JPH02260891A - Stereoscopic camera device - Google Patents

Stereoscopic camera device

Info

Publication number
JPH02260891A
JPH02260891A JP1078611A JP7861189A JPH02260891A JP H02260891 A JPH02260891 A JP H02260891A JP 1078611 A JP1078611 A JP 1078611A JP 7861189 A JP7861189 A JP 7861189A JP H02260891 A JPH02260891 A JP H02260891A
Authority
JP
Japan
Prior art keywords
optical
optical path
optical axis
zoom
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1078611A
Other languages
Japanese (ja)
Inventor
Hajime Sudo
肇 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1078611A priority Critical patent/JPH02260891A/en
Publication of JPH02260891A publication Critical patent/JPH02260891A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate zoom fluctuation operation and adjustment of various parameters attended with the operation without causing optical axis deviation by providing plural systems of one or both of left/right eye objective optical means and providing an optical path change means corresponding to plural objective optical systems. CONSTITUTION:Two sets of TV cameras are not used, rays of light from two left/right directions are sent to a common optical path synthesis means 7 coaxially and a stereoscopic video image is picked up by picking up alternately the rays of light from the two directions. The proper combination of distances of plural objective optical means 32, 33 preset to view the observation object 1 in every direction is selected in response to the zoom. The direction from any direction is corrected by optical path polarization means 52, 53 according to a common optical axis before the incidence in the optical path synthesis means 7. Then any one of optical path is selected in response to the zoom by shutter devices 181, 182. Thus, the optical axis or various parameters attended with the fluctuation of zoom is adjusted easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、両眼視差を利用する立体テレビ装置に係り、
撮影手段のレンズ系のズーム操作時にも左右眼用映像の
ズレが生ぜず、更にこのズーム値や観察対象までの距離
に応じて要求される上記左右眼用映像の光軸間隔調整を
、光軸を狂わせる事なしに行える立体カメラ装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a stereoscopic television device that utilizes binocular parallax,
Even when the lens system of the photographing means is zoomed, there is no deviation between the images for the left and right eyes, and the distance between the optical axes of the images for the left and right eyes is adjusted according to the zoom value and the distance to the observation target. This invention relates to a three-dimensional camera device that can be used without causing any disturbance.

(従来の技術) 例えば遠隔地に設置された作業機械を操作リ−る際の視
覚情報として、いわゆる立体テレビ装置が有用な手段と
なっている。
(Prior Art) For example, a so-called stereoscopic television device has become a useful means for providing visual information when operating a working machine installed in a remote location.

上記立体テレビ装置にあっては、オペレータがI2察し
たい対象を、撮影方向を少しだけ換えた2台の左右眼・
用TVカメラで撮影した2重映像を1画面上に呈示し、
適当な手段でオペレータの左右眼に左右の映像を個別に
提供する手段がある。前記TVカメラは一般的に個々の
撮像素子に個々のレンズ系が取付けられている。
In the above-mentioned 3D television system, the object that the operator wants to observe can be observed using two cameras with the left and right eyes, each with a slightly different shooting direction.
Displaying double images taken with a TV camera on one screen,
There is a means for separately providing left and right images to the left and right eyes of the operator using appropriate means. The TV camera generally has individual lens systems attached to individual image pickup elements.

ところで、適正な立体像をオペレータに提供する為には
、画面上の上記2重映像は、水平方向(基準面内)のみ
に適当m離れている事が望ましいが、そのためには前j
Lの方式のTVカメラでは、レンズ系の光軸と映像素子
との相対関係を各々のTVカメラについて一致させた後
、今度はこの2台のTVカメラの相対関係を厳密に調整
する必要がある。この調整は初期設定を施すのみではな
く、使用中に必要に応じて随時行わなければならない。
By the way, in order to provide an appropriate stereoscopic image to the operator, it is desirable that the above-mentioned double images on the screen be separated by a suitable distance of m only in the horizontal direction (within the reference plane).
For TV cameras using method L, after matching the relative relationship between the optical axis of the lens system and the video element for each TV camera, it is necessary to precisely adjust the relative relationship between these two TV cameras. . This adjustment must be made not only during initial settings, but also as needed during use.

特にレンズの焦点調整やズーム値変更の為にレンズを動
かすと、上記2台のTVカメラのレンズ系光軸が各々独
立に移動する場合があり、この時には、水平方向のみに
適当m離れる好ましい2重映像の提供を実現できない事
がある。
In particular, when the lens is moved to adjust its focus or change its zoom value, the optical axes of the lens systems of the two TV cameras mentioned above may move independently. It may not be possible to provide heavy-duty images.

