JPH02260676A - Manufacture of superconductor device - Google Patents
Manufacture of superconductor deviceInfo
- Publication number
- JPH02260676A JPH02260676A JP1081950A JP8195089A JPH02260676A JP H02260676 A JPH02260676 A JP H02260676A JP 1081950 A JP1081950 A JP 1081950A JP 8195089 A JP8195089 A JP 8195089A JP H02260676 A JPH02260676 A JP H02260676A
- Authority
- JP
- Japan
- Prior art keywords
- film
- metal
- oxide superconductor
- lead
- metal film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 89
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 65
- 239000002184 metal Substances 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 claims abstract description 26
- 239000011810 insulating material Substances 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 229910002480 Cu-O Inorganic materials 0.000 claims abstract description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 6
- 229910000510 noble metal Inorganic materials 0.000 claims description 18
- 238000002955 isolation Methods 0.000 abstract description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 abstract description 4
- 239000012212 insulator Substances 0.000 abstract description 3
- 239000010970 precious metal Substances 0.000 abstract description 3
- 239000003960 organic solvent Substances 0.000 abstract description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 abstract 1
- 238000004090 dissolution Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 103
- 239000010409 thin film Substances 0.000 description 29
- 239000000463 material Substances 0.000 description 16
- 229920002120 photoresistant polymer Polymers 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、Y−Ba−Cu−0系などの酸化物超電導体
を用いた超電導体装置の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a superconductor device using an oxide superconductor such as a Y-Ba-Cu-0 system.
(従来の技術)
従来から、ある温度以下でその電気抵抗が零となる超電
導物質は数多く発見されており、それらを用いて電子デ
バイスを実現しようとする試みが種々検討されてきてい
る。また、最近、液体窒素の沸点温度以上の転移温度を
有する、いわゆる高温超電導体が種々発見され、高価な
液体ヘリウムを必要としない超電導デバイスを実現する
試みが関心を呼ぶに至っている。(Prior Art) Many superconducting materials whose electrical resistance becomes zero below a certain temperature have been discovered, and various attempts have been made to realize electronic devices using them. In addition, various so-called high-temperature superconductors having transition temperatures higher than the boiling point temperature of liquid nitrogen have recently been discovered, and attempts to realize superconducting devices that do not require expensive liquid helium have attracted interest.
上記高温超電導体としては、転移温度が液体窒素温度(
−77K)より高いY−Ba−Cu−0系で代表される
酸素欠陥を有する欠陥ペロブスカイト型酸化物超電導体
、さらに転移温度の高いB1−8r−Ca−Cu−0系
やT l−Ba−Ca−Cu−0系の酸化物超電導体な
どが発見されており、なかでもY−Ba−Cu−0系で
代表される欠陥ペロブスカイト型酸化物超電導体が、取
扱いが簡単であり、デバイス化に適している材料として
注目されている。The high temperature superconductor mentioned above has a transition temperature of liquid nitrogen temperature (
-77K) defective perovskite-type oxide superconductors with oxygen defects represented by the Y-Ba-Cu-0 system, as well as the B1-8r-Ca-Cu-0 system and Tl-Ba- Ca-Cu-0-based oxide superconductors have been discovered, and defective perovskite-type oxide superconductors, represented by Y-Ba-Cu-0, are easy to handle and are suitable for device development. It is attracting attention as a suitable material.
一般に、超電導物質を用いて電子デバイスを製作するた
めには、絶縁基板上にスパッタリング法などにより形成
した超電導物質の薄膜に対して素子領域や配線などとし
て用いる部分を残してパタニングを施し、その後、必要
に応じて追加加工、被膜形成、相互配線などを行って目
的とするデバイスを完成させる。したがって、まず絶縁
基板上に形成した超電導薄膜を正確にバターニングして
、素子領域相互を電気的に絶縁分離する、いわゆる素子
間分離技術が不可欠な技術となる。Generally, in order to fabricate electronic devices using superconducting materials, a thin film of superconducting material is formed on an insulating substrate by sputtering, etc., and is patterned, leaving areas to be used as element regions and wiring, etc. Additional processing, film formation, mutual wiring, etc. are performed as necessary to complete the desired device. Therefore, a so-called device isolation technique, in which a superconducting thin film formed on an insulating substrate is first accurately patterned to electrically insulate and isolate device regions from each other, is essential.
しかし、Y−Ba−Cu−0系酸化物超電導体のように
配向性の強い物質では、通常のエツチング方法によって
素子領域もしくは配線などとして用いる部分以外の領域
(フィールド領域)を完全に除去することによって素子
間分離を行った場合、バターニングされた酸化物超電導
体領域の表面部分とこの表面部分と直行する露出さ、れ
た側面部分に起因する特性が混ざり合い、この特性の混
在が実際の素子特性に反映し、素子特性の不安定性を生
じる要因となっていた。However, in the case of highly oriented materials such as Y-Ba-Cu-0 based oxide superconductors, it is difficult to completely remove the regions (field regions) other than those used as element regions or wiring using normal etching methods. When isolation is performed between elements by This was reflected in the device characteristics and became a factor causing instability of the device characteristics.
