JPH02259764A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH02259764A
JPH02259764A JP8170289A JP8170289A JPH02259764A JP H02259764 A JPH02259764 A JP H02259764A JP 8170289 A JP8170289 A JP 8170289A JP 8170289 A JP8170289 A JP 8170289A JP H02259764 A JPH02259764 A JP H02259764A
Authority
JP
Japan
Prior art keywords
antioxidant
layer
charge transport
charge
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8170289A
Other languages
Japanese (ja)
Inventor
Yoshihide Shimoda
下田 嘉英
Yoshimi Kojima
小島 義己
Satoshi Katayama
聡 片山
Hiroshi Sugimura
博 杉村
Shuhei Tsuchimoto
修平 土本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8170289A priority Critical patent/JPH02259764A/en
Publication of JPH02259764A publication Critical patent/JPH02259764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To prevent deterioration of sensitivity and rise of residual potential due to addition of an antioxidant by adding a specified antioxidant within a specified thickness from the surface of an electric charge transfer layer. CONSTITUTION:This photosensitive body is formed by successively laminating on a conductive substrate a charge generating layer containing a charge generating material, such as polycyclic pigments, and the charge transfer layer containing a charge transfer material, such as hydrazone derivatives, and as the antioxidant, at least one of a phenol type antioxidant, such as a compound of formula I, and a tocol type antioxidant, such as compounds of formula II is contained within the range of 0.5 - 50% of the total thickness of the charge transfer layer from its surface. This charge transfer layer can be formed by forming the layer of a desired thickness containing no antioxidant on the charge generating layer and then, the rest of the charge transfer layer containing the antioxidant of the desired thickness on the layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、静電転写型複写機およびレーザプリンタ等の
電子写真装置に供される電子写真用感光体に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor used in electrophotographic apparatuses such as electrostatic transfer copying machines and laser printers.

〔従来の技術〕[Conventional technology]

現在、電子写真用感光体(以下感光体と記す。 Currently, electrophotographic photoreceptors (hereinafter referred to as photoreceptors) are used.

)は、無機系材料を用いたものと、有機系材料を用いた
ものとに大別できる。
) can be roughly divided into those using inorganic materials and those using organic materials.

無機系の代表的な感光体としては、アモルファスセレン
(a−3e)やアモルファスセレン砒素(a−AsよS
e、)等のセレン系のもの、色素増感した酸化亜鉛(Z
nO)あるいは硫化カドミウム(CdS)を結着樹脂中
に分散したもの、およびアモルファスシリコン(a−3
t)を使用したもの等がある。
Typical inorganic photoreceptors include amorphous selenium (a-3e) and amorphous selenium arsenide (a-As, S
), dye-sensitized zinc oxide (Z
nO) or cadmium sulfide (CdS) dispersed in a binder resin, and amorphous silicon (a-3
There are some that use t).

また、有機系の代表的な感光体としては、2,4゜7−
ドリニトロー9−フルオレノン(TNF)とポリ−N−
ビニルカルバゾール(PVK)との電荷移動錯体を用い
たものなどがある。
In addition, as a typical organic photoreceptor, 2,4°7-
Dolinitro-9-fluorenone (TNF) and poly-N-
Examples include those using a charge transfer complex with vinyl carbazole (PVK).

これらの感光体は、多くの長所を有すると同時に欠点も
有している。例えば、セレン系およびCdsを使用した
感光体は、耐熱性、保存安定性に問題があり、また、毒
性を有するため簡単に廃棄することができず回収しなけ
ればならないという制約がある。
While these photoreceptors have many advantages, they also have disadvantages. For example, photoreceptors using selenium and Cds have problems with heat resistance and storage stability, and are also toxic, so they cannot be easily disposed of and must be recovered.

ZnO樹脂分散系感光体は、低感度および耐久性の無さ
から現在はとんど使用されていない感光体となっている
ZnO resin dispersion type photoreceptors are currently hardly used due to their low sensitivity and lack of durability.

a−3i悪感光は、高感度、高耐久性等の優れた長所は
もっているものの、その製造プロセスの複雑さに起因す
る高製造コストおよびa−3i固有の膜欠陥に起因する
画像欠陥等の問題を有している。さらに、これらは、可
撓性が満足できるものではなく、ドラム状やシート状等
の種々の形状に容易に加工しがたい等の欠点を有してい
る。
Although the a-3i photosensitive material has excellent advantages such as high sensitivity and high durability, it suffers from high manufacturing costs due to the complexity of its manufacturing process and image defects due to film defects specific to the a-3i. I have a problem. Furthermore, these materials do not have satisfactory flexibility and have drawbacks such as difficulty in being easily processed into various shapes such as drum shapes and sheet shapes.