また観察し易い映像を観察者に提供するには、ズーム値
に応じて2台のTVカメラ間隔を増減する必要があるが
、このとき従来技術にあっては機械的な駆動を伴う為、
これが上記光軸ズレを引ぎ起こす原因となっていた。
In addition, in order to provide the viewer with images that are easy to observe, it is necessary to increase or decrease the distance between the two TV cameras according to the zoom value, but in this case, in the conventional technology, mechanical drive is involved.
This was a cause of the above-mentioned optical axis deviation.

この様に立体カメラ構成では、観察者は立体映像を観察
するとき多くの操作を強いられる事になり、この立体カ
メラを観察手段としてマニピュレータ等の遠隔操作を行
う時、使い易い視覚情報媒体ではなかった。
In this way, with the stereoscopic camera configuration, the observer is forced to perform many operations when observing the stereoscopic image, and when using the stereoscopic camera as an observation means to remotely control a manipulator, etc., it is not an easy-to-use visual information medium. Ta.

(発明が解決しようとする課題) 上述の如く、既存の立体カメラ及びレンズ系においては
、光軸の調整やズーム値変動に伴う各種パラメータ調整
を比較的頻繁に行う自体が生じる場合が多く、am応変
な連続使用は容易ではなかった。
(Problems to be Solved by the Invention) As mentioned above, in existing stereoscopic cameras and lens systems, adjustments of the optical axis and various parameters associated with zoom value fluctuations are often performed relatively frequently. It was not easy to use it continuously.

そこで本発明は、上述のような光軸ズレを生じる事なく
、ズーム値変動操作及びこれに伴なう、各種パラメータ
調整が容易である立体カメラ装置を提供する事にある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a three-dimensional camera device in which a zoom value variation operation and accompanying various parameter adjustments can be easily performed without causing the above-mentioned optical axis deviation.

[発明の構成] (課題を解決するための手段) 本発明に・係る立体カメラ装置は、同一観察対象からの
左右2方向の光を見込む左右の対物光学手段と、これら
対物光学手段からの左右の入射光を同一光軸に合成する
光路合成手段と、この光路合成手段からの光を撮像素子
上に結像させる左右共用の共通光学手段とを備え、立体
映像を提供する立体カメラ装置であって、左右眼用の対
物光学手段の内一方又は両方を複数系統設け、これら複
数系統の対物光学系のそれぞれに対応して設けられ入射
光の光路を変更する光路変更手段と、この光路変更手段
で変更された複数の入射光の一系統を選択するシャッタ
手段とを備えたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) A stereoscopic camera device according to the present invention includes left and right objective optical means that see light in two left and right directions from the same observation target, and right and left A stereoscopic camera device for providing stereoscopic images, comprising an optical path synthesizing means for synthesizing the incident lights of the two onto the same optical axis, and a common optical means for left and right use for forming an image of the light from the optical path synthesizing means on an image sensor. A plurality of systems of one or both of the objective optical means for the left and right eyes are provided, and an optical path changing means is provided corresponding to each of the plurality of objective optical systems and changes the optical path of the incident light, and the optical path changing means is provided. and shutter means for selecting one system of the plurality of incident lights changed in the above.

(作用) 本発明に係る立体カメラ装置は2台のTVカメラは用い
ず、上述した課題を解決するための手段の内、左右2方
向からの光を共通の光路合成手段に同軸的となる様に送
り込み、これら2方向からの光を交互に撮像する事で立
体映像を撮影する。
(Function) The three-dimensional camera device according to the present invention does not use two TV cameras, and among the means for solving the above-mentioned problems, the three-dimensional camera device according to the present invention coaxially connects light from two directions to the left and right to a common optical path combining means. By sending images from these two directions alternately, three-dimensional images are captured.

観察対象を色々な方向から見込む様に予め設定された複
数の対物光学手段は、ズーム値に応じて適当な間隔の組
み合わせが選択させる。簡単にはズーム値を望遠側に設
定する程、間隔を広げる必要がある。
For a plurality of objective optical means, which are set in advance so as to view the object to be observed from various directions, an appropriate combination of intervals is selected according to the zoom value. Simply put, the closer the zoom value is set to the telephoto side, the wider the interval needs to be.

