JPH0226039B2 - - Google Patents

Info

Publication number
JPH0226039B2
JPH0226039B2 JP15313182A JP15313182A JPH0226039B2 JP H0226039 B2 JPH0226039 B2 JP H0226039B2 JP 15313182 A JP15313182 A JP 15313182A JP 15313182 A JP15313182 A JP 15313182A JP H0226039 B2 JPH0226039 B2 JP H0226039B2
Authority
JP
Japan
Prior art keywords
rock
crushing
ore
mining
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15313182A
Other languages
Japanese (ja)
Other versions
JPS5941597A (en
Inventor
Masaaki Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15313182A priority Critical patent/JPS5941597A/en
Publication of JPS5941597A publication Critical patent/JPS5941597A/en
Publication of JPH0226039B2 publication Critical patent/JPH0226039B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

【発明の詳細な説明】 本発明は、大洋底に固積した重要鉱物資源であ
る金属硫化物の鉱床を経済的かつ安全に砕岩破砕
して集鉱を行ない海上母船に効率よく揚鉱しうる
ような採鉱方法及びそれに用いる装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention enables economical and safe rock crushing of metal sulfide ore deposits, which are important mineral resources, accumulated on the ocean floor, to collect the ore, and to efficiently lift the ore to a marine mother ship. The present invention relates to a mining method and equipment used therein.

近年、東太平洋ガラバロス海嶺からメンドチノ
断裂帯にかけて有望な金属硫化物の鉱床が数個所
発見された。この金属硫化物の鉱床は、大洋底
5000〜6000mの海底面に広く分布して堆積するマ
ンガン団塊より浅い2000〜4000mの海底であり、
その海底構造の割れ目が比較的速い速度で広がる
断層帯に煙突状の噴口から噴煙を上げて噴出した
熱水に含まれる金属硫化物が海水によつて冷却さ
れて固まつたものと考えられ、その生成過程から
“熱水鉱床”と称されている。このような熱水鉱
床の固積している状態は、煙突状、または枕状に
盛り上がつた格好をなし、発見例は幅200〜300
m、長さ1000mの範囲に厚さ40mも固積してお
り、この金属含有量は2500万tと推定される有望
鉱床である。また、海底地質構造的にみて日本列
島の周辺海底にも同様の金属硫化物の有望鉱床が
固積しているものと推定される。
In recent years, several promising metal sulfide deposits have been discovered from the East Pacific Galabalos Ridge to the Mendocino Fracture Zone. This metal sulfide deposit is located on the ocean floor.
The seabed is 2000 to 4000m shallower than manganese nodules, which are widely distributed and deposited on the seafloor at 5000 to 6000m.
It is thought that the metal sulfides contained in the hot water ejected from a chimney-shaped vent into a fault zone where cracks in the ocean floor structure spread at a relatively fast rate were cooled by seawater and solidified. It is called a "hydrothermal deposit" because of its formation process. These types of hydrothermal deposits are piled up in a chimney-like or pillow-like shape, and the discovered examples are 200 to 300 mm wide.
It is a promising ore deposit with an estimated metal content of 25 million tons. In addition, considering the seabed geological structure, it is estimated that similar promising metal sulfide ore deposits are deposited on the seabed around the Japanese archipelago.

東太平洋の海嶺、断裂帯に有望な鉱床を発見し
た欧米諸国では、これを採鉱する技術が未開発で
あるため、経済的に採鉱可能な技術を求めて鋭意
研究を進めていると言われている。
Western countries that have discovered promising ore deposits in the ridges and fracture zones of the East Pacific Ocean are said to be conducting intensive research in search of economically viable technology, as the technology to mine them has not yet been developed. There is.