一方、有機系の感光体は、有機材料が多種存在するため
適宜選択することにより、保存安定性、毒性等の問題を
回避することができ、また、近年耐久性の向上が図られ
、且つ低コストで製造できるため、最も重要な感光体の
一つとして注目されている。
On the other hand, since organic photoreceptors have a wide variety of organic materials, problems such as storage stability and toxicity can be avoided by appropriately selecting them. It is attracting attention as one of the most important photoreceptors because it can be manufactured at low cost.

しかしながら、この感光体は、低感度という問題を有し
ており、その改良が進められている。先に記したPVK
−TNF電荷移動錯体系は、その改良の一つであったが
、十分な感度を有するまでには至らなかった。
However, this photoreceptor has a problem of low sensitivity, and improvements are being made. PVK mentioned earlier
-TNF charge transfer complex system was one of the improvements, but it did not reach the point where it had sufficient sensitivity.

その他、種々の増感方法が提案されたが、中でも光を照
射したときに、電荷担体を発生する物質(以下「電荷発
生物質」と記す。)を含む層(以下「電荷発生層」と記
す。)と、電荷発生層が発生した電荷担体を受け入れ、
それを輸送する物質(以下「電荷輸送物質」と記す。)
を主体とする層(「電荷輸送層」と記す。)とから成る
積層型の感光体(以下「機能分離型感光体」と記す。)
が優れた増感性を示し、現在、有機系の感光体の主流を
占めている。
Various other sensitization methods have been proposed, including a layer containing a substance that generates charge carriers (hereinafter referred to as ``charge generation material'') when irradiated with light (hereinafter referred to as ``charge generation layer''). ), and the charge generation layer accepts the generated charge carriers,
The substance that transports it (hereinafter referred to as "charge transport substance")
A laminated photoreceptor (hereinafter referred to as a "functionally separated photoreceptor") consisting of a layer mainly composed of (hereinafter referred to as a "charge transport layer")
shows excellent sensitization and is currently the mainstream of organic photoreceptors.

しかしながら、上記の感光体は、繰り返し使用時におけ
る暗部電位や明部電位の変動が大きく、電位安定性にお
いて問題を有している。特に、有機系の電荷輸送層は、
感光体を繰り返し使用する場合、コロナ放電(オゾン、
荷電粒子の衝突、紫外線等)や画像露光および除電光に
より劣化する。そして、このことが、感光体を電位変動
させる要因として考えられている。
However, the above-mentioned photoreceptor has a problem in potential stability because the dark area potential and bright area potential fluctuate greatly during repeated use. In particular, the organic charge transport layer is
When using the photoconductor repeatedly, corona discharge (ozone,
Deterioration occurs due to collisions of charged particles, ultraviolet rays, etc.), image exposure, and neutralizing light. This is considered to be a factor that causes the potential of the photoreceptor to fluctuate.

このため、従来の有機系の感光体は、電荷輸送層に種々
の添加剤が添加されることにより、繰り返し使用時にお
ける電位安定性の向上が図られている。
For this reason, in conventional organic photoreceptors, various additives are added to the charge transport layer to improve potential stability during repeated use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の電子写真用感光体は、電位安
定性を向上させるための添加剤が電荷輸送層に添加され
ると、この添加剤がトラップとなり、感度の低下や残留
電位の上昇を招くという問題を有している。
However, in the conventional electrophotographic photoreceptor described above, when an additive to improve potential stability is added to the charge transport layer, this additive becomes a trap, leading to a decrease in sensitivity and an increase in residual potential. I have a problem.

従って、本発明においては、添加剤を電荷輸送層に含有
させた場合に生じる感度の低下や残留電位の上昇を防止
することで、高感度を維持し、且つ繰り返し使用時の電
位安定性を極めて優れたものにすることを目的としてい
る。
Therefore, in the present invention, by preventing the decrease in sensitivity and increase in residual potential that would occur when additives are included in the charge transport layer, high sensitivity can be maintained and potential stability during repeated use can be extremely improved. The aim is to make it excellent.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る電子写真用感光体は、上記課題を解決する
ために、導電性支持体上に、電荷担体を発生する電荷発
生物質を有する電荷発生層と、電荷発生層より発生した
電荷担体を受け入れて輸送する電荷輸送物質を有する電
荷輸送層とが、この順に形成された電子写真用感光体に
おいて、上記の電荷輸送層は、電荷輸送層の層厚に対し
て、層表面より0.5%以上50%未満の層厚の範囲で
少な(とも1種以上のフェノール系酸化防止剤およびト
コール系酸化防止剤を有していることを特徴としている
In order to solve the above-mentioned problems, the electrophotographic photoreceptor according to the present invention includes, on a conductive support, a charge generation layer having a charge generation substance that generates charge carriers, and a charge carrier generated from the charge generation layer. In an electrophotographic photoreceptor in which a charge transport layer having a charge transport substance that accepts and transports charges is formed in this order, the charge transport layer has a thickness of 0.5 from the layer surface with respect to the layer thickness of the charge transport layer. % or more and less than 50% of the layer thickness, and is characterized by containing at least one phenolic antioxidant and one or more tocol antioxidants.