いずれの方向からの光も上記光路合成手段に入射する前
には、成る共通の光軸に従う様に光路偏光手段によって
方向が矯正される。そして、シャッタ装置により、上述
した如くズーム値に応じていずれかの光路が選択される
ことになる。
Before the light from either direction enters the optical path combining means, its direction is corrected by the optical path polarizing means so that it follows a common optical axis. Then, the shutter device selects one of the optical paths depending on the zoom value as described above.

(実施例) 第1図及び第2図は本発明に係る立体カメラ装置の第1
実施例を模式的に示した図である。
(Example) FIGS. 1 and 2 show a first example of a three-dimensional camera device according to the present invention.
FIG. 2 is a diagram schematically showing an example.

観察対象1(図では便宜上近付けて描いである)は立体
カメラ2で撮影される。この立体カメラ2は筐体19に
納められている。
Observation object 1 (drawn close for convenience in the figure) is photographed by a stereoscopic camera 2. This stereoscopic camera 2 is housed in a housing 19.

上記観察対象1の映像は、立体カメラ2の入射孔にそれ
ぞれ取付けられた対物光学手段である対物レンズ31.
32.33に異なった角度で入射する。本実施例では入
射孔3個のみ描いであるが、数は使用状況に応じて任意
に設定できる。これらの入射光が従う光軸を41.42
.43と(2系統の入射光軸)とする。この内、光軸4
1は左眼映像用であり、光軸42,43は右眼映像様で
ある。後述するレンズズーム値が望遠側にある時にはこ
れ等のうち光軸43が使用され、広角側の時は光軸42
が使用される。光軸43は光路変更手段である反射プリ
ズム53で反射した後、シャッタ装置182に至り、光
軸42は別のシャッタ装置181に至る。
The image of the observation object 1 is captured by objective lenses 31 and 31, which are objective optical means respectively attached to the entrance holes of the stereoscopic camera 2.
32.33 at different angles. Although only three entrance holes are depicted in this embodiment, the number can be set arbitrarily depending on the usage situation. The optical axis followed by these incident lights is 41.42
.. 43 (two systems of incident optical axes). Of these, optical axis 4
1 is for left-eye images, and optical axes 42 and 43 are for right-eye images. When the lens zoom value described later is on the telephoto side, the optical axis 43 is used, and when it is on the wide-angle side, the optical axis 42 is used.
is used. After the optical axis 43 is reflected by a reflecting prism 53 which is an optical path changing means, it reaches a shutter device 182, and the optical axis 42 reaches another shutter device 181.

本図では上記レンズズーム値が広角側にある場合を示し
ている。この時、シャッタ装置181は開状態にあり、
シャッタ装置182は閉状態にある。従って本図では光
軸43はシャッタ装置182を通過する事は出来ず、光
軸42のみがシャッタ装置181を通過する。シ11ツ
タ181を通過した光軸42は光路変更手段としてのビ
ームスプリッタ52で反射され、偏光板62を通過した
後、光路合成手段である別のビームスプリッタ7に到達
する。こうして、シャッタ装置181.182により入
射光軸を一系統に選択するシャッタ装置が構成されてい
る。
This figure shows a case where the lens zoom value is on the wide-angle side. At this time, the shutter device 181 is in an open state,
The shutter device 182 is in a closed state. Therefore, in this figure, the optical axis 43 cannot pass through the shutter device 182, and only the optical axis 42 passes through the shutter device 181. The optical axis 42 that has passed through the ivy 181 is reflected by a beam splitter 52 as an optical path changing means, passes through a polarizing plate 62, and then reaches another beam splitter 7 as an optical path combining means. In this way, the shutter devices 181 and 182 constitute a shutter device that selects one system of incident optical axes.

上記の左眼映像光軸41は偏光板61を通過し、上記ビ
ームスプリッタに至る。この偏光板61は前述した偏光
板62とは互いの偏光方向が直交する関係にある。ビー
ムスプリッタ7に至る2つの光軸41.42はこのビー
ムスプリッタ71内で同一光軸8(本図では便宜上置え
て描いである)に従う様になり、偏光切替手段9に至る
。この偏光切替手段9は通過させる偏光の方向を前述し
た偏光板61及び62の偏光方向に合わせることができ
る特性を有しており、どちらかを切替制御装置10から
の信号によって選択する事が出来る。
The left eye image optical axis 41 passes through the polarizing plate 61 and reaches the beam splitter. This polarizing plate 61 is in a relationship with the aforementioned polarizing plate 62 so that their polarization directions are perpendicular to each other. The two optical axes 41 and 42 leading to the beam splitter 7 follow the same optical axis 8 (drawn side by side in this figure for convenience) within the beam splitter 71, and reach the polarization switching means 9. This polarization switching means 9 has a characteristic that the direction of the polarized light to be passed can be matched to the polarization direction of the polarizing plates 61 and 62 described above, and either one can be selected by a signal from the switching control device 10. .