同じく海底鉱物資源とは言つても、海底金属硫
化物とマンガン団塊とはその堆積状況に大きな相
違があり、それに伴つて採鉱技術に大きな相違が
ある。マンガン団塊は深度4000〜6000mの海底表
層面に平面的に堆積分布しているのに対し、金属
硫化物は深度2000〜4000mの浅い海底の特定の場
所に煙突状または枕状に盛り上がつた鉱床を形成
している。そのため、一般的には金属硫化物の鉱
床の方が容易に採鉱可能と考えられるが、実際は
専門的に見ると別の理由による困難な技術的に解
決しなければならないのである。
Although they are called seabed mineral resources, there are major differences in the deposition conditions between seafloor metal sulfides and manganese nodules, and there are correspondingly large differences in mining techniques. Manganese nodules are distributed flatly on the seabed surface at a depth of 4,000 to 6,000 m, whereas metal sulfides are raised in chimney-like or pillow-like shapes at specific locations on the shallow seabed at a depth of 2,000 to 4,000 m. Forms ore deposits. Therefore, it is generally thought that metal sulfide ore deposits can be mined more easily, but in reality, from a technical point of view, there are difficult technical problems that must be solved for other reasons.

マンガン団塊の場合は、採鉱水深は深いが未固
結の堆積物(枕泥)の表層面にそつて平面的に分
布しており、その粒度は2〜8cm程度の大きさの
塊が主で、その見掛け比重は2〜2.3程度である。
それを集鉱するには、吸込装置によつて海水、沈
泥と共に団塊を海上の採鉱船に揚鉱することが必
要である。これに対し本発明の採鉱対象である金
属硫化物の海底鉱床(海底熱水鉱床)は、前記し
たように限定された範囲の海底面に噴出して固積
され、その厚さは数十mにもおよぶもので、煙突
状、枕状に盛り上がつて自然に精鉱された状態で
形成されており、その高い金属含有率から見掛け
比重は約5程度と重く、溶岩程度の硬度を有して
いる。このような堆積状態であるから、マンガン
団塊のように直接吸込集鉱する装置をもつてして
は、全く採鉱不能である。そこで考えられる採鉱
方法は、海底鉱床を爆破して崩した後、これを集
めて引き揚げるか、削岩機で孔をあけて、鉱床を
掘り崩したものを集鉱して揚鉱する方法のいずれ
かを用いる以外にはない。しかし、爆破、または
削岩のいずれの採鉱方法を用いて鉱床を掘り崩し
ても、その鉱塊の形状と粒度は大きくばらつき、
その大部分は吸込集鉱に適さず、無理に集鉱すれ
ば吸込管やポンプ等が詰まり危険である。また、
この状態の鉱塊を水中シヨベル車によつて集鉱し
て揚鉱したとしても、これに要するエネルギーと
採鉱量から見て経済的に引き合わない。また爆
破、削岩により飛散した鉱塊の総てを集鉱するに
は、時間がかかり不経済である。
In the case of manganese nodules, although the mining water depth is deep, they are distributed flatly along the surface layer of unconsolidated sediment (pillow mud), and the grain size is mainly lumps with a size of about 2 to 8 cm. , its apparent specific gravity is about 2 to 2.3.
To collect the ore, it is necessary to lift the nodule along with seawater and silt to a mining ship at sea using a suction device. On the other hand, the metal sulfide seabed deposits (seafloor hydrothermal deposits) that are the mining target of the present invention are ejected and deposited on the seabed surface in a limited range as described above, and are several tens of meters thick. It is formed as a naturally concentrated ore that rises up like a chimney or a pillow, and its high metal content has an apparent specific gravity of about 5, making it as hard as lava. are doing. Because of this state of accumulation, it is completely impossible to mine using equipment that directly sucks and collects manganese nodules. Possible mining methods are to explode the seabed ore deposit, collect it, and salvage it, or drill a hole with a rock drill, collect the ore that has been dug up, and then lift the ore. There is no other choice but to use However, no matter which mining method, blasting or rock drilling, is used to break down ore deposits, the shape and grain size of the ore blocks vary widely;
Most of the ore is not suitable for suction collection, and if the ore is collected forcibly, suction pipes, pumps, etc. will become clogged, which is dangerous. Also,
Even if the ore in this state were collected and lifted using an underwater shovel vehicle, it would not be economically viable in terms of the energy required and the amount of mined. In addition, it takes time and is uneconomical to collect all the ore lumps scattered by blasting and rock drilling.

