JPH02259203A - Organic medium use power plant - Google Patents

Organic medium use power plant

Info

Publication number
JPH02259203A
JPH02259203A JP8193889A JP8193889A JPH02259203A JP H02259203 A JPH02259203 A JP H02259203A JP 8193889 A JP8193889 A JP 8193889A JP 8193889 A JP8193889 A JP 8193889A JP H02259203 A JPH02259203 A JP H02259203A
Authority
JP
Japan
Prior art keywords
medium
steam
tank
evaporator
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8193889A
Other languages
Japanese (ja)
Inventor
Eiji Sekiya
関矢 英士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8193889A priority Critical patent/JPH02259203A/en
Publication of JPH02259203A publication Critical patent/JPH02259203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent abnormal raise of medium temperature even at power failure of a plant by providing a valve which opens at the powder failure on a piping system which connects a steam pipe communicating to a generation part of medium steam to the liquid phase side of a medium container. CONSTITUTION:A steam escape pipe 13 is provided diverged from a path which guides generated steam of a evaporator 2 to a turbine 5, and a steam escape valve 14 is arranged on its way. The other end of the steam escape pipe 13 is connected to the bottom part of a tank 10 to blow out medium steam into medium liquid as fine bubbles. And when all the powder supply in a plant is interrupted, the steam escape valve 14 is opened and the medium steam in the evaporator 2 is made escaped to the tank 10 through the steam escape pipe 13. On the other hand, the medium steam is condensed by taking heat by low-temperature medium liquid in the tank 10 to control raise of pressure in the tank 10.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は熱サイクル動力プラントに係り、特にプラント
の所内が全面的に停電となった際に媒体蒸気をサイクル
の経路から貯蔵用容器に安全に回収することのできる有
機媒体利用動力プラントに関する。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Application Field) The present invention relates to a thermal cycle power plant, and in particular, to a thermal cycle power plant that removes medium steam from the cycle path when there is a complete power outage in the plant. The present invention relates to a power plant utilizing organic media that can be safely recovered into a storage container.

(従来の技術) 地熱や産業廃熱のような中低温の熱を利用して動力や電
力を得る方式として、フロンや揮発性の炭化水素等の低
沸点有機媒体をこれらの熱で蒸発させ、その蒸気で有機
媒体タービンを駆動する方法があり、その代表的な技術
の一例がターボ機械協会発行の学術雑誌「ターボ機械第
15巻第4号」の第49頁ないし第52頁に記載されて
いる。
(Conventional technology) As a method of obtaining motive power and electric power using medium-low temperature heat such as geothermal heat or industrial waste heat, low-boiling organic media such as fluorocarbons and volatile hydrocarbons are evaporated using this heat. There is a method of driving an organic medium turbine with the steam, and one typical example of this technology is described on pages 49 to 52 of the academic journal "Turbo Machinery Vol. 15, No. 4" published by the Turbo Machinery Association. There is.

この技術概要を第2図を参照して説明すると、地熱や産
業廃熱のような中低温の熱源流体1は、蒸発器2で低沸
点の有機媒体3を加熱し、蒸発させた後、予熱器4で媒
体3を予熱してプラントの系外に排出される。液体の状
態である媒体3は、予熱器4で蒸発温度近くまで加熱さ
れた後、蒸発器2で蒸発し、高エネルギーの媒体蒸気と
なる。この媒体蒸気はタービン5に導かれてタービン5
を駆動し、タービン5に結合された負荷、例えば発電機
6が回されて電力が得られる。タービン5にエネルギー
を与えて圧力、温度の低下した媒体蒸気は凝縮器7に排
出され、冷却水8で冷やされて凝縮し、液体に戻った後
、媒体ポンプ9で再度予熱器4に送られ、この系統を循
環する。この他に系統内の媒体を回収したり補充したり
するための媒体貯蔵用容器、例えばタンク10が設けら
れており、媒体補給・回収ポンプ11、媒体補給・回収
配管12を用いて媒体の出し入れが行われる。
To explain the outline of this technology with reference to Fig. 2, a medium to low temperature heat source fluid 1 such as geothermal heat or industrial waste heat is heated in an evaporator 2 to evaporate a low boiling point organic medium 3, and then preheated. The medium 3 is preheated in the vessel 4 and discharged outside the plant system. The medium 3 in a liquid state is heated to near the evaporation temperature in the preheater 4 and then evaporated in the evaporator 2 to become high-energy medium vapor. This medium steam is guided to the turbine 5.
A load coupled to the turbine 5, such as a generator 6, is rotated to obtain electric power. The medium vapor whose pressure and temperature have been reduced by applying energy to the turbine 5 is discharged to the condenser 7, where it is cooled and condensed by the cooling water 8, returns to liquid form, and is then sent to the preheater 4 again by the medium pump 9. , circulate through this system. In addition, a medium storage container such as a tank 10 is provided for recovering and replenishing the medium in the system, and a medium replenishment/recovery pump 11 and a medium replenishment/recovery piping 12 are used to take in and out the medium. will be held.