この偏光切替手段9は、例えば液晶素材等で構成する事
が可能である。本図では、左眼映像用光軸41が通過し
、右眼映像用光軸42はブロックされる様に信号が印加
されている。
This polarization switching means 9 can be made of, for example, a liquid crystal material. In this figure, a signal is applied so that the left-eye image optical axis 41 passes through and the right-eye image optical axis 42 is blocked.

この偏光切替手段9を通過した光軸は共通光学手段を構
成するレンズ系11を通過し、昭像手段であるTVカメ
ラ12に至る。このTVカメラ12の搬像素子上の映像
は公知の映像処理手法によって観察者17に立体映像と
して提供される。この例ではTVカメラ12で得られた
映像は映像制御装置13でフィールド周波数を2倍に上
げられ、走査周波数が2倍である倍速モニタ14上に左
右眼映像が交互に投ぜられる。この倍速モニタ14の前
面には光学シャッタ15が装着され、倍速モニタ14上
の左右眼映像に互いに異なる光学的変調を施す。観察者
17は映像選択眼鏡16を掛け、左右眼で各々対応する
映像をvA察する事により、立体映像を感得する。
The optical axis that has passed through the polarization switching means 9 passes through a lens system 11 that constitutes a common optical means, and reaches a TV camera 12 that is an imaging means. The image on the image carrier element of the TV camera 12 is provided to the viewer 17 as a stereoscopic image using a known image processing method. In this example, the field frequency of the image obtained by the TV camera 12 is doubled by the image control device 13, and left and right eye images are alternately projected onto a double-speed monitor 14 whose scanning frequency is twice as high. An optical shutter 15 is attached to the front surface of the double-speed monitor 14 to apply different optical modulation to the left and right eye images on the double-speed monitor 14. An observer 17 puts on the image selection glasses 16 and senses a stereoscopic image by viewing the corresponding images with the left and right eyes.

第2図では上記レンズ系11が望遠鏡に設定されたとき
の入射光軸の選択状況を示しである。分かり易(する為
、観察対象や映像処理手段などを省略した描いである。
FIG. 2 shows the selection of the incident optical axis when the lens system 11 is set in a telescope. In order to make it easier to understand, the object of observation and image processing means are omitted.

本図では前述したシャッタ装置181.182において
、シャッタ装置181が閉状態にあり、シャッタ装置1
82が開状態となる。従って、右眼映像用光軸42,4
3内、光軸43が光路合成用ビームスプリッタ7に到達
し、光軸42は上記シャッタ装置181でブロックされ
る。
In this figure, in the shutter devices 181 and 182 described above, the shutter device 181 is in a closed state, and the shutter device 1
82 is in an open state. Therefore, the right eye image optical axis 42, 4
3, the optical axis 43 reaches the optical path combining beam splitter 7, and the optical axis 42 is blocked by the shutter device 181.

また本図では、前述した偏光切替手段9の状態も第1図
とは異なる場合を描いである。即ち、本図では切替制御
装置10(図示省略)の信号により、前記左右眼映像用
光軸41.43の内、右眼映像用光軸43のみを通過さ
せ、左眼映像用光軸41はブロックされている。
Furthermore, this figure depicts a case in which the state of the polarization switching means 9 described above is also different from that in FIG. 1. That is, in this figure, in response to a signal from the switching control device 10 (not shown), only the optical axis 43 for the right eye image among the optical axes 41 and 43 for the left and right eye images is allowed to pass, and the optical axis 41 for the left eye image is passed through. Blocked.

本図に記載されていない部分は第1図と同一である。Portions not shown in this figure are the same as in FIG. 1.

なお、観察対象1との距離が比較的近ければ、入射光軸
を若干内側に向cプで輻較角を付けた方が立体増を観察
し易い場合がある。そこで、本実施例では反射プリズム
53に矢印のような揺動回転を与えるために、反射プリ
ズム53を固定した半月状の歯車203、これと噛合う
歯車213を駆動するモータ223からなる輻較角設定
機構を設けである。又、ビームスプリッタ52にも同様
の機構を設けてもよい。
Note that if the distance to the observation object 1 is relatively short, it may be easier to observe the three-dimensional increase if the incident optical axis is slightly tilted inward to give a convergence angle. Therefore, in this embodiment, in order to give the reflecting prism 53 an oscillating rotation as shown by an arrow, the convergence angle is made up of a half-moon-shaped gear 203 to which the reflecting prism 53 is fixed, and a motor 223 that drives the gear 213 that meshes with the semi-moon-shaped gear 203. A setting mechanism is provided. Further, the beam splitter 52 may also be provided with a similar mechanism.