このような経済的かつ技術的諸問題を解決する
には、海底鉱床の現場で削岩と同時に集めて所定
の粒度以下に破砕して、吸込集鉱する一貫作業が
必要であり、これが出来れば、安全に揚鉱するこ
とが可能となり、従来至難とされていた熱水鉱床
の金属硫化物塊を経済的に採鉱することができる
ものと考えられる。ここに本発明者は着目して研
究の結果、遂に金属硫化物鉱床を砕岩と共に吸込
集鉱に適した形状に破砕して採鉱することのでき
る経済的採鉱方法及び装置を発明したものであ
る。
In order to solve these economic and technical problems, it is necessary to carry out an integrated operation in which rock is collected at the site of the seabed deposit at the same time as rock drilling, crushed to a predetermined particle size or less, and then sucked and collected. It is now possible to safely lift ore, and it is thought that it will be possible to economically mine metal sulfide lumps from hydrothermal ore deposits, which was previously considered extremely difficult. The inventor of the present invention has focused on this, and as a result of research, has finally invented an economical mining method and apparatus that can mine metal sulfide ore deposits by crushing them together with crushed rock into a shape suitable for suction collection.

以下、図面に基づき本発明について詳述する。
第1図及び第2図は、海底で走行自在の採鉱車1
の概略構成を示している。この採鉱車1は、海上
母船からワイヤー2等で吊り降ろされ、ケーブル
3を介して海上から動力の供給を受け、無限軌道
4によつて自走可能となつている。採鉱車1の基
台5は、台車6上で回動軸7の上に搭載され、水
平面内で自由に回動できるように支持される。基
台5には、吸込ポンプ10、吸込ポンプ駆動用モ
ータ11、高圧吐出ポンプ12、高圧ポンプ駆動
用モータ13が設けられている。また、基台5に
は、支点14を起点として長く突出し、かつ作動
ピストン15により上下に動くアーム16が取付
けられ、その先端には採鉱部17が設けられてい
る。これによつて海底に盛り上がつて固積した海
底熱水鉱床18の金属硫化物を採鉱するのであ
る。
Hereinafter, the present invention will be explained in detail based on the drawings.
Figures 1 and 2 show a mining vehicle 1 that can freely run on the seabed.
The schematic configuration is shown below. This mining vehicle 1 is suspended from a marine mother ship by a wire 2 or the like, receives power from the sea via a cable 3, and is capable of self-propelled by an endless track 4. A base 5 of the mining vehicle 1 is mounted on a rotating shaft 7 on a truck 6 and is supported so as to be freely rotatable in a horizontal plane. The base 5 is provided with a suction pump 10, a suction pump drive motor 11, a high pressure discharge pump 12, and a high pressure pump drive motor 13. Further, an arm 16 is attached to the base 5, which protrudes long from the fulcrum 14 and moves up and down by an operating piston 15, and a mining section 17 is provided at the tip of the arm 16. In this way, the metal sulfides in the submarine hydrothermal ore deposit 18 that has risen and accumulated on the ocean floor are mined.

採鉱部の詳細については後述するが、その前
に、本装置全体の動作について概略述べることに
する。基台5上に設けられている高圧吐出ポンプ
12の駆動によつて発生した吐出圧力水は、高圧
水管20を経て、前記採鉱部17の水圧モータを
駆動させ、その回転軸に取付けられている回転ド
ラムを高い圧力で低速回転させ、海底熱水鉱床1
8と回転ドラムとの間において、回転ドラム外周
に設けられている砕岩刃の力で大きく砕割して破
砕プレートに回し送り込み、ここで更に小さく破
砕して、所定寸法以下の破砕塊にするのである。
同時に吸込ポンプ10の駆動により負圧を発生さ
せ、吸込導管21内の海水を吸込ポンプ側に吸込
み、速い流速を生じさせ、この吸込導管21に連
結した採鉱部17に強い吸引力を与え、前記破砕
部によつて破砕された破砕鉱塊を海水と共に吸引
する。この吸込まれた破砕塊は、吸込導管21に
より吸込ポンプ10に吸込まれ、該吸込ポンプ1
0の揚水力によつて揚鉱管22を通つて母船また
は次の揚鉱装置に送られるのである。
Details of the mining section will be described later, but before that, we will briefly describe the operation of the entire device. The discharge pressure water generated by driving the high pressure discharge pump 12 provided on the base 5 passes through the high pressure water pipe 20 and drives the water pressure motor of the mining section 17, which is attached to its rotating shaft. A rotary drum is rotated at low speed under high pressure to generate hydrothermal ore deposits on the ocean floor 1.
8 and the rotating drum, the rock is broken into large pieces by the force of the rock crushing blades provided on the outer periphery of the rotating drum, and then sent to the crushing plate, where it is further crushed into crushed pieces of a predetermined size or less. be.
At the same time, a negative pressure is generated by driving the suction pump 10, the seawater in the suction conduit 21 is sucked into the suction pump side, a high flow rate is generated, and a strong suction force is applied to the mining section 17 connected to this suction conduit 21, and the above-mentioned The crushed ore blocks crushed by the crushing section are sucked together with seawater. This sucked crushed mass is sucked into the suction pump 10 through the suction conduit 21, and
With a lifting force of 0, the ore is sent through the ore lifting pipe 22 to the mother ship or the next ore lifting device.