[作 用] 上記の構成によれば、電荷輸送層は、表層部に少なくと
も1種以上のフェノール系酸化防止剤およびトコール系
酸化防止剤を有している。これにより、電荷輸送層内の
電荷輸送物質は、コロナ放電等により酸化劣化すること
が防止される。従って、電子写真用感光体が繰り返し使
用されたとしても、電荷輸送物質は酸化劣化せず、結果
として電子写真用感光体の電位安定性が優れたものとな
る。
[Function] According to the above structure, the charge transport layer has at least one kind of phenolic antioxidant and tocol antioxidant in the surface layer portion. This prevents the charge transport material in the charge transport layer from being oxidized and deteriorated by corona discharge or the like. Therefore, even if the electrophotographic photoreceptor is used repeatedly, the charge transport material will not deteriorate due to oxidation, and as a result, the electrophotographic photoreceptor will have excellent potential stability.

また、上記のフェノール系酸化防止剤またはトコール系
酸化防止剤は、電荷輸送層の層表面より、電荷輸送層の
層厚に対して、0.5%〜50%の層厚の範囲に限定し
て含有されている。従って、電荷輸送物質は、感度の低
下や残留電位の上昇が防止される。
In addition, the above phenolic antioxidant or tocol antioxidant is limited to a layer thickness of 0.5% to 50% of the layer thickness of the charge transport layer from the layer surface of the charge transport layer. Contains Therefore, the charge transport material is prevented from decreasing sensitivity and increasing residual potential.

これにより、電子写真用感光体は、高感度で、且つ繰り
返し安定性に優れたものとなる。
As a result, the electrophotographic photoreceptor has high sensitivity and excellent repetition stability.

〔実施例] 本発明の一実施例を以下に説明する。〔Example] An embodiment of the present invention will be described below.

本発明に係る電子写真用感光体(以下感光体と記す。)
は、導電性支持体を有している。この上には、電荷担体
を発生する電荷発生物質を有する電荷発生層が形成され
ている。さらに、この電荷発生層上には、電荷発生層よ
り発生した電荷担体を受け入れて輸送する電荷輸送物質
とバインダとを有する電荷輸送層が形成されている。
Photoreceptor for electrophotography according to the present invention (hereinafter referred to as photoreceptor)
has a conductive support. A charge generation layer containing a charge generation substance that generates charge carriers is formed thereon. Furthermore, a charge transport layer is formed on the charge generation layer, and includes a charge transport substance and a binder that receive and transport charge carriers generated from the charge generation layer.

また、上記の電荷輸送層は、電荷輸送層の層厚に対して
、層表面より0.5%〜50%の層厚の範囲で添加剤と
して酸化防止剤を有している構成である。
Further, the above-described charge transport layer contains an antioxidant as an additive in a layer thickness ranging from 0.5% to 50% from the layer surface with respect to the layer thickness of the charge transport layer.

上記の導電性支持体には、アルミ蒸着ポリエチレンテレ
フタレート(メタルミー#100−TS;東しく株)製
)が使用されている。
Aluminum vapor-deposited polyethylene terephthalate (Metal Me #100-TS; manufactured by Toshiku Co., Ltd.) is used for the above-mentioned conductive support.

また、電荷発生層の電荷発生物質には、下記の構造式で
示される多環キノン系顔料(Monoiite  Re
d  2Y;1.C01社製)が使用されている。
In addition, the charge generation substance of the charge generation layer includes a polycyclic quinone pigment (Monoite Re
d2Y;1. (manufactured by C01) is used.

(以下余白) 電荷輸送層の電荷輸送物質には、下記の構造式で示され
るヒドラゾン系化合物が使用されている。
(Left below) A hydrazone compound represented by the following structural formula is used as a charge transport material in the charge transport layer.

Cz  Hl ■ バインダには、ポリカーボネート樹脂(ニーピロン;三
菱ガス化学社製)が使用されている。
Cz Hl ■ Polycarbonate resin (Kneepilon; manufactured by Mitsubishi Gas Chemical Co., Ltd.) is used as the binder.

また、本発明者は、コロナ放電等が電荷輸送層の表面近
傍の電荷輸送物質を酸化劣化させ、これが電位変動の原
因であると推定し、添加剤として酸化防止剤を使用する
に至った。
In addition, the inventors of the present invention presumed that corona discharge and the like degraded the charge transport material near the surface of the charge transport layer by oxidation, and that this was the cause of the potential fluctuation, and thus came to use an antioxidant as an additive.

酸化防止剤には、下記の構造式で示されるα−トコフェ
ロールが使用されている。
α-tocopherol shown by the following structural formula is used as an antioxidant.