第3図は本発明に係る第2実施例を示す図である。本図
では先の実施例と共通する部分は、説明を分かり易くす
る為省略している箇所がある。
FIG. 3 is a diagram showing a second embodiment according to the present invention. In this figure, some parts common to the previous embodiment are omitted to make the explanation easier to understand.

本図では左眼映像用の対物レンズ31は1系統のみ設置
され、右眼映像用には3つの対物レンズ32.33.3
4が用意されている。これらの右眼映像用の対物レンズ
系は、レンズ系11のズーム値が望遠側に寄る程、外側
のものが使用される。
In this figure, only one system of objective lens 31 is installed for the left eye image, and three objective lenses 32, 33, 3 are installed for the right eye image.
4 are available. The closer the zoom value of the lens system 11 is to the telephoto side, the more outer the objective lens system for the right eye image is used.

本図では中程度のズーム値に設定された場合を描いであ
る。この時、レンズ系33を通過する入射光軸43が光
路合成用ビームスプリッタ7に到達すべきであるから、
辺も右外側の光軸34は反射プリズム54で反射れた後
、閉状態にあるシャッタ装置184でブロックされ、右
眼映像用光軸42.43.44のうち最も内側の光軸4
2は別の開状態にあるシャッタ装置181でブロックさ
れる。その他のシャッタ装置182.183は開状態に
あるので、光軸43のみがビームスプリッタ7に至る。
This figure depicts the case where the zoom value is set to a medium level. At this time, since the incident optical axis 43 passing through the lens system 33 should reach the optical path combining beam splitter 7,
The optical axis 34 on the right outer side is reflected by the reflection prism 54 and then blocked by the shutter device 184 in the closed state.
2 is blocked by another shutter device 181 in the open state. Since the other shutter devices 182, 183 are in the open state, only the optical axis 43 reaches the beam splitter 7.

上述以外は第1図あるいは第2図で説明した内容と同様
である。但し本図では変更1首手段9の状態は第2図と
同様に描かれており、右眼映像用光軸がレンズ系11を
通過している。
The contents other than the above are the same as those explained in FIG. 1 or 2. However, in this figure, the state of the modified head means 9 is depicted in the same manner as in FIG. 2, and the optical axis for the right eye image passes through the lens system 11.

この実施例でも反射プリズム54に、これを固定した半
月状の歯車204、これと噛合う歯車214を駆動する
モータ224からなる輻較角設定機構が設けられている
。又、レンズ系11のズーム値に応じてビームスプリッ
タ52.531に同様の機構を設けてもよい。
In this embodiment as well, the reflection prism 54 is provided with a convergence angle setting mechanism consisting of a semicircular gear 204 to which it is fixed, and a motor 224 that drives a gear 214 that meshes with the semicircular gear 204. Further, a similar mechanism may be provided in the beam splitter 52 or 531 depending on the zoom value of the lens system 11.

本図の様に入射孔が多数設定されるのは前記レンズ系1
1のズーム比が大きい場合であり、このズーム比の程度
に応じて適当数が設定される。
The lens system 1 has a large number of entrance holes as shown in this figure.
This is a case where the zoom ratio of 1 is large, and an appropriate number is set depending on the degree of this zoom ratio.

第1図から第3図では、左眼映像用光軸は1系統(41
)み設定され、右眼映像用光軸は複数系統(42,43
,44>に設定されているが、左右眼映像用の光軸数は
逆であっても構わない。
In Figures 1 to 3, there is one optical axis for the left eye image (41
), and the optical axis for the right eye image is set to multiple systems (42, 43
, 44>, however, the numbers of optical axes for left and right eye images may be reversed.

第4図は本発明に係る第3実施例を示す図である。本図
でもこれまでの実施例と共通する部分は、説明を分かり
易くする為に省略している箇所がある。
FIG. 4 is a diagram showing a third embodiment of the present invention. In this figure, some parts that are common to the previous embodiments are omitted to make the explanation easier to understand.