第1図は海底鉱床18に対し採鉱車1が直角に
位置し、上下左右に採鉱部17を移動させながら
鉱床を砕岩、集鉱する状態を示し、第2図は海底
鉱床18に対し採鉱車1が平行に位置して鉱床の
中段を横に進行しながら砕岩して集鉱する状態を
示すものである。第1図、第2図に示されている
ように、吸込ポンプ10と吸込導管21との連結
部及び高圧吐出ポンプ12と高圧水管20との連
結部には、自在高圧ホース23または自在接手が
用いられ採鉱部17を支持するアーム16の上下
動を妨げないようにする。なお、吸込ポンプの代
りに高速流を吐出するポンプを用いてそのジエツ
トノズルを吸込導管21に挿入して流速を速め、
吸込負圧を生じさせるようにしてもよい。採鉱部
17の一実施例を第3図、第4図に示す。採鉱部
17は、前述のように、アーム16の先端に取付
けられるもので、強固な壁面で囲まれ、充分な機
械的強度を有するように設計される。この採鉱部
17は、外周面に多数の砕岩刃30を有する回転
ドラム31と、該回転ドラム31の一部周面を覆
う如く位置し、多数の破砕口32が開口した破砕
プレート33を有する採鉱部34を有し、該採鉱
部34を構成する空間は前記吸込導管21と連通
する構造となつている。このような採鉱部17に
は、前記高圧水管20の端部が開口する高圧水入
口35が設けられ、ここを通つて供給される高圧
水が水圧モータ36を駆動し、軸受ブラケツト3
7で支承されている回転軸38を回動させる。こ
の回転軸38には前述の回転ドラム31が取付け
らているので、結局、前記高圧水によつて砕岩刃
30を備えた回転ドラム31は矢印方向に砕岩可
能なごく低い周速と強大な押圧力をもつて回転す
ることになる。採鉱部17は、それ自身かなりの
重量を有し、アーム16及び非常に重量のある採
鉱車1によつて強固に支持されているので、強大
な回転トルクが鉱床にかかり、これを砕岩するの
である。これによつて鉱床を比較的大きな削岩塊
に砕割することができる。つまり、海底熱水鉱床
の金属硫化物は、その硬度が溶岩程度で脆く、壊
れやすいので、この性質を巧みに利用して砕き割
るのである。これは削岩とは全く異なる。高速回
転により鉱床を浅く削岩すれば細かな鉱塊を切削
できるが、かかる方法では削岩刃の摩耗が激し
く、深度のある海底でその刃の研磨作業また回転
ドラムを取替えることは望めず、よつて採鉱量は
減少する結果となり、経済的に成立たないものと
なつてしまうからである。
Figure 1 shows a state in which the mining vehicle 1 is positioned perpendicular to the seabed ore deposit 18, and the ore deposit is crushed and collected while moving the mining section 17 vertically and horizontally. 1 is located in parallel and progresses horizontally in the middle of the ore deposit, crushing rock and collecting ore. As shown in FIGS. 1 and 2, a flexible high-pressure hose 23 or a flexible joint is connected to the connection between the suction pump 10 and the suction conduit 21 and the connection between the high-pressure discharge pump 12 and the high-pressure water pipe 20. The vertical movement of the arm 16 used to support the mining section 17 is not obstructed. Note that a pump that discharges high-speed flow is used instead of the suction pump, and its jet nozzle is inserted into the suction conduit 21 to increase the flow velocity.
A suction negative pressure may be generated. An embodiment of the mining section 17 is shown in FIGS. 3 and 4. As described above, the mining section 17 is attached to the tip of the arm 16, is surrounded by a strong wall, and is designed to have sufficient mechanical strength. The mining section 17 includes a rotating drum 31 having a large number of rock crushing blades 30 on its outer circumferential surface, and a crushing plate 33 located so as to partially cover the circumferential surface of the rotating drum 31 and having a large number of crushing ports 32 opened therein. A space constituting the mining section 34 is structured to communicate with the suction conduit 21. The mining section 17 is provided with a high-pressure water inlet 35 through which the end of the high-pressure water pipe 20 opens, and the high-pressure water supplied through this inlet drives the water-pressure motor 36 and the bearing bracket 3
Rotate the rotating shaft 38 supported by 7. Since the above-mentioned rotating drum 31 is attached to this rotating shaft 38, the rotating drum 31 equipped with the rock crushing blades 30 is moved in the direction of the arrow by the high pressure water at a very low circumferential speed capable of crushing rock and with a strong push. It will rotate under pressure. The mining section 17 itself has a considerable weight and is firmly supported by the arm 16 and the very heavy mining vehicle 1, so a powerful rotational torque is applied to the ore deposit and crushes it. be. This allows the ore deposit to be broken into relatively large rock blocks. In other words, metal sulfides in submarine hydrothermal deposits are as hard as lava, brittle, and easily broken, so this property can be skillfully used to crush them. This is completely different from rock drilling. If the ore deposits are shallowly drilled using high-speed rotation, it is possible to cut fine ore blocks, but this method causes severe wear on the drilling blades, making it impossible to polish the blades or replace the rotating drum at deep seabeds. As a result, the amount of mined minerals will decrease, making it economically unviable.