これに対して本発明者は先に、Y−Ba−Cu−0系酸
化物超電導体とpbとを反応させることによって絶縁物
質化させることが可能であることを見出し、これを利用
してY−Ba−Cu−0系酸化物超電導体膜上にフィー
ルド領域とする部分に鉛を主成分とする金属膜を形成す
るとともに反応させ、フィールド領域部分の酸化物超電
導体を絶縁化することによって素子間分離を行うことを
提案している。In contrast, the present inventors have previously discovered that it is possible to make an insulating material by reacting a Y-Ba-Cu-0 based oxide superconductor with pb, and using this, the -A metal film containing lead as a main component is formed on the Ba-Cu-0 based oxide superconductor film in the field area, and the oxide superconductor in the field area is insulated. It is proposed to perform separation between
(発明が解決しようとする課題)
上述したY−Ba−Cu−0系酸化物超電導体を鉛によ
って絶縁化することによる素子間分離方法によれば、超
電導領域の酸化物超電導体の側面を露出させることなく
素子間分離が行え、一定の超電導特性が得られるという
利点があり、素子間分離方法として非常に有効な方法で
ある。(Problems to be Solved by the Invention) According to the above-described inter-element isolation method by insulating the Y-Ba-Cu-0 based oxide superconductor with lead, the side surfaces of the oxide superconductor in the superconducting region are exposed. This is a very effective method for isolating elements, as it has the advantage of being able to perform element isolation without causing any interference, and achieving constant superconducting properties.
ところで、このように鉛膜と酸化物超電導体膜とを反応
させてフィールド領域を形成する場合、Y−Ba−Cu
−0系酸化物超電導体に対してウェットエツチングを適
用できないことや、鉛膜と酸化物超電導体膜のドライエ
ツチングに対するエツチングレートがほぼ同等であるこ
とがら、前提となるパターニングされた鉛膜を得るため
に、いわゆるリフトオフ法を用いなければならない。By the way, when forming a field region by reacting a lead film and an oxide superconductor film in this way, Y-Ba-Cu
- Since wet etching cannot be applied to the 0-based oxide superconductor, and the etching rates for dry etching of the lead film and the oxide superconductor film are almost the same, the prerequisite patterned lead film can be obtained. Therefore, a so-called lift-off method must be used.
しかしながら、リフトオフ法によって鉛膜のパターニン
グを行う場合には形状的な制約も多い。However, when patterning a lead film by the lift-off method, there are many restrictions regarding the shape.
すなわち、超電導領域を微細なパターンとして形成した
い場合、超電導領域として残存させる部分に対応させて
微小範囲にマスクパターンを形成しなければならないた
め、その上に鉛膜を形成した際にマスク物質の側面まで
鉛膜が形成され、上下膜間にいわゆるブリッジを形成し
やすい。このため、マスク物質の溶解除去が困難となっ
たり、またマスク物質を除去してもブリッジによって精
細にパターンを形成できないなど、鉛膜パターンノ再現
性が乏しいという問題があった。この問題は、マスク物
質の膜厚を厚くすることによって軽減されるものの、マ
スク物質を厚くすることによって精細なパターンが形成
しずらくなるという問題が発生する。In other words, when it is desired to form a superconducting region as a fine pattern, a mask pattern must be formed in a minute area corresponding to the portion to be left as a superconducting region. A lead film is formed up to the point where a so-called bridge is easily formed between the upper and lower films. For this reason, there have been problems in that the reproducibility of the lead film pattern is poor, such as it being difficult to dissolve and remove the mask material, and even if the mask material is removed, a fine pattern cannot be formed due to bridges. Although this problem can be alleviated by increasing the thickness of the mask material, a problem arises in that increasing the thickness of the mask material makes it difficult to form a fine pattern.
つまり、超電導領域として残存させる部分が大きいほど
良好に素子間分離が行え、逆に超電導領域が微細になる
ほど再現性が低下する。これは、素子面積を微細化し高
集積化を目指している現状に反している。In other words, the larger the portion left as the superconducting region, the better the separation between elements can be performed, and conversely, the finer the superconducting region, the lower the reproducibility. This is contrary to the current situation where the goal is to miniaturize the element area and achieve high integration.
本発明は、このような課題に対処するためになされたも
ので、超電導領域の側面を露出させることなく素子間分
離が行え、かつ微細な超電導領域を再現性よく得ること
を可能にした超電導体装置の製造方法を提供することを
目的としている。The present invention has been made to address these issues, and provides a superconductor that allows separation between elements without exposing the side surfaces of the superconducting regions and that makes it possible to obtain fine superconducting regions with good reproducibility. The purpose is to provide a method for manufacturing the device.
[発明の構成]
(課題を解決するための手段)
すなわち本発明の超電導体装置の製造方法は、絶縁基板
上にLn−M−Cu−0系酸化物超電導体(Lnは希土
類元素から選ばれた少なくとも 1種の元素を、Mはア
ルカリ土類元素から選ばれた少なくとも1種の元素を示
す。)膜を形成する工程と、このLn−M−Cu−0系
酸化物超電導体膜上に貴金属を主成分とする第1の金属
膜を所望とする超電導領域の形、状に応じて形成する工
程と、前記貴金属を主成分とする第1の金属膜上と連続
して前記Ln−M−Cu−O系酸化物超電導体膜上に鉛
を主成分とする第2の金属膜を形成する工程と、前記鉛
を主成分とする第2の金属膜とこの第2の金属膜下部の
前記Ln−M−Cu−0系酸化物超電導体膜とを反応さ
せ絶縁物質化させる工程とを有することを特徴としてい
る。[Structure of the Invention] (Means for Solving the Problems) In other words, the method for manufacturing a superconductor device of the present invention comprises manufacturing an Ln-M-Cu-0 based oxide superconductor (Ln is selected from rare earth elements) on an insulating substrate. and M represents at least one element selected from alkaline earth elements. A step of forming a first metal film containing a noble metal as a main component according to the shape and shape of a desired superconducting region, and forming the Ln-M film continuously on the first metal film containing a noble metal as a main component. - a step of forming a second metal film mainly containing lead on the Cu-O based oxide superconductor film; The method is characterized by comprising a step of reacting with the Ln-M-Cu-0 based oxide superconductor film to form an insulating material.