なお、上記の各化合物は、上記の構造式の各化合物に限
定されることはない。卯ち、導電性支持体は、例えば、
基体自体が導電性を有するものとして、アルミニウム、
アルミニウム合金、銅、亜鉛、ステンレス、およびニッ
ケル等であっても良いし、アルミ合金や酸化インジウム
等を真空蒸着法等により被膜形成した層を有するプラス
チックであっても良い。さらに、上記の導電性支持体は
、導電性粒子をプラスチックや紙等に含浸させたもので
あっても良いし、導電性粒子を含有するプラスチック等
であっ”ζも良い。
Note that each of the above compounds is not limited to each compound having the above structural formula. In other words, the conductive support is, for example,
As the base itself has conductivity, aluminum,
It may be made of aluminum alloy, copper, zinc, stainless steel, nickel, etc., or it may be made of plastic having a layer formed by coating aluminum alloy, indium oxide, etc. by vacuum evaporation method or the like. Furthermore, the above-mentioned conductive support may be one in which plastic or paper is impregnated with conductive particles, or may be a plastic or the like containing conductive particles.

電荷発生物質は、例えば、上記構造式で示した以外の多
環キノン系顔料、クロログイアンプル−等のビスアゾ顔
料、ペリレン系化合物、キナクリトン系化合物、フタロ
シアニン系化合物、およびアズレニウム塩系化合物等で
あっても良い。
Examples of the charge-generating substance include polycyclic quinone pigments other than those shown in the above structural formula, bisazo pigments such as chlorocycloampurus, perylene compounds, quinacritone compounds, phthalocyanine compounds, and azulenium salt compounds. It's okay.

電荷輸送物質は、例えば、カルバゾール、オキサジアゾ
ール、チアゾール、オキサゾール、イミダゾール、およ
びピラゾリン等の複素環化合物や、上記構造式で示した
以外のヒドラゾン誘導体、アニリン誘導体、およびアリ
ールアミン誘導体等の低分子化合物や、ポリ−N−ビニ
ルカルバゾール、ハロゲン化ポリ−N−ビニルカルバゾ
ール、ポリビニルピレン、およびポリビニルアントラセ
ン等の高分子化合物であっても良い、さらに、電荷輸送
物質は、これら化合物の1種あるいは2種以上を混合し
たものであっても良い。
Examples of the charge transport substance include heterocyclic compounds such as carbazole, oxadiazole, thiazole, oxazole, imidazole, and pyrazoline, and low molecules such as hydrazone derivatives, aniline derivatives, and arylamine derivatives other than those shown in the above structural formulas. compounds, or polymeric compounds such as poly-N-vinylcarbazole, halogenated poly-N-vinylcarbazole, polyvinylpyrene, and polyvinylanthracene.Furthermore, the charge transport substance may be one or two of these compounds. It may be a mixture of more than one species.

尚、上記の電荷輸送物質は、低分子化合物を使用する場
合、適当なバインダと混合されることで電荷輸送層を形
成するようになっている。一方、成膜性を有する高分子
化合物を使用する場合には、この高分子化合物のみで電
荷輸送層を形成しても良いし、この高分子化合物をバイ
ンダ中に混合して電荷輸送層を形成しても良い。
Note that when a low-molecular compound is used as the above charge transport material, it is mixed with a suitable binder to form a charge transport layer. On the other hand, when using a polymer compound with film-forming properties, the charge transport layer may be formed using only this polymer compound, or the charge transport layer may be formed by mixing this polymer compound into a binder. You may do so.

上記のバインダは、例えばポリカーボネート樹脂、アク
リル樹脂、ポリエステル樹脂、ポリスチレン樹脂、メラ
ミン樹脂、シリコン樹脂、ポリビニルブチラール樹脂、
ポリアミド樹脂であっても良い。また、バインダは、上
記樹脂の繰返し単位のうち二つ以上を含む共重合体樹脂
、例えば塩化ビニル−酢酸ビニル共重合体樹脂、アクリ
ロニトリル−スチレン共重合体樹脂等の絶縁性樹脂であ
っても良いし、これらに限定されることなく、−般に使
用される全ての樹脂を単独あるいは2種以上混合したも
のであっても良い。
The above binders include, for example, polycarbonate resin, acrylic resin, polyester resin, polystyrene resin, melamine resin, silicone resin, polyvinyl butyral resin,
It may also be a polyamide resin. The binder may also be a copolymer resin containing two or more of the repeating units of the above resins, such as an insulating resin such as vinyl chloride-vinyl acetate copolymer resin, acrylonitrile-styrene copolymer resin, etc. However, without being limited to these, all commonly used resins may be used alone or in a mixture of two or more.

酸化防止剤は、フェノール系化合物やトコール系化合物
を使用することが好ましい。
As the antioxidant, it is preferable to use a phenol compound or a tocol compound.