(発明が解決しようとする課題) ところで、このようなプラントでは、何かの事故でプラ
ントの所内が全面的に停電となると、熱源系、媒体系、
冷却系のポンプ、ファン類が停電してしまうので、各系
統の流れは正常の状態を維持できなくなる。そして、蒸
発器2内に停留する熱源流体1のため蒸発器2内の媒体
は異常な高温にまで加熱され、そのままでは蒸発器2内
の圧力は異常に高いものとなる。また、媒体によっては
高温で熱分解を起こすものがあり、何らかの対策が必要
である。
(Problem to be solved by the invention) By the way, in such a plant, if there is a complete power outage in the plant due to some kind of accident, the heat source system, media system,
Since the pumps and fans in the cooling system lose power, the flow in each system cannot be maintained in a normal state. Then, because of the heat source fluid 1 remaining in the evaporator 2, the medium in the evaporator 2 is heated to an abnormally high temperature, and if this continues, the pressure in the evaporator 2 will become abnormally high. Additionally, some media may cause thermal decomposition at high temperatures, so some kind of countermeasure is required.

器内圧力の上昇に対しては、蒸発器2の耐圧を高くとれ
ば対処可能であるが、部材の肉厚の増加等に伴う材料費
・機器重量の増加、それから派生する輸送費・基礎工事
費の増加など経済性の観点から好ましくない。そして、
この手法では、媒体の熱分解に対しては何の対策も考慮
されていない。
The increase in internal pressure can be dealt with by increasing the pressure resistance of the evaporator 2, but this increases material costs and equipment weight due to increases in the wall thickness of parts, and the resulting transportation costs and foundation work. This is unfavorable from an economic point of view, such as an increase in costs. and,
This method does not take any measures against thermal decomposition of the medium into consideration.

媒体蒸気をどこかへ逃がすことも考えられるが、大気中
に放出するのは、環境性・経済性の面で好ましくないし
、凝縮器7へ逃がす場合には、凝縮器7が冷却・凝縮機
能を喪失しているので、凝縮器7の耐圧を大幅に高めて
おく必要が生じ、蒸発器2と同様な問題が生じる。
It is possible to release the medium vapor somewhere, but releasing it into the atmosphere is unfavorable from an environmental and economic point of view, and when releasing it to the condenser 7, the condenser 7 has no cooling/condensing function. Because of this loss, it becomes necessary to significantly increase the withstand pressure of the condenser 7, which causes the same problem as the evaporator 2.

そこで、本発明の目的は、事故でプラントの所内が全面
的に停電となった場合に、媒体を大気放出することなく
、蒸発器の器内圧力を減少せしめることにより、環境性
・経済性に関する上記の問題が生じない有機媒体利用動
力プラントを提供しようとするものである。
Therefore, an object of the present invention is to reduce the internal pressure of the evaporator without releasing the medium into the atmosphere in the event of a complete power outage in the plant due to an accident, thereby improving environmental and economic efficiency. It is an object of the present invention to provide a power plant using an organic medium that does not cause the above-mentioned problems.

