培養時間の変化に伴う菌体
及び5−アミノレブリン酸(ALA)の量の変化を、レ
ブリン酸(LA)無添加状態で調べた。
[Experimental Example 3] Next, as shown in FIG. 3, changes in the amounts of bacterial cells and 5-aminolevulinic acid (ALA) with changes in culture time were investigated without the addition of levulinic acid (LA).

尚、培地は、グルコースを20g/ l含有させた前記
培地■を使用してスタートし、70時間後に更にLog
/ 1のグルコースを追加して培養した。
In addition, the medium was started using the above-mentioned medium (■) containing 20 g/l of glucose, and after 70 hours, the medium was further
/1 glucose was added and cultured.

つまり、第3図より時間の経過に伴って菌体及び5−ア
ミノレブリン酸(ALA)が増加し、120時間後には
ALAが約16B/βの蓄積層に達した。
That is, as shown in FIG. 3, bacterial cells and 5-aminolevulinic acid (ALA) increased with the passage of time, and ALA reached an accumulation layer of about 16 B/β after 120 hours.

〔実験例4〕 次に、実験例3にひき続き、レブリン酸(LA)を追加
して120時間培養し、そのレフリン酸(LA)の添加
量の変化に伴う菌体1と5−アミノレブリン酸(ALA
)の量の変化を調べ、第4図に示した。
[Experimental Example 4] Next, following Experimental Example 3, levulinic acid (LA) was added and cultured for 120 hours, and bacterial cells 1 and 5-aminolevulinic acid were cultured as the amount of levulinic acid (LA) added changed. (ALA
) was investigated and shown in Figure 4.

つまり、第4図より、レブリン酸(L A )の添加に
よって5−アミノレブリン酸(ALA)は増加して約2
1mg/ffにもなったが、菌体量が減少することが判
った。
In other words, from Figure 4, 5-aminolevulinic acid (ALA) increases by about 2 by adding levulinic acid (LA).
Although the concentration was as high as 1 mg/ff, it was found that the amount of bacterial cells decreased.

〔実験例5〕 次に、微量金属元素(Co、 Fe、 Mo、 Se、
 W、Ni)化合物のうちの特にコバル) (Co)と
、鉄(Fe)を培地に添加することによる影響を調べて
、菌体量と5−アミノレブリン酸(ALA)の量の変化
として第5図及び第6図に示した。
[Experimental Example 5] Next, trace metal elements (Co, Fe, Mo, Se,
We investigated the effects of adding W, Ni) compounds, especially cobal (Co), and iron (Fe) to the medium, and found that changes in the amount of bacterial cells and the amount of 5-aminolevulinic acid (ALA) It is shown in FIG.

つまり、第5図では、前記培地■中のコバルト(Co)
1度を変化させた時の菌体■及び5−アミノレブリン酸
(ALA)の生成量の変化を示し、培養時間は、全部で
120時間で、スタートから70時間後に、IOg/ 
1のグルコースを培地に追加しである。
That is, in FIG. 5, cobalt (Co) in the medium
It shows the changes in the production amount of bacterial cells and 5-aminolevulinic acid (ALA) when the temperature is changed by 1 degree.The culture time was 120 hours in total, and 70 hours after the start, IOg/
1 of glucose was added to the medium.

尚、レブリン酸(LA)は無添加である。Note that levulinic acid (LA) was not added.

前記第5図から、コバルト濃度が、100〜200μ−
の範囲がALA生成量、の最大値を示すものである。
From FIG. 5, the cobalt concentration is 100 to 200 μ-
The range indicates the maximum amount of ALA produced.

また、第6図では、前記培地、■中の鉄(Fe”)濃度
を変化させた時の菌体量及び5−アミノレブリン酸(A
LA)の生成量の変化を示し、培養条件は、前記第5図
の場合と同様である。
Figure 6 also shows the amount of bacterial cells and 5-aminolevulinic acid (A
The culture conditions are the same as those in FIG. 5 above.