このようなことから本発明は回転ドラム31の
砕岩刃30の数をある程度少なくし、その回転速
度を遅くして砕岩刃30一刃当りの砕岩する圧力
を増大させる。
For this reason, the present invention reduces the number of rock crushing blades 30 of the rotating drum 31 to a certain extent, slows down the rotation speed thereof, and increases rock crushing pressure per rock crushing blade 30.

これにより、海底熱水鉱床18の砕岩圧と深さ
を増して採鉱でき、砕岩刃30の摩耗は少なく比
較的大きな砕岩塊を砕き割りする状態で得られる
ので、砕岩量は前記した切削量より飛躍的に増大
することになる。しかし、この砕岩塊の形状は大
きく、このままで吸込集鉱して海上母船に揚鉱す
ると吸込導管内の吸込流速および揚鉱流速を2倍
程度に増加する必要があり、これによるエネルギ
ー損失は大である。また砕岩塊の形状が大きく不
揃いなため管内閉塞等の危険な問題を生じる。
As a result, the rock crushing pressure and depth of the submarine hydrothermal ore deposit 18 can be increased, and the rock crushing blade 30 can be mined by crushing relatively large chunks of crushed rock with little wear, so that the amount of crushed rock is smaller than the amount of cutting described above. It will increase dramatically. However, the shape of this crushed rock mass is large, and if the ore is collected as it is by suction and lifted to the offshore mother ship, the suction flow velocity and lifting flow velocity in the suction pipe must be approximately doubled, resulting in a large energy loss. It is. In addition, the large and irregular shapes of the crushed rock blocks cause dangerous problems such as blockages in pipes.

そこで本発明の目的である海底熱水鉱床の採鉱
にあたり、本発明は砕岩塊を更に所定以下の大き
さの破砕塊に破砕することによつて、以上の諸問
題を解決することができる方法および装置なので
ある。
Therefore, in mining seafloor hydrothermal deposits, which is the object of the present invention, the present invention provides a method and method that can solve the above problems by further crushing crushed rock blocks into crushed blocks of a predetermined size or less. It is a device.