[発明の構成] (課題を解決するための手段) 本発明は上記目的を達成するために動力媒体として有機
媒体を利用する熱サイクル動力プラントにおいて、媒体
蒸気の発生部と連絡している蒸気管と、媒体貯蔵用容器
の液相側とを結ぶ配管系統と、この配管系統にプラント
異常時に開となる弁とを設けたことを特徴とするもので
ある。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a steam pipe communicating with a medium steam generating section in a thermal cycle power plant that uses an organic medium as a power medium. The present invention is characterized in that it is provided with a piping system connecting the liquid phase side of the medium storage container and the liquid phase side of the medium storage container, and a valve that is opened in the event of an abnormality in the plant.

(作用) プラントの運転中は、媒体貯蔵用容器はほとんど空の状
態であり、通常少量の媒体が補給用として入っている。
(Operation) During operation of the plant, the medium storage vessel is almost empty and usually contains a small amount of medium for replenishment.

内部の温度はほぼ外気温度であるから、器内圧力はその
飽和圧力であり、蒸発器の蒸発圧力に比べ、はるかに低
い圧力である。それ故、プラント異常時、蒸発器と媒体
貯蔵用容器とを配管系統を介して連通させれば、蒸発器
の媒体蒸気は媒体貯蔵用容器へと逃げ、媒体貯蔵用容器
の液相中に放出されることにより、媒体貯蔵用容器内の
媒体液で冷却され、媒体貯蔵用容器内にて凝縮する。蒸
発器内に滞留する熱源流体1の量は限られており、蒸発
器から媒体貯蔵用容器へ流入する媒体蒸気が蒸発潜熱と
して熱を奪うので、蒸発器の器内温度の異常上昇は避け
られ、一方媒体貯蔵用容器へ流入する媒体も、高温の状
態で流入する量は媒体貯蔵用容器の容積に比べれば少量
であるから、媒体貯蔵用容器の器内圧力の上昇は低く抑
えられる。
Since the internal temperature is approximately the outside temperature, the internal pressure is its saturation pressure, which is much lower than the evaporation pressure of the evaporator. Therefore, in the event of a plant abnormality, if the evaporator and medium storage container are communicated via a piping system, the medium vapor in the evaporator will escape to the medium storage container and be released into the liquid phase of the medium storage container. As a result, the medium liquid in the medium storage container is cooled and condensed in the medium storage container. The amount of heat source fluid 1 remaining in the evaporator is limited, and the medium vapor flowing from the evaporator into the medium storage container absorbs heat as latent heat of vaporization, so an abnormal rise in the temperature inside the evaporator can be avoided. On the other hand, since the amount of the medium flowing into the medium storage container in a high temperature state is small compared to the volume of the medium storage container, the increase in the internal pressure of the medium storage container can be suppressed to a low level.

(実施例) 本発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described with reference to FIG.

本実施例では、蒸発器2の発生蒸気をタービン5に導く
経路から分岐される蒸気逃がし管13が設けられ、その
途中には蒸気逃がし弁14が設置されている。蒸気逃が
し弁14は通常運転時は全閉となっており、プラントの
所内が全面的に停電となった場合に開くような構造とし
ておく。蒸気逃がし管13の他端15はタンク10の底
部に接続され、多数の細かい孔を介してタンク10内に
開口するなどの手段により、媒体蒸気が微細な気泡とな
って媒体液の中に噴出するようになっている。
In this embodiment, a steam relief pipe 13 is provided that branches off from a path that leads the steam generated by the evaporator 2 to the turbine 5, and a steam relief valve 14 is installed in the middle of the pipe. The steam relief valve 14 is completely closed during normal operation, and is designed to be opened in the event of a complete power outage in the plant. The other end 15 of the vapor relief pipe 13 is connected to the bottom of the tank 10, and is opened into the tank 10 through a large number of small holes, so that the medium vapor becomes fine bubbles and is ejected into the medium liquid. It is supposed to be done.