(作 用)
本発明においては、まずLn−トCu−0系酸化物超電
導体膜の超電導領域として残存させたい部分に貴金属を
主成分とする第1の金属膜をたとえばリフトオフ法によ
って形成し、この上に鉛を主成分とする第2の金属膜を
形成する。そして、貴金属を主成分とする第1の金属膜
により覆われていない部分のLn−トCu−0系酸化物
超電導体と鉛を主成分とする第2の金属膜とを反応させ
ることによって、超電導領域と同等の高さを有する良好
な絶縁物質を得ることができ、超電導領域は貴金属を主
成分とする第1の金属膜によって保護されているた′め
、その状態が維持される。また、予め超電導領域として
残存させる部分に貴金属を主成分とする第1の金属膜を
リフトオフ法などによって形成できるため、超電導領域
のパターンが微細化されていても、再現性よく形成でき
る。(Function) In the present invention, first, a first metal film containing a noble metal as a main component is formed on a portion of the Ln-Cu-0 based oxide superconductor film that is desired to remain as a superconducting region by, for example, a lift-off method; A second metal film containing lead as a main component is formed on this. Then, by reacting the portion of the Ln-Cu-0 based oxide superconductor that is not covered with the first metal film containing a noble metal as a main component and the second metal film containing lead as a main component, A good insulating material having the same height as the superconducting region can be obtained, and since the superconducting region is protected by the first metal film containing noble metal as a main component, that state is maintained. Further, since the first metal film containing a noble metal as a main component can be formed in advance in the portion to remain as a superconducting region by a lift-off method or the like, even if the pattern of the superconducting region is miniaturized, it can be formed with good reproducibility.
なお、鉛を主体とする第2の金属膜は、貴金属を主体と
する第1の金属膜の周囲に形成するだけで充分である。Note that it is sufficient to form the second metal film mainly composed of lead around the first metal film mainly composed of a noble metal.
(実施例) 次に、本発明の実施例を図面を参照して説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.
第1図は、本発明の一実施例の超電導体装置の製造工程
を示す断面図である。FIG. 1 is a cross-sectional view showing the manufacturing process of a superconductor device according to an embodiment of the present invention.
まず、絶縁基板1上に薄膜形成法を用いて5000人程
度0Ln−M−Cu−0系酸化物超電導体薄膜2を形成
し、その上に超電導領域として残す部分を除いて、PE
P法を用いてフォトレジスト膜3よりなるマスクパター
ンを形成する(第1図−a)。First, a 0Ln-M-Cu-0 based oxide superconductor thin film 2 is formed by about 5000 people on an insulating substrate 1 using a thin film formation method, and then PE
A mask pattern made of a photoresist film 3 is formed using the P method (FIG. 1-a).
使用する絶縁基板1としては、MgO基板、5r710
3基板、LITaJ基板、LINbOx基板、Y安定化
ZrO2基板、あるいはこれらの材質をSi基板上に形
成したものなどが例示される。The insulating substrate 1 used is an MgO substrate, 5r710.
Examples include a LITaJ substrate, a LINbOx substrate, a Y-stabilized ZrO2 substrate, or a structure in which these materials are formed on a Si substrate.
上記Ln−M−Cu−0系酸化物超電導体としては、超
電導状態を実現できるものであればよく、たとえばLn
M Cu O(LnはY 、 La5ScSNd、
5s12 3 7−δ
1EuSGd、 Dy% llo、 Er、 Tm、
Yb、 Luなどの希土類元素から選ばれた少なくとも
1種の元素を、HはBa。The Ln-M-Cu-0-based oxide superconductor may be any material as long as it can realize a superconducting state, such as Ln-M-Cu-0-based oxide superconductor.
M CuO (Ln is Y, La5ScSNd,
5s12 3 7-δ 1EuSGd, Dy% llo, Er, Tm,
At least one element selected from rare earth elements such as Yb and Lu, and H is Ba.
Srs Caなどのアルカリ土類元素から選ばれた少な
くとも 1種の元素を示し、δは酸素欠陥を表し通常1
以下の数、Cuの一部はTl5V s Cr、Mn、
re。Indicates at least one element selected from alkaline earth elements such as Srs Ca, and δ represents an oxygen defect, usually 1.
The following numbers, part of Cu is Tl5V s Cr, Mn,
re.
Co、 Nl、 Znなどで置換可能′。)で表される
酸素欠陥を有する欠陥ペロブスカイト型、5r−Ln−
Cu−0系などの層状ペロブスカイト型などの広義にペ
ロブスカイト構造を有する酸化物超電導体が使用される
。代表的な系としては、Y−Ba−Cu−0系のほかに
、VをELISHO% Ybなどの希土類元素で置換し
た系などが例示される。Can be replaced with Co, Nl, Zn, etc.' ), a defective perovskite type with oxygen vacancies, 5r-Ln-
An oxide superconductor having a perovskite structure in a broad sense, such as a layered perovskite type such as Cu-0 type, is used. Typical systems include, in addition to the Y-Ba-Cu-0 system, systems in which V is replaced with a rare earth element such as ELISHO% Yb.