上記のフェノール系酸化防止剤の具体例としては、ヒド
ロキノン、ヒドロキノンモノメチルエーテル、2.5−
ジ−t−ブチルヒドロキノン、L−ブチルカテコール、
スチレン化フェノール、2,6−ジーも一ブチルフェノ
ール、BHTXBHA。
Specific examples of the above phenolic antioxidants include hydroquinone, hydroquinone monomethyl ether, 2.5-
Di-t-butylhydroquinone, L-butylcatechol,
Styrenated phenol, 2,6-di-butylphenol, BHTXBHA.

2−メチル−4,6−ジーt−ブチルフェノール、2.
2’−メチレンビス(4−メチル−6−t−ブチルフェ
ノール) 、2.2’−メチレンビス(4−エチル−6
−t−ブチルフェノール) 、4.4°−メチレンビス
(2,6−ジーt−ブチルフェノール)、4.4°−ブ
チリデンビス(3−メチル−6−t−ブチルフェ・ノー
ル”) 、2.6−ジ(メチルベンジル)−P−クレゾ
ール等がある。
2-methyl-4,6-di-t-butylphenol, 2.
2'-methylenebis(4-methyl-6-t-butylphenol), 2,2'-methylenebis(4-ethyl-6
-t-butylphenol), 4.4°-methylenebis(2,6-di-t-butylphenol), 4.4°-butylidenebis(3-methyl-6-t-butylphenol), 2.6-di( Examples include methylbenzyl)-P-cresol.

次に、トコール系酸化防止剤の具体例としては、上記構
造式で示したα−トコフェロール以外にトコールの誘導
体であるβ−トコフェロールやT−トコフェロール等が
ある。
Next, specific examples of tocol-based antioxidants include tocol derivatives such as β-tocopherol and T-tocopherol in addition to α-tocopherol shown in the above structural formula.

さらに、酸化防止剤は、上記の酸化防止剤の1種あるい
は2種以上を混合したものであっても良い。
Furthermore, the antioxidant may be one type of the above-mentioned antioxidants or a mixture of two or more types.

上記の構成において、本感光体の作製方法を以下に説明
する。
In the above configuration, a method for manufacturing the present photoreceptor will be described below.

先ず、前記の構造式で示した電荷発生物質である多環キ
ノン系顔料を2重量部と、フェノキシ樹Jll(PKH
H,ユニオンカーバイド社製)を1重量部と、1.4−
ジオキサンを97重量部とをボールミル分散機で12時
間分散して分散液を作製した。
First, 2 parts by weight of a polycyclic quinone pigment, which is a charge-generating substance shown by the above structural formula, and a phenoxy tree Jll (PKH
H, manufactured by Union Carbide Co.) and 1 part by weight, and 1.4-
A dispersion liquid was prepared by dispersing 97 parts by weight of dioxane using a ball mill disperser for 12 hours.

そして、この分散液を導電性支持体であるアルミ蒸着ポ
リエチレンテレフタレート上に、ベーカーアプリケータ
により塗工し、室温にて1時間乾燥を行い、厚さ1pの
電荷発生層を形成した。
Then, this dispersion was applied onto an aluminum vapor-deposited polyethylene terephthalate support, using a Baker applicator, and dried at room temperature for 1 hour to form a charge generation layer with a thickness of 1 p.

次に、前記の構造式で示した電荷輸送物質であるヒドラ
ゾン系化合物を1重量部と、バインダとしてポリカーボ
ネート樹脂を1重量部と、ジクロルメタンを8重量部と
を混合し、撹拌機で撹拌溶解した。
Next, 1 part by weight of a hydrazone compound which is a charge transporting substance shown by the above structural formula, 1 part by weight of a polycarbonate resin as a binder, and 8 parts by weight of dichloromethane were mixed and dissolved by stirring with a stirrer. .

そして、この混合液を上記の電荷発生層上に、ベーカー
アプリケータにより塗工し、80°Cで1時間乾燥を行
い、厚さ15Jnaの電荷輸送層を形成した。
This mixed solution was applied onto the charge generation layer using a Baker applicator and dried at 80° C. for 1 hour to form a charge transport layer with a thickness of 15 Jna.

さらに、上記の電荷輸送物質を有する混合液に、前記の
構造式で示した酸化防止剤であるα−トコフェロールを
0.05重量部混合して撹拌溶解した。
Furthermore, 0.05 parts by weight of α-tocopherol, which is an antioxidant represented by the above structural formula, was mixed and stirred and dissolved in the mixture containing the above charge transport substance.

そして、この混合液を上記の電荷輸送層上に、ベーカー
アプリケータにより塗工後、80°Cで1時間乾燥を行
い、厚さ5μの酸化防止剤を有する電荷輸送層を形成し
た。
Then, this mixed solution was applied onto the above charge transport layer using a Baker applicator, and then dried at 80°C for 1 hour to form a charge transport layer having a thickness of 5 μm and having an antioxidant.