本実施例では左右眼映像用光軸は各々複数系統設置され
ており、レンズ系11のズーム値に応じて外側光軸(4
1,44)或いは内側光軸(42゜43)が選択される
。本図ではレンズズーム値が広角側に設定された場合を
示しである。この時、左眼映像用望遠側光軸41及び右
眼映像用望遠側光軸44は、各々反射プリズム51.5
4で反射された後、閉状態にあるシャッタ装置181,
184でブロックされる。また、左眼映像用広角側光軸
42及び右眼映像用広角側光軸43は開状態にあるシャ
ッタ装置182.183を通過し、このうち光軸42は
ビームスプリッタ52と反射プリズム20で反射された
後、また上記光軸43はビームスプリッタ53で反射し
た後、光路合成用ビームスプリッタ7に至り同一光軸8
(本図では便宜1離して描いである)に従う。これより
以降の構成と作用は第1図について記載した内容と同で
ある。
In this embodiment, a plurality of optical axes for left and right eye images are installed, and the outer optical axis (4
1, 44) or the inner optical axis (42°43) is selected. This figure shows a case where the lens zoom value is set to the wide-angle side. At this time, the telephoto side optical axis 41 for the left eye image and the telephoto side optical axis 44 for the right eye image are each connected to a reflecting prism 51.5.
4, the shutter device 181 is in a closed state,
184 is blocked. Further, the wide-angle side optical axis 42 for the left-eye image and the wide-angle side optical axis 43 for the right-eye image pass through the shutter devices 182 and 183 in the open state, and the optical axis 42 is reflected by the beam splitter 52 and the reflecting prism 20. After being reflected by the beam splitter 53, the optical axis 43 reaches the beam splitter 7 for optical path combining, and the same optical axis 8
(In this figure, they are drawn 1 point apart for convenience.) The structure and operation from this point on are the same as those described with respect to FIG.

本実施例では、左右眼映像用光軸の光路長は、望遠側と
広角側で各々同一に設定出来る為、観察対象とTVカメ
ラの距離が非常に短い場合でも、左右眼用映像のサイズ
が異なる事なく、良好な立体映像が観察できる。
In this embodiment, the optical path lengths of the optical axes for the left and right images can be set to be the same on the telephoto side and the wide-angle side, so even if the distance between the observation target and the TV camera is very short, the size of the left and right images can be adjusted. Good stereoscopic images can be observed without any difference.

第5図は第3実施例の他の状態を示す図である。FIG. 5 is a diagram showing another state of the third embodiment.

本図でもこれまでの実施例と共通する部分は、説明を分
り易くする為に省略している箇所がある。
In this figure, some parts that are common to the previous embodiments are omitted to make the explanation easier to understand.

本図ではシャッタ装W182.183が閉状態にあり、
シャッタ装置181.184が開状態にあり、レンズ系
1が望遠側に設定された状況を描いである。
In this figure, the shutter assembly W182.183 is in the closed state,
This figure depicts a situation in which the shutter devices 181 and 184 are in an open state and the lens system 1 is set to the telephoto side.

本実施例でも、反射プリズム51.54は半月状に切っ
た歯車201,204上に設置され、筐体19に取着さ
れたモータ221.224の歯車211.214を介し
て矢印のように揺動回転力が与えられる。この回転力を
上記反射プリズム51.54の中点231,234に一
致させれば、両反射プリズム51.54からビームスプ
リッタ7に至る光軸を変える事なく、外界からの映像光
軸41.44の入射角度を変えて輻較の設定が可能とな
る。
In this embodiment as well, the reflecting prisms 51 and 54 are installed on gears 201 and 204 cut into half-moon shapes, and are swung as shown by the arrows via the gears 211 and 214 of the motor 221 and 224 attached to the housing 19. Dynamic torque is given. By aligning this rotational force with the midpoints 231, 234 of the reflecting prisms 51.54, the image optical axis 41.44 from the outside world can be moved from the outside without changing the optical axis from both reflecting prisms 51.54 to the beam splitter 7. It is possible to set the radiation by changing the angle of incidence of the beam.

各実施例では歯車201.204は半月状に切っである
が、他の形状でも構わない。
In each embodiment, the gears 201 and 204 are cut into a half-moon shape, but other shapes may be used.

また、レンズ系11のズーム値やTVカメラ2と観察対
象1までの距離を測定する手段を設け、第1図から第5
図で説明した事柄の自動化を図っても良い。
In addition, means for measuring the zoom value of the lens system 11 and the distance between the TV camera 2 and the observation object 1 are provided, and
It is also possible to automate the matters explained in the figure.