また、上記Ln−トCu−0系酸化物超電導体薄膜2の
形成方法としては、電子ビーム蒸着法、レーザ蒸着法、
マグネトロンスパッタ法、イオンビームスパッタ法、ク
ラスターイオンビーム法など、各種の薄膜形成方法を使
用することが可能である。Further, the method for forming the Ln-Cu-0 based oxide superconductor thin film 2 includes electron beam evaporation, laser evaporation,
Various thin film forming methods can be used, such as magnetron sputtering, ion beam sputtering, and cluster ion beam methods.
次に、フォトレジスト膜3が形成されたLn−M−Cu
−0系酸化物超電導体薄膜2上全面に、銀、金、白金な
どの貴金属を真空蒸着法などの薄膜形成方法によって1
500人程度0厚さに着膜させ、貴金属を主体とする第
1の金属膜4を形成する(第1図−b)。Next, the Ln-M-Cu film on which the photoresist film 3 was formed
A noble metal such as silver, gold, or platinum is applied to the entire surface of the −0-based oxide superconductor thin film 2 by a thin film forming method such as a vacuum evaporation method.
About 500 people deposited the film to zero thickness to form the first metal film 4 mainly made of noble metal (FIG. 1-b).
次いで、全体をアセトンなどの有機溶剤に浸すことによ
り、フォトレジスト膜3が溶融除去されるとともにフォ
トレジスト膜3上の第1の金属膜4も除去され、フォト
レジスト膜3で覆われていたLn−M−Cu−0系酸化
物超電導体薄膜2の表面は露出し、マスクパターンが存
在しなかった部分のLn−M−Cu−0系酸化物超電導
体薄膜2上のみに第1の金属膜4が残存することになる
(第1図−〇)。Next, by immersing the whole in an organic solvent such as acetone, the photoresist film 3 is melted and removed, and the first metal film 4 on the photoresist film 3 is also removed, and the Ln covered with the photoresist film 3 is removed. - The surface of the M-Cu-0-based oxide superconductor thin film 2 is exposed, and the first metal film is formed only on the Ln-M-Cu-0-based oxide superconductor thin film 2 in areas where no mask pattern was present. 4 will remain (Figure 1-○).
この残存する第1の金属膜4で覆われた領域は、最終的
に超電導領域となる部分であり、この超電導領域となる
部分を除いてマスクパターンを形成しているため、超電
導領域がたとえば線幅1μmというように微細化された
場合において、フォトレジスト膜3を形成する部分が比
較的広面積となり、超電導領域となる第1の金属膜4の
パターニングを精細に行うことができる。The region covered with the remaining first metal film 4 is a portion that will eventually become a superconducting region, and a mask pattern is formed excluding this portion that will become a superconducting region, so that the superconducting region is, for example, a line When the width is miniaturized to 1 μm, the area where the photoresist film 3 is formed becomes relatively large, and the first metal film 4 that becomes the superconducting region can be precisely patterned.
次に、超電導領域となる貴金属膜4上を含めLn−M−
Cu−0系酸化物超電導体薄膜2上全面に、鉛を真空蒸
着法などの薄膜形成方法によって2500人程度0厚さ
に着膜させ、鉛からなる第2の金属膜5を形成する(第
1図−d)。Next, Ln-M-
A second metal film 5 made of lead is formed by depositing lead on the entire surface of the Cu-0 based oxide superconductor thin film 2 by a thin film forming method such as vacuum evaporation to a thickness of about 2,500. Figure 1-d).
形成する鉛からなる第2の金属膜5の厚さは、Ln−ト
Cu−0系酸化物超電導体薄膜2の厚さの35%〜65
%の範囲であることが好ましい。第2の金属膜5の厚さ
がLn−トCu−0系酸化物超電導体薄膜2の厚さの3
5%より薄いと、Ln−M−Cu−0系酸化物超電導体
薄膜2をその厚さ分だけ完全に絶縁体化することが困難
となり、またLn−M−Cu−0系酸化物超電導体薄膜
2の厚さの65%より厚いと、反応せずに残存した鉛が
表面に残り、素子間分離を不完全なものにするためであ
る。The thickness of the second metal film 5 made of lead to be formed is 35% to 65% of the thickness of the Ln-Cu-0 based oxide superconductor thin film 2.
% range is preferable. The thickness of the second metal film 5 is 3 times the thickness of the Ln-Cu-0 based oxide superconductor thin film 2.
If it is thinner than 5%, it becomes difficult to completely convert the Ln-M-Cu-0 based oxide superconductor thin film 2 into an insulator by that thickness, and the Ln-M-Cu-0 based oxide superconductor thin film 2 This is because if it is thicker than 65% of the thickness of the thin film 2, unreacted lead remains on the surface, making isolation between elements incomplete.
次に、鉛からなる第2の金属膜5とその下部で直接接触
しているLn−トCu−0系酸化物超電導体薄膜2のフ
ィールド領域とする部分とを反応させ、絶縁物質6を形
成する(同図−e)。なお、この反応の際に、貴金属を
主体とする第1の金属膜4で覆われている部分のLn−
M−Cu−0系酸化物超電導体薄膜2は鉛との反応が遮
られているため、初期の膜質を維持することができる。Next, the second metal film 5 made of lead and the portion of the Ln-Cu-0 based oxide superconductor thin film 2 which is directly in contact with the second metal film 5 made of lead are caused to react with each other to form a field region, thereby forming an insulating material 6. (Figure-e). Note that during this reaction, the Ln-
Since the M-Cu-0 based oxide superconductor thin film 2 is prevented from reacting with lead, the initial film quality can be maintained.