採鉱部17の回転ドラム31を円弧状に覆うよ
うな破砕プレート33の近傍に砕岩刃30によつ
て回転砕岩した砕岩塊を送り込み、砕岩刃30の
回動押圧力と固定した破砕プレート33の破砕口
32により破砕して所定以下の大きさの破砕塊と
するのである。この破砕塊は、破砕口32を通じ
てその外側に位置し、吸込口40を有する三日月
状の包体構造の吸込集鉱部34に海水と共に吸込
集鉱される。この吸込負圧は、吸込集鉱部34に
連結した吸込導管21を経て採鉱車1の吸込ポン
プ10で発生するもので、矢印方向の吸込流を生
じるものである。これによつて、採鉱部17の破
砕部にある破砕塊は吸込集鉱部34に一旦海水と
共に吸込まれ、そして吸込導管21より吸込ポン
プ10に安定して吸込まれ、揚鉱管22を経て安
全に次の揚鉱装置から海上母船に揚鉱されるもの
である。
A crushed rock block that has been rotated and crushed by the rock crushing blade 30 is sent into the vicinity of the crushing plate 33 that covers the rotary drum 31 in an arc shape in the mining section 17, and the crushing plate 33 that is fixed is crushed by the rotating pressing force of the rock crushing blade 30. It is crushed through the opening 32 to form crushed pieces of a predetermined size or less. This crushed mass is sucked and collected together with seawater into a suction collecting section 34 which is located outside of the crushing port 32 and has a crescent-shaped envelope structure and has a suction port 40 . This suction negative pressure is generated by the suction pump 10 of the mining vehicle 1 via the suction conduit 21 connected to the suction collecting section 34, and produces a suction flow in the direction of the arrow. As a result, the crushed lumps in the crushing section of the mining section 17 are once sucked together with seawater into the suction ore collecting section 34, and then stably sucked into the suction pump 10 through the suction conduit 21, and safely passed through the ore lifting pipe 22. The ore is then lifted from the next ore lifting device to the offshore mother ship.

第5図は他の採鉱部の実施例を示すものであ
る。吸込集鉱部50の両側に円弧状の破砕部51
a,51bを有し、その円弧状にそつて回動する
回転ドラム52a,52bを両側に設け、砕岩塊
を矢印方向に巻込むように両側から回転ドラム5
2a,52bを回転させて海底熱水鉱床を砕岩す
る。これによつて砕岩された大きな鉱塊は両側の
破砕部に回し送り込まれる。そして固定された破
砕プレート53a,53bの破砕口54と砕岩刃
55の回転押圧力によつて両側で破砕される。
FIG. 5 shows another embodiment of the mining section. Arc-shaped crushing parts 51 are provided on both sides of the suction collecting part 50.
Rotating drums 52a and 52b are provided on both sides and rotate along the arc shape of the rotating drums 52a and 51b.
2a and 52b are rotated to crush the submarine hydrothermal ore deposit. Large ore blocks crushed by this are sent to the crushing sections on both sides. Then, the rock is crushed on both sides by the crushing ports 54 of the fixed crushing plates 53a, 53b and the rotating pressing force of the rock crushing blade 55.

その破砕塊は破砕口54に結合している吸入口
56より吸込集鉱部50に海水と共に吸込まれて
集鉱されるのである。
The crushed lumps are sucked together with seawater into the suction ore collecting section 50 through the suction port 56 connected to the crushing port 54 and collected therein.

この実施例の特徴は、海底熱水鉱床を両側の回
転ドラムを用いて、各々の砕岩部で砕岩した鉱塊
を各々の破砕部に巻き込むように回し送り込むの
で砕岩した鉱塊を海底に取り残す量が僅かです
み、その大部分を採鉱することができるもので極
めて経済的である。
The feature of this embodiment is that the submarine hydrothermal ore deposit is rotated and fed using rotating drums on both sides so that the ore blocks crushed in each rock crushing section are rolled up into each crushing section, so that the amount of crushed ore blocks that are left behind on the seabed is reduced. It is extremely economical as most of it can be mined.