なお、本発明のレンズ系11は上記のようなズームレン
ズではなく複数の断続的に焦点を有するレンズ系として
もよい。又、対物光学手段にはレンズ系31.32.3
4の他に光ファイバを用いてもよい。反射プリズム51
,53.54は平面反射鏡や光ファイバでもよい。
Note that the lens system 11 of the present invention may not be a zoom lens as described above, but may be a lens system having a plurality of intermittently focal points. In addition, the objective optical means includes a lens system 31.32.3.
In addition to 4, an optical fiber may be used. Reflection prism 51
, 53 and 54 may be flat reflecting mirrors or optical fibers.

更に本発明はTVカメラだけでな(スチルカメラや航空
写真用カメラにも適用可能である事は言うまでも無い。
Furthermore, the present invention is applicable not only to TV cameras (it goes without saying that it is also applicable to still cameras and aerial photography cameras).

[発明の効果] 以上述べたように、本発明によれば同一観察対象を2方
向から撮影して観察者に立体映像を提供する立体カメラ
装置において、焦点やズーム値の調整行う光学手段を左
右共通にしたから、従来のように撮像素子までを左右2
系統設けた装置に比べてそれだけ構成要素が少なく、機
械的な可動部分も少ない。従って、保守性、信頼性、耐
久性が著しく向上するとともに焦点調整やズーム調整時
に原理的に左右眼用の撮影映像の相対位置がずれること
なく、観察者に常に良好な立体映像を提供できる。
[Effects of the Invention] As described above, according to the present invention, in a stereoscopic camera device that photographs the same observation target from two directions and provides a stereoscopic image to an observer, the optical means for adjusting the focus and zoom value are Since it is made common, the image sensor is divided into two parts on the left and right sides, unlike before.
It has fewer components and fewer mechanically moving parts than a system-based device. Therefore, maintainability, reliability, and durability are significantly improved, and in principle, the relative positions of the captured images for the left and right eyes do not shift during focus adjustment or zoom adjustment, and a good stereoscopic image can always be provided to the viewer.

又、ズーム値に応じて左右眼映像用光軸の間隔を調整す
る場合にも、機械的可動部分が無く電気的に間隔調整を
行うから、この調整に伴う光軸ズレから立体感が損なわ
れることはなく、さらに保守性と信頼性と耐久性の向上
が実現される。
Furthermore, when adjusting the distance between the optical axes for left and right eye images according to the zoom value, the distance is adjusted electrically as there are no mechanically movable parts, so the three-dimensional effect is impaired due to the shift of the optical axes due to this adjustment. This will further improve maintainability, reliability, and durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る立体カメラ装置の第1実施例の図
、第2図はこの実施例の伯の状態を示す図、第3図は第
2実施例の図、第4図は第3実施例の図、第5図はこの
実施例の他の状態を示す図である。 1・・・観察対象 2・・・立体カメラ7・・・ビーム
スプリッタ(光路合成手段)11・・・共通レンズ系(
共通光学手段)13・・・映像制御!l装置 15・・
・光学シャッタ16・・・映像選択眼鏡 17・・・観
察者19・・・筐体 31.32.33.34・・・対象レンズ系(対物光学
手段) 51・・・反射プリズム(光路変更手段)52・・・ビ
ームスプリッタ(光路変更手段)53.54・・・反射
プリズム(光路変更手段)181.182,183.1
84・・・シャッタ手段 531・・・ビームスプリッタ(光路変更手段)1・・
・II察対12 ・立体カメラ 7・・・ビームスプリッタ(光路合成手段)11・・・
共通レンズ系(共通光学手段)13・・・映−mmsi
置 15・・光学シャッタ16・・・映像選択ml蹟 
17・・・I!察119・・筐体 31.32.33.34・・・対象レンズ系(対物光学
手段) 51・・・反射プリズム(光路変更手段)52・・ビー
ムスプリッタ(光路変更手段)53.54・・・反射プ
リズム(光路変更手段)181.182.183.18
4・−・シャッタ手段
FIG. 1 is a diagram of the first embodiment of the stereoscopic camera device according to the present invention, FIG. 2 is a diagram showing the state of this embodiment, FIG. 3 is a diagram of the second embodiment, and FIG. 4 is a diagram of the second embodiment. Embodiment 3 and FIG. 5 are diagrams showing another state of this embodiment. 1...observation object 2...stereoscopic camera 7...beam splitter (optical path combining means) 11...common lens system (
Common optical means) 13...Video control! l device 15...
- Optical shutter 16... Image selection glasses 17... Observer 19... Housing 31.32.33.34... Target lens system (objective optical means) 51... Reflecting prism (optical path changing means) ) 52...Beam splitter (optical path changing means) 53.54...Reflecting prism (optical path changing means) 181.182, 183.1
84...Shutter means 531...Beam splitter (optical path changing means) 1...
・II detector 12 ・Stereoscopic camera 7... Beam splitter (light path combining means) 11...
Common lens system (common optical means) 13...image-mmsi
Position 15...Optical shutter 16...Video selection ml
17...I! Sensor 119... Housing 31.32.33.34... Target lens system (objective optical means) 51... Reflection prism (optical path changing means) 52... Beam splitter (optical path changing means) 53.54...・Reflection prism (optical path changing means) 181.182.183.18
4.--Shutter means