上記構成によるプラントにおいて、プラントの所内が全
面的に停電となった場合、その状態が発生したことを検
出して蒸気逃がし弁14が開くと、蒸発器2内の媒体蒸
気は蒸気逃がし管13を通ってタンク10に逃げるので
、蒸発器2内の圧力の異常上昇は防げる。一方、タンク
10には蒸発器2からの媒体蒸気が流入してくるが、媒
体蒸気は微細な気泡となって媒体液の中に噴出するので
、低温の媒体液に熱を奪われ凝縮し、その結果タンク1
0の器内温度、およびそれに伴う器内圧力は増すことに
なるけれども、蒸発器2からの媒体蒸気の流入を短時間
のうちに処置すれば、タンク10の器内圧力の上昇は問
題とならない値に留まる。
In the plant configured as described above, when a power outage occurs throughout the plant, when the occurrence of this condition is detected and the steam relief valve 14 is opened, the medium vapor in the evaporator 2 passes through the steam relief pipe 13. Since the water passes through the tank 10 and escapes to the tank 10, an abnormal increase in pressure inside the evaporator 2 can be prevented. On the other hand, the medium vapor from the evaporator 2 flows into the tank 10, but the medium vapor turns into fine bubbles and ejects into the medium liquid, so the medium liquid at a low temperature absorbs heat and condenses. As a result tank 1
Although the temperature inside the tank 10 and the corresponding pressure inside the tank 10 will increase, if the inflow of medium vapor from the evaporator 2 is treated within a short time, the increase in the pressure inside the tank 10 will not be a problem. Stay in value.

−例として、プラントの所内全停電時に蒸発器2内に存
在している熱水の平均温度を150℃、保有量を6 t
on s媒体はフロンの一種であるR123(CHCl
2F3)の温度を120℃、保有量を15tonとし、
両系統とも封じられたとすると、温度が約138℃のと
ころで落ち若くことになり、その結果、R123の圧力
は・約12kg / cd absから約17kg /
 cJ absにまで上昇する。このような高温はR1
23にとって不都合であるし、蒸発器2の器内圧力も極
力低く抑えたい。
- As an example, at the time of a total power outage in the plant, the average temperature of the hot water existing in the evaporator 2 is 150°C, and the amount held is 6 tons.
The ons medium is R123 (CHCl), which is a type of fluorocarbon.
The temperature of 2F3) is 120℃, the amount held is 15 tons,
Assuming that both systems are sealed, the temperature will drop at about 138℃ and become young, and as a result, the pressure of R123 will change from about 12kg/cd abs to about 17kg/cd abs.
It rises to cJ abs. Such a high temperature is R1
23, and it is desirable to keep the internal pressure of the evaporator 2 as low as possible.

上記の実施例で本発明を適用した場合には、蒸発器2か
らR123の飽和蒸気が温度125℃の状態で蒸気逃が
し管13に流れるとすると、約4.6tonのR123
が蒸発したところで、蒸発潜熱のために熱を奪われた熱
水の温度は125℃となり、蒸発器2内R123の温度
は125℃以上には上がらなくなる。このときの飽和圧
力は約13kg/cjabSに留まる。蒸発した約4.
6tOnのR123は蒸気逃がし管13を通ってタンク
10に流入するが、この規模のプラントであると、タン
ク10の全容積は180m3程度あり、通常その中に約
20tonのR123が予備として貯蔵されている。タ
ンク10内の温度が20℃とすると、R123の飽和蒸
気が125℃で4.8tOn流入すれば、タンク10内
は温度的52℃、圧力的2.3 kg/cjabsの飽
和状態で平衡となる。
When the present invention is applied to the above embodiment, assuming that the saturated steam of R123 flows from the evaporator 2 to the steam relief pipe 13 at a temperature of 125°C, approximately 4.6 tons of R123
When the hot water is evaporated, the temperature of the hot water from which heat has been removed due to the latent heat of vaporization becomes 125°C, and the temperature of R123 in the evaporator 2 does not rise above 125°C. The saturation pressure at this time remains at about 13 kg/cjabS. Evaporated approx.
6 tons of R123 flows into the tank 10 through the steam relief pipe 13, but in a plant of this scale, the total volume of the tank 10 is about 180 m3, and about 20 tons of R123 is normally stored in it as a reserve. There is. Assuming that the temperature inside the tank 10 is 20°C, if 4.8 tons of R123 saturated steam flows in at 125°C, the inside of the tank 10 will be in equilibrium at a saturated state of temperature 52°C and pressure 2.3 kg/cjabs. .