つまり、第6図より、鉄(Fe”)は菌体の増殖、及び
、5−アミノレブリン酸(ALA)の生産にわずかしか
効果がないことが判った。
In other words, from FIG. 6, it was found that iron (Fe'') had only a slight effect on the growth of bacterial cells and the production of 5-aminolevulinic acid (ALA).

[実験例6] 次に、培地■に添加する還元剤の影響を、調べて表3に
示した。尚、培養時間は90時間である。
[Experimental Example 6] Next, the influence of the reducing agent added to the medium (1) was investigated and shown in Table 3. Note that the culture time was 90 hours.

なくとも、通常は、他の培地材料から不純物として少し
でも混入してくるために、ALAの生成は成されるもの
である。
At the very least, ALA is usually produced due to even a small amount of impurities being mixed in from other medium materials.

【図面の簡単な説明】[Brief explanation of drawings]

本発明に係る5−アミノレブリン酸において第1図はA
LAを同定する薄層クロマトグラフィー、第2図は時間
変化に基づく各種測定値変化グラフ、第3図は時間変化
に基づく各種測定値変化グラフ、第4図はLA濃度変化
に基づく各種測定値変化グラフ、第5図はコバルト濃度
変化に基づく各種測定値変化グラフ、第6図は鉄濃度変
化に基づく各種測定値変化グラフである。
In 5-aminolevulinic acid according to the present invention, FIG.
Thin layer chromatography to identify LA, Figure 2 is a graph of changes in various measured values based on time changes, Figure 3 is a graph of changes in various measured values based on changes in time, Figure 4 is a graph of changes in various measured values based on changes in LA concentration. FIG. 5 is a graph of changes in various measured values based on changes in cobalt concentration, and FIG. 6 is a graph of changes in various measured values based on changes in iron concentration.

Claims (1)

【特許請求の範囲】 クロストリディウム・サーモアセチカム (¥Clostridium¥¥thermoacet
icum¥)ATCC31490を、絶対嫌気状態で培
養し、培養後の処理液を固液分離して分離液を取出し、
前記分離液から5−アミノレブリン酸(ALA)を採取
する5−アミノレブリン酸の製法。
[Claims] Clostridium thermoaceticum
icum¥) ATCC31490 is cultured in an absolute anaerobic state, the treated solution after culture is separated into solid and liquid, and the separated solution is taken out.
A method for producing 5-aminolevulinic acid, in which 5-aminolevulinic acid (ALA) is collected from the separated liquid.
JP8221989A 1989-03-31 1989-03-31 Process for producing 5-aminolevulinic acid Expired - Lifetime JPH0655147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8221989A JPH0655147B2 (en) 1989-03-31 1989-03-31 Process for producing 5-aminolevulinic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8221989A JPH0655147B2 (en) 1989-03-31 1989-03-31 Process for producing 5-aminolevulinic acid

Publications (2)

Publication Number Publication Date
JPH02261389A true JPH02261389A (en) 1990-10-24
JPH0655147B2 JPH0655147B2 (en) 1994-07-27

Family

ID=13768303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8221989A Expired - Lifetime JPH0655147B2 (en) 1989-03-31 1989-03-31 Process for producing 5-aminolevulinic acid

Country Status (1)