本発明は上記のように構成した海底熱水鉱床の
採鉱方法及びその装置であるので、海底鉱床の現
場で砕岩に引きつづいて所定の粒度以下に破砕し
て吸込集鉱する一貫作業ができ、安全に揚鉱する
ことが可能となり、従来至難とされていた熱水鉱
床の金属硫化物塊を経済的に採鉱することがで
き、その効果は極めて大である。
The present invention is a method and apparatus for mining submarine hydrothermal ore deposits configured as described above, so that an integrated operation of crushing rock to a predetermined particle size or less and sucking ore collection can be performed at the site of a submarine ore deposit. It has become possible to lift ore safely, and metal sulfide lumps from hydrothermal ore deposits, which had previously been considered extremely difficult, can be economically mined, and the effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る装置による採鉱状態の一
例を示す説明図、第2図は他の採鉱状態の一例を
示す説明図、第3図は採鉱部の一実施例を示す平
面断面図、第4図はその正面断面図、第5図は採
鉱部の他の実施例を示す正面断面図である。 1……採鉱車、5……基台、10……吸込ポン
プ、12……高圧吐出ポンプ、16……アーム、
17……採鉱部、18……海底熱水鉱床、30…
…砕岩刃、31……回転ドラム、32……破砕
口、33……破砕プレート、34……集鉱部。
FIG. 1 is an explanatory diagram showing an example of a mining state using the apparatus according to the present invention, FIG. 2 is an explanatory diagram showing an example of another mining state, and FIG. 3 is a plan sectional view showing an embodiment of the mining section. FIG. 4 is a front sectional view thereof, and FIG. 5 is a front sectional view showing another embodiment of the mining section. 1... Mining vehicle, 5... Base, 10... Suction pump, 12... High pressure discharge pump, 16... Arm,
17...Mining Department, 18...Seafloor hydrothermal deposit, 30...
...Rock crushing blade, 31...Rotating drum, 32...Crushing port, 33...Crushing plate, 34...Ore collecting section.

Claims (1)

【特許請求の範囲】 1 外周面に多数の砕岩刃を設けた回転ドラムを
低周速で回転させて堅くかつもろい海底熱水鉱床
を砕岩塊に大割し、大割した砕岩塊を前記回転ド
ラムから突出している砕岩刃の回転を利用して破
砕口を有する破砕プレートとの間に回し送り込ん
で回動する砕岩刃の圧力によつて吸込可能な小塊
に破砕し、破砕プレートの破砕口を通過した小塊
を海水とともに吸引して海上へ送り上げることを
特徴とする海底熱水鉱床からの採鉱方法。 2 海上からの動力の供給を受けて作動し、海底
を移動自在の基台と、該基台に設けた吸込装置及
び高圧吐出ポンプと、基台から延びるアームと、
該アームの先端に取付けられた採鉱部とを備え、
該採鉱部は、外周面に多数の砕岩刃を有し、前記
高圧吐出ポンプからの高圧水により駆動されて低
速回転し海底熱水鉱床を砕岩する回転ドラムと、
該回転ドラムの一部周面を覆う如く位置し、多数
の破砕口が開口した破砕プレートを有する集鉱部
と、該集鉱部と前記吸引装置と連通する吸込導管
を有し、回転ドラムで砕岩した大塊を破砕プレー
トで小塊にし、その小塊を海水とともに吸込み移
送することを特徴とする海底熱水鉱床の採鉱装
置。
[Scope of Claims] 1. A rotary drum equipped with a large number of rock crushing blades on the outer circumferential surface is rotated at a low circumferential speed to roughly divide a hard and brittle submarine hydrothermal ore deposit into crushed rock blocks, and the crushed rock blocks are then rotated. Using the rotation of the rock crushing blade protruding from the drum, the rock is rotated and fed between the rock crushing plate having a crushing opening, and the pressure of the rotating rock crushing blade crushes the rock into small pieces that can be sucked into the crushing plate. A method of mining from submarine hydrothermal ore deposits, which is characterized by sucking up small lumps that have passed through the seawater along with seawater and sending them out to sea. 2. A base that operates by receiving power from the sea and is movable on the seabed, a suction device and a high-pressure discharge pump installed on the base, and an arm extending from the base;
and a mining section attached to the tip of the arm,
The mining section includes a rotating drum that has a large number of rock crushing blades on its outer peripheral surface and rotates at a low speed driven by high pressure water from the high pressure discharge pump to crush submarine hydrothermal ore deposits;
The rotating drum has an ore collecting section having a crushing plate located so as to cover a part of the circumferential surface of the rotating drum and having a large number of crushing ports, and a suction conduit communicating with the ore collecting section and the suction device. A mining device for submarine hydrothermal ore deposits that is characterized by breaking large chunks of crushed rock into small pieces using a crushing plate, and sucking and transporting the small pieces together with seawater.
JP15313182A 1982-09-02 1982-09-02 Method and apparatus for mining ore from sea bottom hot water ore bed Granted JPS5941597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15313182A JPS5941597A (en) 1982-09-02 1982-09-02 Method and apparatus for mining ore from sea bottom hot water ore bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15313182A JPS5941597A (en) 1982-09-02 1982-09-02 Method and apparatus for mining ore from sea bottom hot water ore bed