この鉛とLn−M−Cu−0系酸化物超電導体との反応
は、室温状態の大気中に12〜24時間放置しておくこ
とによっても進行するが、雰囲気を室温から50℃以上
の高温に加熱することにより促進することができる。た
だし、あまり高温状態とすると酸化物超電導体の劣化が
起こるため、適当な温度を選択する。また、この際に雰
囲気中に水蒸気を添加すると、さらに著しい反応促進効
果がある。This reaction between lead and the Ln-M-Cu-0 based oxide superconductor can also proceed by leaving it in the air at room temperature for 12 to 24 hours, but the reaction can also be progressed by leaving it in the air at room temperature for 12 to 24 hours. This can be accelerated by heating. However, if the temperature is too high, the oxide superconductor will deteriorate, so an appropriate temperature should be selected. Furthermore, if water vapor is added to the atmosphere at this time, there is a further significant effect of promoting the reaction.
また、上記第2の金属膜5中には、たとえばAIやZn
などの鉛よりも原子半径の小さな金属原子を予め15重
量%以下程度の範囲で添加しておくことが好ましい。こ
れは、AIなどの原子半径の小さな金属原子が介在する
ことにより、絶縁物質6の粒径が大きく成長することを
妨げ、細かく分断された絶縁物質6が数多(形成され、
これによって得られる絶縁物質6の結晶粒径が微細にな
り緻密質な膜が得られるとともに、酸化物超電導体薄膜
2と絶縁物質6との領域がより鮮明になり、精細な超電
導領域パターンを形成することが可能となる。In addition, the second metal film 5 contains, for example, AI or Zn.
It is preferable that metal atoms having a smaller atomic radius than lead, such as lead, be added in advance in an amount of about 15% by weight or less. This is because the presence of metal atoms such as AI with a small atomic radius prevents the grain size of the insulating material 6 from growing large, and many finely divided insulating materials 6 are formed.
As a result, the crystal grain size of the insulating material 6 obtained becomes fine and a dense film is obtained, and the region between the oxide superconductor thin film 2 and the insulating material 6 becomes clearer, forming a fine superconducting region pattern. It becomes possible to do so.
この原子半径の小さな金属原子の添加は、特に反応時に
熱を加えたり、水蒸気を添加するなどによって反応を促
進した際に、著しくその効果が得られる。The addition of metal atoms with a small atomic radius is particularly effective when the reaction is accelerated by applying heat or adding water vapor during the reaction.
この後、貴金属を主体とする第1の金属膜4上に残存す
る鉛からなる第2の金属膜5をlO%程度に希釈された
塩酸などによって除去する。これによって、第1の金属
膜4によって覆われた部分のLn−M−Cu−0系酸化
物超電導体薄膜2は超電導体領域7として初期の膜質を
維持し、その周囲の鉛からなる第2の金属膜5と反応し
た部分は半透明の絶縁物質6となってフィールド領域8
が形成され、目的とする超電導体領域7の周囲が絶縁さ
れて素子間分離が行われた超電導体装置が得られる(第
1図−f)。Thereafter, the second metal film 5 made of lead remaining on the first metal film 4 mainly made of noble metal is removed using hydrochloric acid diluted to about 10%. As a result, the portion of the Ln-M-Cu-0 based oxide superconductor thin film 2 covered by the first metal film 4 maintains its initial film quality as a superconductor region 7, and the second layer made of lead surrounding it maintains its initial film quality. The part that has reacted with the metal film 5 becomes a semi-transparent insulating material 6 and forms a field region 8.
A superconductor device is obtained in which the periphery of the target superconductor region 7 is insulated and elements are isolated (FIG. 1-f).
上記したこの実施例の工程にしたがって、!1irT1
0i基板からなる絶縁基板1表面にマグネトロンスバッ
グ法によって形成したY−Ba−Cu−0系酸化物超電
導体薄膜2上へのパターニングされた銀からなる第1の
金属膜4の形成、この第1の金属膜4上への鉛を主成分
とする第2の金属膜5の形成、この第2の金属膜5と第
1の金属膜4に覆われていない部分のY−Ba−Cu−
0系酸化物超電導体薄膜2との反応を順に行い、得られ
た絶縁物質6の比抵抗を測定したところ、106Ω・8
111以上であり良好な絶縁性を有していた。また、予
め第1の金属膜4で覆われていたY−Ba−Cu−0系
酸化物超電導体薄膜2の部分は変化せずに初期の膜質、
すなわち超電導特性を維持しており、これら相互の間は
完全に素子間分離が行われていることを確認した。According to the steps of this example described above! 1irT1
Formation of a patterned first metal film 4 made of silver on a Y-Ba-Cu-0 based oxide superconductor thin film 2 formed on the surface of an insulating substrate 1 made of a 0i substrate by a magnetron bag method; Formation of a second metal film 5 containing lead as a main component on the first metal film 4, Y-Ba-Cu- of the portion not covered with this second metal film 5 and the first metal film 4
When the specific resistance of the obtained insulating material 6 was measured by sequentially reacting with the 0-based oxide superconductor thin film 2, it was found to be 106Ω.8
It was 111 or more and had good insulation properties. In addition, the portion of the Y-Ba-Cu-0 based oxide superconductor thin film 2 that was previously covered with the first metal film 4 remains unchanged, and the initial film quality remains unchanged.