Country Link
JP (1) JPH0655147B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06141875A (en) * 1992-11-08 1994-05-24 Cosmo Sogo Kenkyusho:Kk Production of 5-aminolevulinic acid by microorganism
US5763235A (en) * 1994-12-20 1998-06-09 Cosmo Research Institute 5-aminolevulinic acid producing microorganism and process for producing 5-aminolevulinic acid
WO2007034673A1 (en) * 2005-09-21 2007-03-29 Cosmo Oil Co., Ltd. Process for producing 5-aminolevulinic acid hydrochloride
JP2012121918A (en) * 2012-03-08 2012-06-28 Cosmo Oil Co Ltd Method for producing 5-aminolevulinic acid hydrochloride
WO2014148539A1 (en) * 2013-03-22 2014-09-25 コスモ石油株式会社 Method for producing 5-aminolevulinic acid or salt thereof
JP2014207882A (en) * 2013-03-22 2014-11-06 コスモ石油株式会社 Method for producing 5-aminolevulinic acid or salt thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06141875A (en) * 1992-11-08 1994-05-24 Cosmo Sogo Kenkyusho:Kk Production of 5-aminolevulinic acid by microorganism
US5763235A (en) * 1994-12-20 1998-06-09 Cosmo Research Institute 5-aminolevulinic acid producing microorganism and process for producing 5-aminolevulinic acid
WO2007034673A1 (en) * 2005-09-21 2007-03-29 Cosmo Oil Co., Ltd. Process for producing 5-aminolevulinic acid hydrochloride
JP2007084466A (en) * 2005-09-21 2007-04-05 Cosmo Oil Co Ltd Method for producing 5-aminolevulinic acid hydrochloride
US8148574B2 (en) 2005-09-21 2012-04-03 Cosmo Oil Co., Ltd. Method for producing 5-aminolevulinic acid hydrochloride
JP2012121918A (en) * 2012-03-08 2012-06-28 Cosmo Oil Co Ltd Method for producing 5-aminolevulinic acid hydrochloride
WO2014148539A1 (en) * 2013-03-22 2014-09-25 コスモ石油株式会社 Method for producing 5-aminolevulinic acid or salt thereof
JP2014207882A (en) * 2013-03-22 2014-11-06 コスモ石油株式会社 Method for producing 5-aminolevulinic acid or salt thereof
US9963724B2 (en) 2013-03-22 2018-05-08 Neo Ala Co., Ltd. Method for producing 5-aminolevulinic acid or salt thereof

Also Published As

Publication number Publication date
JPH0655147B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
van Niel et al. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus
Robert et al. Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila
Cole et al. Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle
Geissinger et al. The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum
CN111304106B (en) Bacillus clausii and method for producing tetrahydropyrimidine by using same
Shi et al. Efficient bioconversion of l-glutamate to γ-aminobutyric acid by Lactobacillus brevis resting cells
HU215545B (en) Process for producing l-threonine
JP5714904B2 (en) Production of amino acids from sucrose in Corynebacterium luglutamicum
JP2010539941A5 (en)
US10947564B2 (en) Method for producing methane from carbon dioxide by co-culture
FR3020380A1 (en) PROCESS FOR PRODUCTION OF METHANE BY AEROBIC CO-CULTURE OF ANAEROBIC MICROORGANISMS
JPH02261389A (en) Production of 5-aminolevulinic acid
FR2701489A1 (en) Process for the production of L-glutamic acid by fermentation
Wang et al. Nitrogen removal performance of anammox immobilized fillers in response to seasonal temperature variations and different operating modes: Substrate utilization and microbial community analysis
Bai et al. Effects of substrate components on hydrogen fermentation of multiple substrates
WO2006013736A1 (en) Mutant yeast, method of producing glutathione-rich yeast, culture thereof, fraction thereof, yeast extract and glutathione-containing foods and drinks
CN114560745B (en) Application of suaeda salsa leaf extract as nitrification inhibitor
WO2010007586A1 (en) Copper-enriched biomass, method for the preparation thereof and pro-biotic, cosmetic, dietary and nutraceutic products comprising the same
Liu et al. Efficient production of single cell protein from biogas slurry using screened alkali-salt-tolerant Debaryomyces hansenii
Prior et al. Growth of Candida utilis on ethanol and isopropanol
Tantiwa et al. Strategies to decolorize high concentrations of methyl orange using growing cells of Lactobacillus casei TISTR 1500
Gorrell et al. LIGHT‐DEPENDENT AND LIGHT‐INDEPENDENT PRODUCTION OF HYDROGEN GAS BY PHOTOSYNTHESIZING RHODOSPIRILLUM RUBRUM MUTANT C
JPH029384A (en) Production of l-glutamic acid by fermentation process
Ayati et al. The substrate carbon consumption and metabolite production to describe the growth of Geotrichum candidum and Penicillium camemberti on glucose and amino acids
JP2006197821A (en) Method for producing organic acid in high efficiency by aerobic bacterium