Claims (1)

【特許請求の範囲】[Claims]  同一観察対象からの左右2方向の光を見込む左右の対
物光学手段と、これら対物光学手段からの左右の入射光
を同一光軸に合成する光路合成手段と、この光路合成手
段からの光を撮像素子上に結像させる左右共用の共通光
学手段とを備え、立体映像を提供する立体カメラ装置で
あって、左右眼用の対物光学手段の内一方又は両方を複
数系統設け、これら複数系統の対物光学系のそれぞれに
対応して設けられ入射光の光路を変更する光路変更手段
と、この光路変更手段で変更された複数の入射光の一系
統を選択するシャツタ手段とを備えたことを特徴とする
立体カメラ装置。
Left and right objective optical means that see light in two directions, left and right, from the same object to be observed, an optical path combining means that combines the left and right incident lights from these objective optical means onto the same optical axis, and an image of the light from this optical path combining means. A stereoscopic camera device that is provided with a common optical means for both left and right eyes to form an image on an element, and provides a stereoscopic image, wherein a plurality of systems are provided with one or both of the objective optical means for the left and right eyes, and a plurality of objective optical means for the left and right eyes are provided. It is characterized by comprising an optical path changing means provided corresponding to each of the optical systems and changing the optical path of the incident light, and a shutter means selecting one system of the plurality of incident lights changed by the optical path changing means. 3D camera device.
JP1078611A 1989-03-31 1989-03-31 Stereoscopic camera device Pending JPH02260891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1078611A JPH02260891A (en) 1989-03-31 1989-03-31 Stereoscopic camera device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1078611A JPH02260891A (en) 1989-03-31 1989-03-31 Stereoscopic camera device

Publications (1)

Publication Number Publication Date
JPH02260891A true JPH02260891A (en) 1990-10-23

Family

ID=13666678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1078611A Pending JPH02260891A (en) 1989-03-31 1989-03-31 Stereoscopic camera device

Country Status (1)

Country Link
JP (1) JPH02260891A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050429A (en) * 2018-12-27 2019-03-28 株式会社東京精密 Imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050429A (en) * 2018-12-27 2019-03-28 株式会社東京精密 Imaging apparatus

Similar Documents

Publication Publication Date Title
JP2765022B2 (en) 3D image forming device
JP4863527B2 (en) Stereoscopic imaging device
KR100865464B1 (en) Three-dimensional image producing method and apparatus therefor
EP2593835B1 (en) Variable three-dimensional camera assembly for still photography
US6862140B2 (en) Stereoscopic image pickup system
JP4131818B2 (en) Single-axis stereoscopic video imaging device with optical axis alignment capability
JP3688715B2 (en) Imaging apparatus with three-dimensional measurement and focus-related convergence correction and method of use
US5883662A (en) Apparatus for three-dimensional measurement and imaging having focus-related convergance compensation
US3990087A (en) 3-Dimensional camera
JP2004524553A6 (en) Single-axis stereoscopic video imaging device with optical axis alignment capability
JP4421673B2 (en) 3D image display device
KR100220888B1 (en) Method for providing multiview 3-dimensional images using aperture and system therefor
JP2662252B2 (en) 3D image display device
JPH06339155A (en) Three-dimensional image pickup system
JPH08205200A (en) Three-dimensional image pickup device
JP3520197B2 (en) 3D camera device
JPH02260891A (en) Stereoscopic camera device
JP2000152282A (en) Stereoscopic picture photographing device
JP2513403B2 (en) Projection type stereoscopic display device
US4175829A (en) 3-Dimensional camera device
JP6670036B2 (en) How to shoot a compact 3D image
JP2004070302A (en) Stereoscopic screen constitution system
JPH11133355A (en) Method and device for displaying stereoscopic picture
JPH07298308A (en) Compound eye image pickup device
JPH02260892A (en) Stereoscopic camera device