In other words, it was confirmed that the superconducting properties were maintained and that the elements were completely isolated from each other.
また、この絶縁物質6の成分をオージェ分析法により分
析した結果では、イツトリウム、バリウム、銅、酸素の
他、明らかに鉛が検出され、これらの化合物もしくは混
合物となって、絶縁物質となったことが確認された。Furthermore, according to the results of analyzing the components of this insulating material 6 using Auger analysis, in addition to yttrium, barium, copper, and oxygen, lead was clearly detected, indicating that the insulating material was formed as a compound or mixture of these. was confirmed.
上記実施例によれば、絶縁基板1上の酸化物超電導体薄
膜2はその側面を露出することなく希望するパターン形
状に形成することができるとともに、それら相互の間を
電気的に絶縁し、確実に素子間分離を行うことができる
。したがって、得られる超電導体装置は、酸化物超電導
体膜の面方向に起因する超電導特性のみを選択的に得る
ことが可能となる。According to the embodiment described above, the oxide superconductor thin film 2 on the insulating substrate 1 can be formed into a desired pattern shape without exposing its side surfaces, and can be electrically insulated from each other to ensure reliability. It is possible to perform isolation between elements. Therefore, the obtained superconductor device can selectively obtain only the superconducting properties due to the plane direction of the oxide superconductor film.
また、上記実施例の製造工程に従えば、予め超電導領域
として残存させる部分に貴金属を主とする第1の金属膜
をバターニングして形成しているため、超電導領域の微
細化に充分対応することが可能となる。すなわち、リフ
トオフ法によるパタニングで超電導領域となる第1の金
属膜を形成しているため、フィールド領域となるマスク
物質の形成面積が比較的大きくなり、逆に露出部分が微
小面積となる。これによって、マスク物質の除去を正確
に行うことが可能となるためである。Further, according to the manufacturing process of the above embodiment, since the first metal film mainly made of noble metal is formed by patterning in advance on the portion to be left as a superconducting region, it is sufficient to cope with the miniaturization of the superconducting region. becomes possible. That is, since the first metal film that becomes the superconducting region is formed by patterning using the lift-off method, the area where the mask material that becomes the field region is formed becomes relatively large, and conversely, the exposed portion becomes a minute area. This is because it becomes possible to accurately remove the mask material.
なお上記実施例では、酸化物超電導体と鉛とを隔てる物
質として銀を用いたが、金、白金などの他の貴金属を用
いた場合にも良好に反応を遮ることが可能である。また
、貴金属を主成分とする第1の金属膜を歩成する際に、
第1の金属膜とLn−M−Cu−0系酸化物超電導体膜
とのエツチングレートを正確に制御できる場合には、フ
ォトレジストパターンを用いてイオンミリング法などに
よりパターンを形成するような方法を用いることもでき
る。In the above embodiments, silver was used as the material separating the oxide superconductor and lead, but the reaction can also be effectively blocked using other noble metals such as gold or platinum. In addition, when depositing the first metal film containing noble metal as the main component,
If the etching rate between the first metal film and the Ln-M-Cu-0-based oxide superconductor film can be accurately controlled, a method of forming a pattern by ion milling or the like using a photoresist pattern may be used. You can also use
また、上記実施例によって得られた超電導体装置は、超
電導領域上が銀などからなる第1の金属膜によって覆わ
れたものとなる。そして、これら貴金属とLn−M−C
u−0系酸化物超電導体との間には極めて抵抗の低い良
好なオーミックコンタクトが形成され、2層膜間に流れ
込んだ電流はより抵抗の低い超電導体膜中を流れるため
、通常の超電導電子デバイスや配線として用いる場合、
このような2層膜構造をそのまま用いることができる。Further, in the superconductor device obtained in the above example, the superconducting region is covered with a first metal film made of silver or the like. And these precious metals and Ln-M-C
A good ohmic contact with extremely low resistance is formed between the u-0 series oxide superconductor and the current flowing between the two layers flows through the superconductor film with lower resistance, so normal superconducting electrons When used as a device or wiring,
Such a two-layer film structure can be used as is.
また、Ln−M−Cu−0系の酸化物超電導体は、その
ままでは空気中の水分と反応して表面劣化層を形成する
が、表面を被覆した貴金属を主体とする第1の金属膜は
保護膜としての働きを兼ねるため、このような2層膜構
造として用いることは強いデバイス安定性を与える。特
に、表面層として銀を用いた場合には、Y−Ba−Cu
−0系などの酸化物超電導体膜から非常に長い超電導近
接効果が観察されており、2層膜全体を超電導膜として
用いることができるため好都合である。なお、特別な理
由により酸化物超電導体膜を露出させる必要がある場合
には、上述したようにイオンミリング法などを用いて酸
化物超電導体膜表面の一部または全面から第1の金属膜
を除去し、酸化物超電導体膜を露出させることが可能で
ある。In addition, Ln-M-Cu-0-based oxide superconductors react with moisture in the air and form a surface deterioration layer, but the first metal film mainly made of noble metal that coats the surface Since it also functions as a protective film, use of such a two-layer film structure provides strong device stability. In particular, when silver is used as the surface layer, Y-Ba-Cu
A very long superconducting proximity effect has been observed from oxide superconductor films such as -0 series, and this is advantageous because the entire two-layer film can be used as a superconducting film. Note that if it is necessary to expose the oxide superconductor film for special reasons, the first metal film is removed from a part or the entire surface of the oxide superconductor film using ion milling or the like as described above. It is possible to remove the oxide superconductor film and expose the oxide superconductor film.