プラントの所内全体が停電となるような事故はプラント
にとって極めて異常な事故であり、そのような場合には
運転員によりすぐ処置がとられ、補助電源が起動したり
熱水が排出されたりするから、実際には上述の試算例よ
り安全側の状態に落ち着く。
An accident that causes a power outage to the entire plant is an extremely abnormal accident for a plant, and in such a case, operators will take immediate action, such as starting up an auxiliary power source and discharging hot water. In reality, the situation is on the safer side than in the above calculation example.

このように、本実施例によれば蒸発器2内の媒体の温度
、圧力の上昇を低く押えるとともに、タンク10の耐圧
もそれほど大きな値とすることなしに、従来技術の問題
点を解決することが可能となる。
As described above, according to this embodiment, the problems of the prior art can be solved without increasing the temperature and pressure of the medium in the evaporator 2 to a low level, and without increasing the withstand pressure of the tank 10 to a very large value. becomes possible.

上述の実施例ではプラントの所内全停の条件で蒸気逃が
し弁1゛4を開けているが、この蒸気逃がし弁14は、
媒体蒸気管内の蒸気圧力、すなわち蒸発器2内の蒸気圧
力が設定値以上という条件で開くバネ式安全弁のような
手段とすることも可能である。
In the above-described embodiment, the steam relief valves 1 and 4 are opened under the condition that the plant is completely shut down, but the steam relief valves 14 are
It is also possible to use a means such as a spring-loaded safety valve that opens under the condition that the vapor pressure in the medium vapor pipe, that is, the vapor pressure in the evaporator 2 is equal to or higher than a set value.

さらに、蒸気逃がし管13はその一部を放熱装置16に
より構成し、またはフィン付き管とする等の手段により
、タンク10へ流れる媒体蒸気の温度を下げ、タンク1
0の圧力上昇を低減させることが考えられる。
Further, the steam relief pipe 13 is partially configured with a heat radiating device 16 or is made into a finned pipe to lower the temperature of the medium vapor flowing into the tank 10.
It is conceivable to reduce the pressure rise of 0.

[発明の効果] 以上説明したように本発明によれば、有機媒体を動作媒
体とする熱サイクル動力プラントにおいて、媒体蒸気の
発生部と連絡している蒸気管と、媒体貯蔵用容器の液相
側とを結ぶ配管系統と、この配管系統にプラント異常時
に開となる弁とを設7けているから、プラントの所内全
停時にも媒体温度の異常な上昇を防ぐことができ、媒体
の熱分解の問題がなくなる。また媒体の系統の圧力上昇
も、通常時との差を小さく抑えることが可能であり、関
係機器の耐圧が低くてすみ、機器式、輸送費、工事費の
上昇が少なく経済性が向上する。
[Effects of the Invention] As explained above, according to the present invention, in a thermal cycle power plant using an organic medium as an operating medium, the steam pipe communicating with the medium vapor generation section and the liquid phase of the medium storage container Because this piping system is equipped with a piping system that connects the side and a valve that opens in the event of a plant abnormality, it is possible to prevent the medium temperature from rising abnormally even when the plant is completely shut down. Eliminates the problem of disassembly. In addition, the pressure increase in the media system can be kept to a small level compared to normal times, and the withstand pressure of related equipment can be lowered, resulting in improved economic efficiency with fewer increases in equipment, transportation costs, and construction costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を用いた有機媒体利用動力プラントの一
例を示す基本的な系統図、第2図は従来技術の基本的な
系統図である。 2・・・・・・・・・蒸発器 5・・・・・・・・・タービン 7・・・・・・・・・凝縮器 10・・・・・・・・・タンク 13・・・・・・・・・蒸気逃がし管 14・・・・・・・・・蒸気逃がし弁 16・・・・・・・・・放熱装置
FIG. 1 is a basic system diagram showing an example of a power plant using an organic medium using the present invention, and FIG. 2 is a basic system diagram of a conventional technology. 2...Evaporator 5...Turbine 7...Condenser 10...Tank 13... ...Steam relief pipe 14 ...Steam relief valve 16 ... Heat dissipation device