尚、酸化防止剤の含有量は、電荷輸送物質に対して0.
01重量%〜20重量%、好ましくは0.1重量%〜1
0重量%が良い。即ち、酸化防止剤が0.01重量%よ
りも少ないと、酸化防止剤の効果がなく、また酸化防止
剤が20重量%を越えると、酸化防止剤が電荷輸送物質
に悪影響を及ぼすためである。
The content of the antioxidant is 0.0% relative to the charge transport substance.
01% to 20% by weight, preferably 0.1% to 1% by weight
0% by weight is good. That is, when the antioxidant content is less than 0.01% by weight, the antioxidant has no effect, and when the antioxidant content exceeds 20% by weight, the antioxidant has a negative effect on the charge transport substance. .

そして、上記に方法により作製された感光体を試料1と
した。
The photoreceptor produced by the method described above was designated as Sample 1.

次に、試料1と同様の方法で、以下に示すように、試料
2ないし試料5を作製した。
Next, Samples 2 to 5 were produced in the same manner as Sample 1, as shown below.

試料2は、電荷輸送層において、酸化防止剤を含まない
層の層厚を19ttIIlとし、酸化防止剤を含む層の
層厚を1−とじた、その他については、試料1と同様の
感光体とした。
Sample 2 is the same photoreceptor as Sample 1, except that in the charge transport layer, the thickness of the layer that does not contain an antioxidant is 19ttIIl, and the thickness of the layer that contains an antioxidant is 1-. did.

試料3は、電荷輸送層において、層厚20−の酸化防止
剤を含まない電荷輸送層のみとした。その他については
、試料1と同様の感光体とした。
Sample 3 had only a charge transport layer that did not contain an antioxidant and had a layer thickness of 20 mm. In other respects, the photoreceptor was the same as Sample 1.

試料4は、電荷輸送層において、酸化防止剤を含まない
層の層厚を10−とし、酸化防止剤を含む層の層厚を1
0−とじた、その他については、試料lと同様の感光体
とした。
In sample 4, in the charge transport layer, the layer thickness of the layer not containing the antioxidant was 10-1, and the layer thickness of the layer containing the antioxidant was 1-1.
The photoreceptor was the same as Sample 1 except that it was 0-closed.

試料5は、電荷輸送層において、層厚2o−の電荷輸送
層全体に酸化防止剤を含むようにした。
In sample 5, the charge transport layer contained an antioxidant throughout the charge transport layer having a layer thickness of 2<0>.

その他については、試料1と同様の感光体とした。In other respects, the photoreceptor was the same as Sample 1.

さらに、下記構造式で示される酸化防止剤以外は試料1
と同様に構成される試料6ないし試料9を作製した。試
料6の酸化防止剤は、下記の構造式で示す1価フェノー
ル系化合物である。
Furthermore, except for the antioxidant shown by the following structural formula, sample 1
Samples 6 to 9 having the same structure as above were prepared. The antioxidant of Sample 6 is a monohydric phenol compound represented by the following structural formula.

試料7の酸化防止剤は、以下の構造式で示す2価フェノ
ール系化合物である。
The antioxidant of Sample 7 is a dihydric phenol compound represented by the following structural formula.

試料9の酸化防止剤は、以下の構造式で示すトコール系
化合物である。
The antioxidant of Sample 9 is a tocol compound represented by the following structural formula.

試料8の酸化防止剤は、以下の構造式°で示す2価フェ
ノール系化合物である。
The antioxidant of Sample 8 is a dihydric phenol compound represented by the following structural formula.

(以下余白) 次に、試料1ないし試料9の帯電特性と繰り返し使用時
の電位変動とを以下に示す方法により測定した。
(The following is a blank space.) Next, the charging characteristics of Samples 1 to 9 and potential fluctuations during repeated use were measured by the method shown below.

先ず、試料1〜9を、静電複写紙試験装置(EPA:M
odel  5P−428;川口電機社製)を用いてス
タティックモードの一5kVでコロナ帯電させ、暗所で
5秒間保持した。この後、上記の試料1〜9を照度5f
xで露光して帯電特性、即ち、初期電位(■0)と、5
秒間暗減衰させたときに電位を1/2に減衰させるため
に必要な露光量(Bu/z )と、露光開始から5秒後
の残留電位(Vr)と、5秒間暗減衰させたときの電位
保持率(Vk)とを測定した。
First, samples 1 to 9 were tested using an electrostatic copying paper tester (EPA:M
Corona charging was carried out at 15 kV in static mode using an Odel 5P-428 (manufactured by Kawaguchi Denki Co., Ltd.) and held for 5 seconds in a dark place. After this, the above samples 1 to 9 were exposed to the illuminance of 5f.
x exposure to charge characteristics, i.e., initial potential (■0) and 5
The exposure amount (Bu/z) required to attenuate the potential to 1/2 when the dark decay is performed for 5 seconds, the residual potential (Vr) after 5 seconds from the start of exposure, and the residual potential (Vr) when the dark decay is performed for 5 seconds. The potential retention rate (Vk) was measured.