Publications (2)

Publication Number Publication Date
JPS5941597A JPS5941597A (en) 1984-03-07
JPH0226039B2 true JPH0226039B2 (en) 1990-06-07

Family

ID=15555662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15313182A Granted JPS5941597A (en) 1982-09-02 1982-09-02 Method and apparatus for mining ore from sea bottom hot water ore bed

Country Status (1)

Country Link
JP (1) JPS5941597A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2582885B1 (en) 2010-06-18 2019-10-02 Nautilus Minerals Pacific Pty Ltd Method and apparatus for auxiliary seafloor mining
US9243496B2 (en) 2010-06-18 2016-01-26 Nautilus Minerals Pacific Pty Ltd Method and apparatus for bulk seafloor mining
JP5643048B2 (en) * 2010-10-01 2014-12-17 株式会社三井三池製作所 Seabed ore excavator
JP5643594B2 (en) * 2010-10-18 2014-12-17 株式会社三井三池製作所 Seabed ore excavator
JP5695773B2 (en) * 2014-03-18 2015-04-08 株式会社三井三池製作所 Seabed ore excavator
CN104018838B (en) * 2014-06-21 2015-11-11 吉林大学 A kind of automatically controlled single action for hydraulic borehole mining is stretched drilling tool

Also Published As

Publication number Publication date
JPS5941597A (en) 1984-03-07

Similar Documents

Publication Publication Date Title
JP5890403B2 (en) Method and apparatus for auxiliary seabed mining
EP2582914B1 (en) Method and apparatus for bulk seafloor mining
CN111894594B (en) Integrated deep-sea mining vehicle
TWI378169B (en) Cutter head for dredging soil and method for dredging by means of this cutter head
JP2013528728A (en) Seabed mining system
JP6679037B1 (en) Submarine surface type massive hydrate mining machine and vomiting method
JPH0226039B2 (en)
US3433531A (en) Method and apparatus for undersea mining
US4585274A (en) Mineral and metal particle recovery apparatus and method
US3790213A (en) Sub-surface particle recovery
KR100868312B1 (en) Method and thench-padding apparatus for pipeline trench padding
CN102071937B (en) Multi-metal sulfide mining shovel
RU2221144C1 (en) Facility to develop concretions
RU2170823C1 (en) Device for mining of concretions
RU2301865C1 (en) Suction-tube dredger ripping-and-suction device
AU2022343024A1 (en) A cutting head assembly
RU2596153C1 (en) Method for destruction of strong high clay sands of gravel deposits and disintegration of their hydraulic mix during dredger suction
Orita et al. Development of new mining machine for cobalt-rich ferromanganese crust and achievement of excavation and dredging test on the deep seafloor
WO2022191712A1 (en) System for mining subsea metallic crusts
JP4047143B2 (en) Excavation discharge mechanism
CN113356854A (en) Mining harrow device and mining car
CN103080475B (en) For method and apparatus for bulk seafloor mining
JP2019143309A (en) Gas hydrate digging equipment and digging method
Savanick Hydraulic mining: borehole slurrying