次に、本発明の他の実施例について第2図を参照して説
明する。Next, another embodiment of the present invention will be described with reference to FIG.
まず、前述の実施例と同様にLn−M−Cu−0系酸化
物超電導体薄膜2上に超電導領域として残存させる部分
にパターニングされた貴金属を主体とする第1の金属膜
4を形成し、この第1の金属膜4上を含めて第1の金属
膜4の周囲を囲むようにある範囲内のみに鉛を主成分と
する第2の金属Jli5を形成する(第2図−a)。First, a first metal film 4 mainly made of a noble metal is patterned on the Ln-M-Cu-0-based oxide superconductor thin film 2 in a portion to be left as a superconducting region, as in the above-mentioned embodiment. A second metal Jli5 containing lead as a main component is formed only within a certain range so as to surround the first metal film 4, including on the first metal film 4 (FIG. 2-a).
次に、前述の実施例と同様に、鉛を主成分とす第2の金
属膜5と直接接触しているLn−M−Cu−0系酸化物
超電導体薄膜2とを反応させ、絶縁物質6を形成する(
第2図−b)。Next, as in the above embodiment, the second metal film 5 containing lead as a main component is reacted with the Ln-M-Cu-0 based oxide superconductor thin film 2 that is in direct contact with the insulating material. form 6 (
Figure 2-b).
この後、貴金属を主成分とする第1の金属膜4上に残存
する鉛を主成分とする第2の金属膜5を同様に除去する
。これによって、第1の金属膜4によって覆われた部分
のI、n−M−Cu−0系酸化物超電導体薄膜2は超電
導体領域12として初期の膜質が維持される。また、絶
縁物質6によって囲繞されたフィールド領域12内には
、酸化物超電導体薄膜2の残存部分13が存在している
が、超電導領域11は絶縁物質6によって良好に素子間
分離が行わ゛れているため、前述の実施例と同様に目的
とする素子間分離の行われた超電導体装置が得られる(
第2図−C)。Thereafter, the second metal film 5 mainly composed of lead remaining on the first metal film 4 mainly composed of noble metal is removed in the same manner. As a result, the I, nM-Cu-0 based oxide superconductor thin film 2 in the portion covered by the first metal film 4 maintains its initial film quality as a superconductor region 12. Furthermore, although there is a remaining portion 13 of the oxide superconductor thin film 2 in the field region 12 surrounded by the insulating material 6, the superconducting region 11 is well isolated between elements by the insulating material 6. Therefore, a superconductor device with the desired separation between elements can be obtained in the same way as in the previous embodiment (
Figure 2-C).
この実施例によれば、鉛を主成分とする第2の金属膜の
形成範囲を素子間分離が充分に行える範囲に限定するこ
とによって、鉛を主成分とする金属膜によって覆われた
酸化物超電導体膜と、露出された酸化物超電導体膜とを
隣接して共存させているため、反応に係わる空気中の水
分が酸化物超電導体膜と鉛を主成分とする膜との界面に
到達しやすくなり、絶縁物質の形成速度をより速くする
ことが可能となる。なお、鉛を主成分とする第2の金属
膜の形成範囲を規制するには、たとえばリフトオフ法を
用いればよい。According to this embodiment, by limiting the formation range of the second metal film containing lead as a main component to a range where sufficient isolation can be achieved between elements, the oxide covered by the metal film containing lead as a main component can be removed. Because the superconductor film and the exposed oxide superconductor film coexist side by side, moisture in the air involved in the reaction reaches the interface between the oxide superconductor film and the lead-based film. This makes it easier to form the insulating material, making it possible to increase the formation speed of the insulating material. Note that in order to control the formation range of the second metal film containing lead as a main component, for example, a lift-off method may be used.
なお、上記実施例では超電導材料としてY−Ba−Cu
−0系酸化物超電導体膜を用いたものについて説明した
が、本発明はこれに限定されるものではなく 、Y−B
a−Cu−0系酸化物超電導体膜の主成分であるイツト
リウムを他の希土類元素、たとえばランタンなどに置換
えた材料に対しても同様な反応により絶縁化することが
確められており、本発明はLn−M−Cu−0系の各種
酸化物超電導体に対して有効である。In addition, in the above example, Y-Ba-Cu is used as the superconducting material.
Although the description has been made using a Y-0 based oxide superconductor film, the present invention is not limited thereto;
It has been confirmed that materials in which yttrium, the main component of the a-Cu-0-based oxide superconductor film, is replaced with other rare earth elements, such as lanthanum, can be insulated by a similar reaction, and this study The invention is effective for various Ln-M-Cu-0-based oxide superconductors.
[発明の効果]
以上説明したように本発明の超電導体装置の製造方法に
よれば、絶縁基板上に形成したLn−M−Cu−〇系酸
化物超電導体膜に対して、その側面を露出させることな
く絶縁分離された希望する形状のパターンを形成でき、
また微細パターンの超電導領域を再現性よく形成するこ
とができる。よって、得られる超電導特性が一定で、か
つ集積度の高い超電導電子デバイスを確実に得ることが
可能となる。[Effects of the Invention] As explained above, according to the method for manufacturing a superconductor device of the present invention, the side surfaces of the Ln-M-Cu-〇-based oxide superconductor film formed on an insulating substrate are exposed. It is possible to form a pattern with the desired shape that is insulated and separated without causing any damage.
Furthermore, a finely patterned superconducting region can be formed with good reproducibility. Therefore, it is possible to reliably obtain a superconducting electronic device with constant superconducting properties and a high degree of integration.