上記の方法により得られた試料1〜9の帯電特性の測定
結果は第1表に示す通りとなっている。
The measurement results of the charging characteristics of Samples 1 to 9 obtained by the above method are shown in Table 1.

尚、d4は酸化防止剤を含有する電荷輸送層の層厚であ
る。
Note that d4 is the layer thickness of the charge transport layer containing the antioxidant.

第1表 次に、試料1〜9を複写機(SF−8100;シャープ
社製)に搭載した。そして、繰り返し使用時の電位変動
として、初期および10000回使用後に、試料1〜9
の暗部電位(Vd)と明部電位(VL )とを測定した
Table 1 Samples 1 to 9 were then loaded into a copying machine (SF-8100; manufactured by Sharp Corporation). As for the potential fluctuation during repeated use, samples 1 to 9 were measured at the initial stage and after 10,000 uses.
The dark area potential (Vd) and light area potential (VL) were measured.

上記の試料1〜9の繰り返し使用時の電位変動の測定結
果は第2表に示す通りとなっている。
The measurement results of potential fluctuations during repeated use of the above samples 1 to 9 are shown in Table 2.

(以下余白) 第2表 上記の第1表から明らかなように、試料4および試料5
は、試料1〜3および試料6〜9と比較して、露光量(
El/りである感度の劣化と、残留電位(Vr)の上昇
とを住している。
(Margin below) Table 2 As is clear from Table 1 above, Sample 4 and Sample 5
The exposure amount (
This results in a deterioration in sensitivity (El/R) and an increase in residual potential (Vr).

これにより、酸化防止剤は、電荷輸送層の層厚に対して
、50%以上の層厚の範囲で電荷輸送層に含有されると
、トラップとして作用することが判明した。
This revealed that the antioxidant acts as a trap when contained in the charge transport layer in a range of 50% or more of the layer thickness of the charge transport layer.

また、上記の第2表から明らかなように、試料3は、試
料1・2および試料4〜9と比較して、繰り返し使用時
(10000回後)に電位変動、特に暗部電位(Va)
の変動が大きなものとなっている。これにより、酸化防
止剤を含有しない電荷輸送層のみが形成された感光体は
、電荷輸送物質がコロナ放電により酸化劣化して電位変
動が大きくなることが判明した。
In addition, as is clear from Table 2 above, sample 3 shows potential fluctuations during repeated use (after 10,000 times), especially dark area potential (Va), compared to samples 1 and 2 and samples 4 to 9.
There are large fluctuations. As a result, it was found that in a photoreceptor in which only a charge transport layer not containing an antioxidant was formed, the charge transport material deteriorated by oxidation due to corona discharge, resulting in large potential fluctuations.

従って、感光体は、酸化防止剤を含有する電荷輸送層が
、層表面より電荷輸送層の層厚に対して0.5%〜50
%の範囲、好ましくは5%〜25%の範囲で形成されて
いれば、感度の低下や残留電位の上昇が防止され、繰り
返し使用時の電位安定性に極めて優れていることが判明
した。
Therefore, in the photoreceptor, the charge transport layer containing the antioxidant is 0.5% to 50% of the layer thickness of the charge transport layer from the layer surface.
%, preferably in the range of 5% to 25%, a decrease in sensitivity and an increase in residual potential can be prevented, and it has been found that the potential stability during repeated use is extremely excellent.

次に、第1表および第2表における試料6〜9から明ら
かなように、電荷輸送層に含有される酸化防止剤は、フ
ェノール系化合物やトコール系化合物において、感度の
低下や残留電位の上昇を防止でき、さらに、繰り返し使
用時の電位安定性を極めて優れたものにすることが判明
した。
Next, as is clear from Samples 6 to 9 in Tables 1 and 2, the antioxidant contained in the charge transport layer decreases sensitivity and increases residual potential in phenolic compounds and tocol compounds. It has been found that it is possible to prevent this, and furthermore, the potential stability during repeated use is extremely excellent.

〔発明の効果〕〔Effect of the invention〕

本発明に係る電子写真用感光体は、以上のように、導電
性支持体上に、電荷担体を発生する電荷発生物質を有す
る電荷発生層と、電荷発生層より発生した電荷担体を受
け入れて輸送する電荷輸送物質を有する電荷輸送層とが
、この順に形成された電子写真用感光体において、上記
の電荷輸送層は、電荷輸送層の層厚に対して、層表面よ
り0.5%以上50%未満の層厚の範囲で少なくとも1
種以上のフェノール系酸化防止剤およびトコール系酸化
防止剤を有している構成である。
As described above, the electrophotographic photoreceptor according to the present invention includes a charge generation layer having a charge generation substance that generates charge carriers on a conductive support, and receives and transports charge carriers generated from the charge generation layer. In an electrophotographic photoreceptor in which a charge transport layer having a charge transport material that is At least 1 in a layer thickness of less than %
It has a structure containing more than one kind of phenolic antioxidant and tocol antioxidant.