Claims (1)

【特許請求の範囲】[Claims] 動力媒体として有機媒体を利用する熱サイクル動力プラ
ントにおいて、媒体蒸気の発生部と連絡している蒸気管
と、媒体貯蔵用容器の液相側とを結ぶ配管系統と、この
配管系統にプラント異常時に開となる弁とを設けたこと
を特徴とする有機媒体利用動力プラント。
In a thermal cycle power plant that uses an organic medium as the power medium, there is a piping system that connects the steam pipe that communicates with the medium vapor generation part and the liquid phase side of the medium storage container, and a A power plant using an organic medium, characterized in that it is provided with a valve that opens.
JP8193889A 1989-03-31 1989-03-31 Organic medium use power plant Pending JPH02259203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8193889A JPH02259203A (en) 1989-03-31 1989-03-31 Organic medium use power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8193889A JPH02259203A (en) 1989-03-31 1989-03-31 Organic medium use power plant

Publications (1)

Publication Number Publication Date
JPH02259203A true JPH02259203A (en) 1990-10-22

Family

ID=13760431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8193889A Pending JPH02259203A (en) 1989-03-31 1989-03-31 Organic medium use power plant

Country Status (1)

Country Link
JP (1) JPH02259203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230401A (en) * 2011-05-19 2011-11-02 西安交通大学 Replacement system of organic Rankine cycle low-temperature power generation working medium and replacement method thereof
CN115126690A (en) * 2022-08-02 2022-09-30 山东国舜建设集团有限公司 Organic working medium filling and recycling assembly, waste heat recycling generator set and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230401A (en) * 2011-05-19 2011-11-02 西安交通大学 Replacement system of organic Rankine cycle low-temperature power generation working medium and replacement method thereof
CN115126690A (en) * 2022-08-02 2022-09-30 山东国舜建设集团有限公司 Organic working medium filling and recycling assembly, waste heat recycling generator set and method
CN115126690B (en) * 2022-08-02 2023-10-31 山东国舜建设集团有限公司 Organic working medium filling and recycling assembly, waste heat recycling generator set and method

Similar Documents

Publication Publication Date Title
US5195575A (en) Passive three-phase heat tube for the protection of apparatus from exceeding maximum or minimum safe working temperatures
CN105810256A (en) Passive residual heat removal system for nuclear power plant
US20120294407A1 (en) Nuclear Power Plant, Fuel Pool Water Cooling Facility and Method Thereof
CN204480678U (en) A kind of nuclear power station Heat Discharging System of Chinese
KR101654096B1 (en) Self-diagnostic Unmanned Reactor
CN107644693B (en) Naval reactor and once through steam generator Passive residual heat removal system
CN207909507U (en) A kind of passive residual heat removal system
JP5465899B2 (en) Method and apparatus for separating and removing neutron absorber from coolant in cooling circuit
CN107665742B (en) It is active to meet an urgent need residual heat removal system with the passive naval reactor that combines
JP5904859B2 (en) Emergency core cooling device and nuclear reactor facility equipped with the same
CN105386803B (en) Low-grade waste heat power generation system capable of achieving gas-liquid hybrid recycling and control method
CN108431535B (en) Pressure reducing cooling system for containment vessel of nuclear power plant
CN106297915B (en) Passive safety injection system for nuclear power station
JP2012233698A (en) Nuclear power plant emergency cooling system
CN104205239A (en) System for discharging residual power of pressurized water nuclear reactor
US6895068B2 (en) Method for providing a pressurized fluid
JPH02259203A (en) Organic medium use power plant
JPH05272308A (en) Organic medium applied motive power recovery plant
CN207250149U (en) The Passive residual heat removal system of floating nuclear power plant
CN110462206A (en) Wind turbine Waste Heat Recovery System
TW201312586A (en) Arrangement for emergency cooling of a plant for exothermic processes
JPH05118206A (en) Power plant utilizing organic medium
JP3061900B2 (en) Reactor
RU2650504C2 (en) Emergency nuclear reactor cooling system
RU2067720C1 (en) Passive heat transfer system