第1図(a)〜(f)は本発明の一実施例の超電導体装
置の製造工程を示す断面図、第2図(a)〜(c)は本
発明の他の実施例の超電導体装置の製造工程を示す断面
図である。
1・・・・・・絶縁基板、2・・・・・・Ln−M−C
u−0系酸化物超電導体膜、3・・・・・・フォトレジ
スト膜、4・・・・・・貴金属を主成分とする第1の金
属膜、5・・・・・・鉛を主成分とする第2の金属膜、
6・・・・・・絶縁物質、7.11・・・・・・超電導
領域、8.12・・・・・・フィールド領域。
出願人 株式会社 東芝
、代理人 弁理士 須 山 佐 −
JFIGS. 1(a) to (f) are cross-sectional views showing the manufacturing process of a superconductor device according to one embodiment of the present invention, and FIGS. 2(a) to (c) are superconductors according to another embodiment of the present invention. FIG. 3 is a cross-sectional view showing the manufacturing process of the device. 1...Insulating substrate, 2...Ln-M-C
u-0 based oxide superconductor film, 3... Photoresist film, 4... First metal film containing noble metal as main component, 5... Mainly containing lead. a second metal film as a component;
6... Insulating material, 7.11... Superconducting region, 8.12... Field region. Applicant: Toshiba Corporation, Agent: Patent Attorney Suyama Sa - J
Claims (1)
体(Lnは希土類元素から選ばれた少なくとも1種の元
素を、Mはアルカリ土類元素から選ばれた少なくとも1
種の元素を示す。)膜を形成する工程と、このLn−M
−Cu−O系酸化物超電導体膜上に貴金属を主成分とす
る第1の金属膜を所望とする超電導領域の形状に応じて
形成する工程と、 前記貴金属を主成分とする第1の金属膜上と連続して前
記Ln−H−Cu−O系酸化物超電導体膜上に鉛を主成
分とする第2の金属膜を形成する工程と、前記鉛を主成
分とする第2の金属膜とこの第2の金属膜下部の前記L
n−M−Cu−O系酸化物超電導体膜とを反応させ絶縁
物質化させる工程と を有することを特徴とする超電導体装置の製造方法。(1) Ln-M-Cu-O based oxide superconductor on an insulating substrate (Ln is at least one element selected from rare earth elements, M is at least one element selected from alkaline earth elements)
Indicates the species element. ) film forming process and this Ln-M
- Forming a first metal film containing a noble metal as a main component on the Cu-O based oxide superconductor film according to the shape of a desired superconducting region; a step of forming a second metal film containing lead as a main component on the Ln-H-Cu-O-based oxide superconductor film continuously on the film; and a second metal film containing lead as a main component. film and the L below this second metal film.
A method for manufacturing a superconductor device, comprising the step of reacting with an n-M-Cu-O based oxide superconductor film to form an insulating material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1081950A JPH02260676A (en) | 1989-03-31 | 1989-03-31 | Manufacture of superconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1081950A JPH02260676A (en) | 1989-03-31 | 1989-03-31 | Manufacture of superconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02260676A true JPH02260676A (en) | 1990-10-23 |
Family
ID=13760778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1081950A Pending JPH02260676A (en) | 1989-03-31 | 1989-03-31 | Manufacture of superconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02260676A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0354875A (en) * | 1989-07-24 | 1991-03-08 | Furukawa Electric Co Ltd:The | Formation of superconductor circuit |
-
1989
- 1989-03-31 JP JP1081950A patent/JPH02260676A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0354875A (en) * | 1989-07-24 | 1991-03-08 | Furukawa Electric Co Ltd:The | Formation of superconductor circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0307246A2 (en) | Method of manufacturing superconducting devices | |
JP3278638B2 (en) | High-temperature superconducting Josephson junction and method of manufacturing the same | |
US4957899A (en) | Method of patterning superconducting oxide thin films | |
EP0390704A2 (en) | Tunnel junction type Josephson device and method for fabricating the same | |
JPH0287688A (en) | Superconductive element and its manufacture | |
EP0325765A1 (en) | Josephson device having a Josephson junction structure suitable for an oxide superconductor | |
EP0752161A1 (en) | Superconductive junction | |
JPH02260676A (en) | Manufacture of superconductor device | |
EP0409338B1 (en) | Planar Josephson device | |
JPH03228384A (en) | Superconducting element | |
JPH0355889A (en) | Manufacture of superconducting multilayered circuit | |
JPS5978585A (en) | Josephson integrated circuit | |
JP3425422B2 (en) | Superconducting element manufacturing method | |
JPH02178981A (en) | Superconductor device and manufacture thereof | |
EP0384521A1 (en) | Method of manufacturing a Josephson junction | |
JP2517081B2 (en) | Superconducting device and manufacturing method thereof | |
JP2899287B2 (en) | Josephson element | |
JP3085492B2 (en) | Micro-bridge type Josephson device and stacked type Josephson device | |
JP2825374B2 (en) | Superconducting element | |
JP2853532B2 (en) | Method for producing superconducting thin film having insulating region and superconducting region | |
JP2989943B2 (en) | Superconducting integrated circuit manufacturing method | |
JPH0284732A (en) | Manufacture of superconductor element | |
JP2727648B2 (en) | Superconducting element manufacturing method | |
JP2969068B2 (en) | Superconducting element manufacturing method | |
JPH0240992A (en) | Structure of superconductor wiring |