これにより、添加剤を電荷輸送層に含有させた場合に生
じる感度の低下や残留電位の上昇を防止することで、高
感度を維持し、且つ繰り返し使用時の電位安定性を極め
て優れたものにすることができるという効果を奏する。
This prevents the decrease in sensitivity and increase in residual potential that would occur when additives are included in the charge transport layer, maintaining high sensitivity and providing extremely excellent potential stability during repeated use. It has the effect of being able to

Claims (1)

【特許請求の範囲】 1、導電性支持体上に、電荷担体を発生する電荷発生物
質を有する電荷発生層と、電荷発生層より発生した電荷
担体を受け入れて輸送する電荷輸送物質を有する電荷輸
送層とが、この順に形成された電子写真用感光体におい
て、 上記の電荷輸送層は、電荷輸送層の層厚に対して、層表
面より0.5%以上50%未満の層厚の範囲で少なくと
も1種以上のフェノール系酸化防止剤およびトコール系
酸化防止剤を有していることを特徴とする電子写真用感
光体。
[Scope of Claims] 1. Charge transport comprising a charge generation layer having a charge generation substance that generates charge carriers and a charge transport substance that receives and transports charge carriers generated from the charge generation layer on a conductive support. In the electrophotographic photoreceptor in which the charge transport layer and the charge transport layer are formed in this order, the charge transport layer has a layer thickness in the range of 0.5% or more and less than 50% from the layer surface with respect to the layer thickness of the charge transport layer. An electrophotographic photoreceptor comprising at least one phenolic antioxidant and tocol antioxidant.
JP8170289A 1989-03-31 1989-03-31 Electrophotographic sensitive body Pending JPH02259764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8170289A JPH02259764A (en) 1989-03-31 1989-03-31 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8170289A JPH02259764A (en) 1989-03-31 1989-03-31 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH02259764A true JPH02259764A (en) 1990-10-22

Family

ID=13753715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8170289A Pending JPH02259764A (en) 1989-03-31 1989-03-31 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH02259764A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03213865A (en) * 1989-11-13 1991-09-19 Mitsubishi Paper Mills Ltd Electrophotographic sensitive body
JPH08152728A (en) * 1994-11-29 1996-06-11 Fuji Electric Co Ltd Electrophotographic photoreceptor
JP2005084678A (en) * 2003-09-05 2005-03-31 Xerox Corp Dual charge transport layer and photoconductive imaging member including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03213865A (en) * 1989-11-13 1991-09-19 Mitsubishi Paper Mills Ltd Electrophotographic sensitive body
JPH08152728A (en) * 1994-11-29 1996-06-11 Fuji Electric Co Ltd Electrophotographic photoreceptor
JP2005084678A (en) * 2003-09-05 2005-03-31 Xerox Corp Dual charge transport layer and photoconductive imaging member including the same

Similar Documents

Publication Publication Date Title
US4297425A (en) Imaging member
JPS61156131A (en) Photoconductive image forming material
JPH027061A (en) Electrophotographic sensitive body
JP2004038168A (en) Imaging member
EP1198735A1 (en) Electrophotographic photoconductor containing simple quinones to improve electrical properties
KR0159798B1 (en) Electrophotographic photosensitive member and electrophotographic apparatus using the same
JPH02259764A (en) Electrophotographic sensitive body
JPH0533392B2 (en)
US4160666A (en) Polymeric chemical sensitizers for organic photoconductive compositions
GB2059617A (en) Electrophotographic materials
US4082550A (en) Hexachlorocyclopentene chemical sensitizers for heterogeneous organic photoconductive compositions
JP2707795B2 (en) Electrophotographic photoreceptor
JPH0588388A (en) Electrophotographic sensitive body
JPH0715581B2 (en) Electrophotographic photoreceptor
JP2002072520A (en) Electrophotographic photoreceptor and method for manufacturing the same
JPH01273049A (en) Electrophotographic sensitive body
JPS589151A (en) Electrophotographic receptor
JPH0513499B2 (en)
JP2833017B2 (en) Electrophotographic photoreceptor
JP2671544B2 (en) Electrophotographic photoreceptor
JP3239676B2 (en) Manufacturing method of photoreceptor for electrophotography
JPS6258503B2 (en)
JPH05134434A (en) Electrophotographic sensitivity body
JPH0823702B2 (en) Electrophotography method
JPH1152592A (en) Coating liquid and electrophotographic photoreceptor